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Liquid crystals with molecules constrained to the
tangent bundle of a curved surface show interesting
phenomena resulting from the tight coupling of the
elastic and bulk-free energies of the liquid crystal
with geometric properties of the surface. We derive
a thermodynamically consistent Landau-de Gennes-
Helfrich model which considers the simultaneous
relaxation of the Q-tensor field and the surface.
The resulting system of tensor-valued surface partial
differential equation and geometric evolution laws
is numerically solved to tackle the rich dynamics of
this system and to compute the resulting equilibrium
shape. The results strongly depend on the intrinsic
and extrinsic curvature contributions and lead to
unexpected asymmetric shapes.

1. Introduction
In-plane order on two-dimensional manifolds has been
the subject of much research elucidating the intimate
relation between topological defects and the geometry of
the manifold. Depending on the topology of the manifold
these defects can not only be energetically favourable, but
topologically necessary. They can play fundamental roles
leading to striking results and structures in the ground
state that would be highly suppressed in flat systems.
Such properties are summarized in [1,2] for positional
and orientational order, respectively. Colloidal crystals
assembled on spherical or toroidal surfaces provide good
examples to study the role of curvature on positional
ordering. Here, the number of defects can deviate from
the minimal topologically required defect set, leading to
scars and pleats in the ground state, e.g. [3,4].
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Orientational ordering has been analysed in the context of liquid crystals. Due to the
close relation between principle curvature and Q-tensor field the coupling between geometric
properties and defects becomes even tighter, leading to e.g. non-required defects on a torus [5].
On a sphere the ground state has been identified as a tetrahedral configuration [6] and coated
spherical colloids with functionalized defects have been proposed as building blocks for colloidal
crystals with a tetrahedral structure [7].

In contrast to these studies on fixed surfaces, we allow the manifold to change. This additional
relaxation mechanism provides a path to locally overcome geometric frustration. The tendency
to accommodate some preferential in-plane order is the mechanism behind the buckling of
crystalline sheets [8] and also the origin of the icosahedral shape of various viral capsides [9].
While the interplay of crystalline order and shape relaxation has been studied theoretically and
computationally, e.g. [8–10], the situation for nematic order is less explored. Defects in nematic
shells are intensively studied on fixed geometries, such as a sphere [6,11–14] and under more
complicated constraints, e.g. [15–19]. Most of these studies use particle methods. However, field
theoretical descriptions also exist, e.g. [20–25]. These models differ in details and strongly depend
on the assumptions made in the derivation. While most of them only focus on the steady state,
some also account for dynamics via gradient flows, e.g. [24,25]. These approaches are well suited
to be extended towards changing manifolds. An attempt in this direction can be found in [26]
for polar order, where the model in [24] is generalized to manifolds with a prescribed evolution.
We are interested in the resulting equilibrium shapes if both the manifold and the orientational
order on it are allowed to relax. Analytical results within a simplified phenomenological mean-
field theory [27] suggest shape changes from spherical to tetrahedral. We will show that the
situation can become more complex if not only intrinsic but also extrinsic curvature contributions
are considered. At least for weak bending forces extrinsic curvature contributions can break the
symmetry, making the tetrahedral defect configuration unstable. The change from a tetrahedral
to a planar defect arrangement has strong implications for the aforementioned applications.
Such shape changes are also relevant in the understanding of morphological changes during
development and the design of bioinspired materials that are capable of self-organization.
Defect dynamics and corresponding morphological transitions have been observed by restricting
suspensions of microtubule filaments driven by kinesin motors to the membrane of vesicles [28].
The observed shape changes are tunable and lead to ring-shaped, spindle-shaped and motile
droplets with filipodia-like protrusions. To fully understand these complex out-of-equilibrium
systems, first an understanding of systems without active components is necessary. We will,
therefore, only focus on passive systems and leave the investigation of additional active terms
for future research.

The outline of the paper is as follows: we start in §2 with the derivation of thermodynamically
consistent models resulting from an Landau-de Gennes-Helfrich energy. Section 3 describes the
numerical approach to solve the resulting geometric and tensor-valued surface partial differential
equations. The equations are solved in §4 for specialized situations with increasing complexity,
including the evolution of the Q-tensor field on surfaces with a prescribed normal velocity, the
surface response to a stationary Q-tensor field and the fully coupled system. We further discuss
the results and explain the observed phenomena as a result of the tight coupling of intrinsic
and extrinsic curvature with the Q-tensor field and the corresponding topological defects. All
modelling and numerical details are provided in the appendix.

2. Notation and model derivation
To obtain the desired equilibrium shapes, we derive steepest decent models for the Landau-de
Gennes-Helfrich energy ÛQ = ÛQ(S, q), which is specified below. Thereby, q ∈QS is a tangential
surface Q tensor, with QS = {r ⊂ T2S : Tr r = 0, r = rT}. Furthermore, S = S(t) is a time-dependent
surface without boundary, which evolves only in the normal direction, and TnS denotes the
tangential tensor bundle of degree n ≥ 0.
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We will consider variations of the energy ÛQ. This requires to identify dependencies and to
provide ways how to handle them. The restriction to normal deformations allows to describe
the surface by an independent scalar-valued variable ξ = ξ (t) ∈ T0S. We deploy the ansatz X =
X(ξ ) = X(ξ (t, y1, y2), y1, y2) for a time-dependent parametrization to locally describe the surface S.
We thus obtain

Ẋ := d
dt

X = ∂ξ

∂t
∂X
∂ξ

= vν, (2.1)

with normal velocity v = ∂ξ/∂t and normal vector ν = ∂X/∂ξ . Moreover, a perturbation of the
surface gives a scalar-valued perturbation in the normal direction by δξ , i. e.

δX = ∂X
∂ξ

δξ = δξν. (2.2)

Considering the perturbed surface S̃ locally defined by X̃ = X + εδX, we introduce the surface
derivative δS := d/dε|ε=0 for all quantities of S, which are extendable to S̃ and are sufficiently
smooth. Note that this derivative is consistent w. r. t. the perturbation ξ̃ = ξ + εδξ in the sense
that for functions (f̂ ◦ X)(ξ ) = f (ξ ) holds δS f̂ = δS f , since ∇ν f̂ = (d/dξ )f̂ = ∂f/∂ξ . Especially, for
functionals F̂ = F̂[X] and F = F[ξ ] = (F̂ ◦ X)[ξ ] the derivative δS implies the functional derivative
δF/δξ w. r. t. ξ , i. e.

δS F̂ = δSF = lim
ε→0

F[ξ ] − F[ξ + εδξ ]
ε

=
∫
S

δF
δξ

δξμ =
(

δF
δξ

)∗
[δξ ], (2.3)

see appendix D. Obviously, the surface derivative δS is not a tensor operator on TnS for n ≥ 1,
but on Tn

R
3|S . Therefore, claiming δSq = 0 to set q as an independent variable w. r. t. the surface,

would again be overdetermined in T2
R

3|S . Thus, we rather require ΠSδSq = ΠQSδSq = 0 instead
and finally get δSqij = [Bq + qB]ijδξ for the contravariant components, see equation (B 2). Thereby,
ΠQS denotes the projection into the space of tangential Q-tensors (see below). For further details,
refer to appendix B.

(a) Free energy
The Landau-de Gennes-Helfrich energy UQ = UQ[ξ , q] = ÛQ[X, q] is given by

UQ[ξ , q] = UH[ξ ] + ULdG[ξ , p] + Ua[ξ ], (2.4)

where

UH = α

2

∫
S
H2μ, (2.5)

ULdG = UEl + UB, (2.6)

UEl = L
2

∫
S

∥∥∇Sq
∥∥2 + ‖B‖2 Tr q2 + 2SH

〈
B, q

〉 + S2

2
‖B‖2 μ, (2.7)

UB =
∫
S

a′Tr q2 + cTr q4 + C1μ (2.8)

and Ua = ωa

2

(
A − A0

A0

)2
(2.9)

are the Helfrich energy, the Landau-de Gennes energy, the elastic energy, the bulk energy and
the surface area penalization energy, respectively, with the bending rigidity α, mean curvature H,
Landau-de Gennes constant L, nematic order parameter S, thermotropic parameters a, b and c, a′ =
a + b

3 S + c
6 S2, C1 = S2( a

6 − b
54 S + c

72 S2), surface area penalization parameter ωa, desired surface
area A0, actual surface area A := ∫

S μ, the covariant surface gradient ∇S and the 2-form μ [29],
which here can also be interpreted as the area element. The Landau-de Gennes-Helfrich energy is
the one-constant approximation of the energy obtained in [25] with the parameter choice L1 = L,
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L2 = L3 = L6 = 0 and eigenvalue β = − S
3 of the auxiliary proper Q-tensor

Q = q + S
6
ΠS − S

3
ν ⊗ ν ∈QR

3∣∣
S . (2.10)

The energy in [25] results in a thin-film limit of the corresponding energy in R
3 with appropriate

boundary conditions. The thermotropic stationary bulk energy UB|ξ = UB|ξ [q] = UB|ξ [S] only
depends on the nematic order parameter and has a minimum at S = (−b +

√
b2 − 24ac)/(4c).

(b) Steepest decent method
For the Landau-de Gennes-Helfrich energy UQ = UQ[ξ , q] = ÛQ[X, q], we consider the L2-gradient
flow w. r. t. ξ ∈ T0S, q ∈QS and ΠQSδSq = 0, i. e.

− δUQ

δξ
= kξ̇ = kv (2.11)

and

− δUQ

δq
= kqq̇ = kqΠQS

dq
dt

= kqΠS
dq
dt

= kq
({

∂tqij
}

− v
(
Bq + qB

))
(2.12)

where k, kq ≥ 0 denote kinematic constants.
With initial conditions we get the steepest decent method for the Landau-de Gennes-Helfrich

energy

kv = −
(

α + L
2

S2
)(


SH + H
(
H2

2
− 2K

))

+ H
((

a′ − L

(
H2

2
− 2K

))
Tr q2 + cTr q4 + C1

)

− 2L divS

(
q∇Bq − ∇qBq + q : (∇Sq)B + 1

2
Tr q2∇SH + S

(∇Bq + q∇SH
))

− L
(〈

(∇Sq)T(123) : ∇Sq, ΠQSB
〉
+ S ‖B‖2 〈B, q

〉) + ωa

A2
0

(A − A0)H (2.13)

and
kqq̇ = L

(
�Bq − SHΠQSB

)
−
(

L ‖B‖2 + 2a′ + 2cTr q2
)

q, (2.14)

with Gaussian curvature K, surface divergence divS , directional derivative ∇, material time
derivative ṗ, Laplace-Beltrami operator 
S , Bochner Laplacian �B and orthogonal Q-tensor
projection ΠQSB = B − (H/2)g of the shape operator, see appendix B for details. For the definition
of the used operators in the above equations, refer to appendix C and [25]. Interestingly, even
without bending rigidity, α = 0, surface regularization in terms of Helfrich energy contributions
is present.

We observe that

d
dt

UQ =
∫
S

(
δUQ

δξ

)
v +

〈
δUQ

δq
, q̇

〉
μ = −

∫
S

v2 + ∥∥q̇
∥∥2

μ ≤ 0, (2.15)

see appendix D. Therefore, the energy UQ dissipates as long as the solution and the shape are not
stationary.

3. Numerical approach
To numerically solve the system (2.13)–(2.14), we use a semi-implicit Euler time-stepping
scheme, an operator-splitting ansatz and the generic finite element approach proposed in [30],
which is based on a reformulation of all operators and quantities in Cartesian coordinates
and penalization of normal components. The approach is general and not restricted to single
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connected manifolds. Applications of the latter approach can be found in e.g. [24,26,31]. All
equations are implemented in the adaptive finite-element toolbox AMDiS [32,33]. For better
readability, we use the abbreviations

α̃ = α + L
2

S2,

wq = −2L(q∇Bq − ∇qBq + q : (∇Sq)B + 1
2

Tr q2∇SH + S
(∇Bq + q∇SH

)
)

βq =H
((

a′− L

(
H2

2
− 2K

))
Tr q2 + cTr q4 + C1

)

− L(〈(∇Sq)T(123) : ∇Sq, ΠQSB〉 + S ‖B‖2 〈B, q
〉
)

in the following derivation.

(a) Time discretization
Let 0 = t0 < t1 < t2 < . . . be a partition of the time with time-step width τm := tm − tm−1. Each
variable/quantity with a superscript index m corresponds to the respective variable/quantity at
time tm. The overall operator-splitting algorithm for the system (2.13)–(2.14) reads as follows: for
m = 1, 2, . . . do

(i) Move geometry according to equation (2.1), i. e. in the time-discrete setting

Xm = Xm−1 + τmvm−1νm−1, (3.1)

with the parametrization of the initial geometry X0 and corresponding initial normal
vector ν0.

(ii) Update normal vector according to ∂tν = −∇Sv, see equation (D 7). Thus, in the time-
discrete setting the normal vector at the new time step tm is determined by

νm = νm−1 − τm∇Svm−1. (3.2)

(iii) Update all other geometric quantities, i. e. the mean curvature Hm, the Gaussian
curvature Km, the projection Πm

S and the shape operator Bm, by using the prior computed
normal vector νm.

(iv) Update Q-tensor field qm according to equation (2.14), which read in the time-discrete
setting

kqdm
q = L

(
�Bqm − SHΠm

QSBm
)

−
(

L
∥∥Bm∥∥2 + 2a′

)
qm − 2cf q(qm, qm−1), (3.3)

respectively. Thereby, dm
q := 1

τm (Πm
S qmΠm

S − Πm
S qm−1Πm

S ) denotes the discrete material
time derivative and f q(qm, qm−1) is a linearization of the term Tr (qm)2qm, see [24].

(v) Update normal velocity vm according to equation (2.13), which reads in the time-discrete
setting

kvm = −α̃

(

SHm + Hm

(
(Hm)2

2
− 2Km

))
+ βm

q + divS wm
q + ωa

A2
0

(
Am − A0

)
Hm. (3.4)

(b) Space discretization
The remaining step is to discretize eqns. (3.3) and (3.4) from the above algorithm in space by using
either the generic surface finite-element method for tensor-valued surface PDEs proposed in [30]
or the surface finite-element method for scalar-valued surface PDEs from [34]. Let Sh = Sh(t)|t=tm

be an interpolation of the surface S = S(t)|t=tm at time tm such that Sh :=⋃
T∈T T, where T denotes

a conforming triangulation. Furthermore, the finite-element space is introduced as V(Sh) := {v ∈
C0(Sh) : v|T ∈P1(T), ∀v ∈ T } with Ck(Sh) the space of k-times continuously differentiable functions
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on Sh and P l(T) polynomials of degree l on the triangle T ∈ T . We use the finite-element space
V(Sh) twice as trail and as test space and additionally introduce the L2 inner product on Sh, i. e.
(α , β) := ∫

Sh
〈α, β〉dS. Thus, the finite-element approximations of equations (3.3) and (3.4) read:

find qm ∈ V(Sh)3×3 such that ∀V ∈ V(Sh)3×3

(
kqdm

q , V
)

= − (
L∇Sqm , ∇SV

) −
(

L
(
SHΠm

QSBm) + (L
∥∥Bm∥∥2 + 2a′)qm , V

)
+
(
ω

q
t

(
qmΠ⊥

S + Π⊥
S qm + Π⊥

S qmΠ⊥
S

)
− 2cf q(qm, qm−1) , V

)
, (3.5)

and find vm ∈ V(Sh) such that ∀γ ∈ V(Sh)

(
kvm , γ

)=
(
α̃∇SHm − wm

q , ∇Sγ
)

−
(

α̃Hm

(
(Hm)2

2
− 2Km

)
, γ

)

+
(

βm
q + ωa

A2
0

(
Am − A0

)
Hm , γ

)
. (3.6)

Note that we here use the same symbols for the extended Q-tensor field as for the local
surface quantity. According to the generic surface finite-element method from [30] a penalty
term (ωq

t (qmΠ⊥
S + Π⊥

S qm + Π⊥
S qmΠ⊥

S ), V) with Π⊥
S = ννT with penalty parameter ω

q
t is added

to equation (3.5) to ensure tangentiality of the Q-tensor field. Equation (3.6) has to be stabilized,
which is realized by artificial diffusion following ideas of [35] for surface diffusion. In particular,
we add the term (D(∇Svm−1 − ∇Svm), ∇Sγ ) with the artificial diffusion parameter D to the
right-hand sides of equation (3.6). This approach is significantly simpler than other proposed
discretization schemes, such as [36–38], but also leads to sufficient accuracy for our purposes.
Recently, at least for mean curvature flow, a similar method which relays on the evolution
of geometric quantities, has been used and analysed in [39]. For more details, especially for
evaluating the local inner products in the L2 inner products for the extended Q-tensor field, refer
to [30].

4. Results
In the following, we consider examples for the model (2.13)–(2.14). To visualize the Q-tensor field
q, we consider the principal director of the Q-tensor, i. e. the eigenvector for the eigenvalue with
the largest absolute value of the Q-tensor. This director has no direction as it is π symmetric and
thus represents the same Q-tensor if rotated by an angle of π in the tangent plane.

Firstly, we prescribe the normal velocity of the surface and determine the response of the
Q-tensor due to shape changes. Secondly, by changing the model parameters the response of the
surface to a given Q-tensor field is investigated. Thirdly, the full model including the interplay
of the liquid crystal dynamics and the surface evolution is considered. Thereby, we consider
known examples for fixed surfaces from the literature and let the surface evolve. The resulting
stationary shape is analysed in detail and compared with its intrinsic counterpart. All used model
and simulation parameters are shown in table 1.

(a) Prescribed normal velocity
Here, we only consider equation (2.14) on a prescribed evolving surface S(t). We focus on the
alignment of the director to minimal curvature lines and the localization of topological defects
according to curvature. For detailed discussions on stationary surfaces, refer to [24,25]. We
adapt the movement used in [26], where a rotationally symmetric ellipsoidal shape with major
axes parameters a0 = a1 = 1 and a2 = 1.25 is considered as starting geometry. These parameters
are now considered to be time-dependent, such that the surface area is preserved over time.
During the evolution the ellipsoid collapses to a sphere and deforms back to an ellipsoid with
a different orientation. As initial condition we use the close-to-equilibrium solutions obtained on
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Figure 1. First and second row: Evolution of the Q-tensor fieldq for t = 0, 40, 70, 110, 300 on the prescribed evolving ellipsoid
(top row) and respective+ 1

2 defect locations visualized as red dots and grey arrows (bottom row). The defect pairswith the two
minimal angles to each other are indicated by the triangular planes. The grey circles indicate rotationally symmetric solutions.
The response of the defects to changes in curvature and the alignment along the minimal curvature lines can be observed.

Table 1. Used model and simulation parameters. All values are treated as non-dimensional and can be obtained by, e.g. using
the length scale approximately 100µm, the time scale approximately 1 s and the energy scale approximately 10−17J, which are
typical scales in active liquid crystal systems, e.g. [28,40].

figures 1–2 figures 3–4 figures 5–6 figures 7–8 figure 9 figure 10

kq 1 108 1 1 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L 0.1966 0.3931 0.3931 0.3931 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a −6.4862 −13.3333 −13.3333 −13.3333 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b −4.9138 −10 −10 −10 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c 9.8275 20 20 20 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω
q
t 103 103 103 103 — —

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α — 0.5 0.5 0.8 1 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k — 100 100 100 100 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ωa — 500 500 500 500 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D — 166.6 166.6 166.6 166.6 166.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τm 0.1 0.0025 0.01 0.001 0.01 0.025
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the stationary initial ellipsoid with initial condition

q|t=0 = S
((

ν × pq

)
⊗
(
ν × pq

)
− 1

2
ΠS

)
,

pq = 1
‖ΠS p̃q‖ΠS p̃q, p̃q =

{
(1, 4, 0)T , z ≥ 0

(−4, 1, 0)T , z < 0

for X = (x, y, z)T ∈ S.
Figure 1 shows the results which clearly indicate the alignment of the director field to the

minimal curvature lines. To be more precise, in the beginning, the directors are aligned in a north-
south symmetry. After passing the sphere geometry an ellipsoid with different orientation evolves
and the directors start to rearrange to be aligned in an east-west symmetry, as expected.
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Figure 2. Schematic drawing for defect angles γij between defect positions di and dj (a) and averaged defect angle 〈γ 〉 =
1
6

∑
i<j arccos(〈 di

‖di‖ ,
dj

‖dj‖ 〉) against time for the Landau-de Gennes-Helfrich model (b). 112◦ is the equilibrium average for
the considered ellipsoid at the initial and final configuration, 109.5◦ and 120◦ correspond to the tetrahedral and planar defect
configuration on a sphere. The surface evolution passes the sphere configuration at t = 40 and the final ellipsoidal shape is
already reached at t = 80 (marked as vertical dashed lines). (Online version in colour.)

Concerning the defects, shown in figure 1 as regions of disturbed orientational order (first row)
and highlighted as red dots and grey arrows (second row). For the Landau-de Gennes-Helfrich
model, the tetrahedral configuration with four + 1

2 defects is found. On a sphere, it is known as a
global minimizer, subject to rotation [6]. On an ellipsoid the four + 1

2 defects, even if geometrically
attracted to umbilical points are pushed away, due to repulsive forces between equally charged
defects. The competition between these forces determines the equilibrium configuration, which is
still free to rotate along the long axis of the ellipsoid [19]. The dynamics follow these equilibrium
configurations, with a short delay required to readjust the defect positions, see the solution at
t = 110. Interestingly, this adjustment also requires to pass the situation where the four + 1

2 defects
are arranged in a planar configuration, see figure 2.

(b) Surface response
Next, we consider stationary Q-tensor fields and investigate the response of the surface to it. In
the model (2.13)–(2.14), this can be achieved by using kq/k → ∞. Roughly speaking, the time scale
of the response of the surface is infinitesimal small compared with the relaxation time scales of
the Q-tensor field. We start with the minimal energy configurations on a sphere for the Q-tensor
field q, which was obtained as steady-state solutions of equation (2.14) on the unit sphere with
the initial conditions from the prior section. Figure 3 shows the initial condition and the reached
steady-state solution after shape relaxation. The shape deviates and becomes asymmetric, see
figure 4. The deviation from a sphere is computed according to σS2 = ∫

S (H − HS2 )2μ, where HS2

denotes the mean curvature of the unit sphere. The relatively small deviation results from the
Helfrich-like contribution, cf. (2.13) resulting from the variation of the Landau-de Gennes energy
w. r. t. to the surface, which effectively increases bending stiffness and therefore keeps the surface
more spherical. The surface is most distorted in the vicinity of the defects, where regions of high
Gaussian curvature evolve, see figure 3. A logarithmic scale for Gaussian curvature is used to
highlight this.

In figure 4, we approximate shape by a symmetric ellipsoid with the same surface area. The
distortions in the vicinity of the defects are visible and the different values for long- and short-axis
of the approximating ellipsoids are marked. Figure 4 further highlights the differences of defect
positions and points of maximal Gaussian curvature. They are still close to each other but do not
coincide. Within the vicinity of the poles on the long axis of the approximating ellipsoids defects
and points of maximal curvature are symmetrically arranged on one line, which is rotated by 90◦
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ln K
1.7

−0.35

(a) (b) (c)

Figure 3. Initial condition for the Landau-de Gennes-Helfrich model as minimal configuration on the sphere (a) and reached
steady-state solution (b) with respective Gaussian curvature (c). The contour lines in the Gaussian curvature images indicate
constant curvature lines and the red spheres are the positions of the defects. (Online version in colour.)

time
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0.9575

1.0862
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Figure 4. (a) Deviation from a sphere geometry during time evolution. The sphere deviation σS2 is considered to be σS2 =∫
S (H − HS2 )2μ, whereHS2 denotes themean curvature of the unit sphere. (b) Slice of final shape of the Landau-deGennes-

Helfrichmodel (red), reference is an ellipse (black). The slice is through theupper defect pair. Red spheres are thedefect positions
(light red sphere indicates the defect pair that does not belong to the slice), green squares are the positions of maximum
Gaussian curvature (light green square for corresponding position which does not belong to the slice). Ellipses are fitted such
that the surface area corresponds to the surface area of the final shape. (Online version in colour.)

for the two poles. Additional forces which contribute to shape relaxation are due to alignment. In
regions of low Gaussian curvature, the director fields are almost perfectly aligned.

(c) Fully coupled system
After investigating either the response of the directors or of the surfaces we now combine
both mechanisms by considering the whole system of equations (2.13)–(2.14) in an appropriate
parameter setting, cf. table 1. As initial conditions we consider shapes for which Q-tensor
fields with more than the minimal number of topologically required defects are energetically
favourable. For the polar liquid crystals, this can be considered with a so-called nonic surface
[24]. The parametrization of this surface reads

X(θ , ϕ) := XS2 (θ , ϕ) + fC,r(cos θ )ex − B sin θ sin ϕey, (4.1)
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Figure 5. (a) Evolution of the Q-tensor field of the Landau-de Gennes-Helfrich model for t = 0, 1.5, 5, 10, 100 for the bi-nonic
surface initial condition (left to right). (b) Energies against time (left) and dissipation rate against time (c). See also electronic
supplementary material, video.

with standard parametrization angles θ , ϕ, standard parametrization of the unit sphere XS2 (θ , ϕ),
unit vectors in x-,y-direction ex,ey in R

3, parameters C = 0.75, B = 7
20 C and r = 0.95 and

fC,r(z) := 1
4

Cz2
(
(z + 1)2 (4 − 3z) + r (z − 1)2 (4 + 3z)

)
.

To construct a similar situation for nematic liquid crystals is more complex. A morphology
has to be found for which more than four + 1

2 defects are energetically favourable. We modify the
parametrization by using

X(θ , ϕ) := XS2 (θ , ϕ) + fC,r(cos θ )ex + fC,r(sin θ sin ϕ)ex, (4.2)

and call this surface bi-nonic. All parameters remain unchanged except of C = 1.1. As initial
condition we use the steady-state solution on the stationary bi-nonic surface with

q|t=0 = S
((

ν × pq

)
⊗
(
ν × pq

)
− 1

2
ΠS

)
, pq = 1

‖ΠSex‖ΠSex,

which consists of eight + 1
2 defects and four − 1

2 defects. The positive ones are located in the
vicinity of peaks and valleys, while the negative ones can be found around saddle points of the
surface. As for the setting for the Frank-Oseen-Helfrich energy in [24], it is demonstrated that this
solution is stable and has a lower energy than any configuration with less defects. The geometry,
the initial condition and the evolution of both are shown in figure 5. Regions of high curvature
become shallower over time such that geometric forces—pushing or pulling defects—become
weaker. This results in annihilation of defects (four ± 1

2 defect pairs), which can again be observed
in the evolution of the energy as well as dissipation rate as step or peak, respectively, cf. figure 5b,c.

Most interesting is the evolution after the annihilation, if only four + 1
2 defects remain. In

contrast to the tetrahedral ground state on a sphere or a rotationally symmetric ellipsoid, here
the four + 1

2 defects arrange in a planar position on a surface which is asymmetric. In figure 6, we
show the deviation from a sphere for the Landau-de Gennes-Helfrich model during evolution.
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Figure 6. (a) Deviation from a sphere geometry during time evolution. The sphere deviation σS2 is considered to be σS2 =∫
S (H − HS2 )2μ, where HS2 denotes the mean curvature of the unit sphere. (b) Final shape of the Landau-de Gennes-

Helfrichmodel. The values for the axes (distances from the origin) indicate the asymmetry for the nematic case. Red spheres are
the defect positions, green squares are the positions of maximumGaussian curvature. The values correspond to the asymmetric
form of the final shape. The defects and points of maximal curvature are located on the same plane (red line). (Online version
in colour.)

The increase corresponds with the defect rearrangement and the formation of an asymmetric
shape. Defects are visualized as red spheres and the maximal values of the Gaussian curvature
are marked as green squares.

The fully coupled system does not only annihilate all topologically unnecessary defects by
smoothing the surface it also leads to asymmetric shapes and defect arrangements which differ
from ground state configurations on rotationally symmetric ellipsoids.

(d) Discussion
In order to better understand the observed behaviour in the previous section, we run the full
model with the equilibrium configuration on an ellipsoid as initial conditions. Figure 7 shows the
corresponding evolution together with the energy plot. We observe the same behaviour.

The shape becomes asymmetric and the four + 1
2 defects arrange in a planar configuration.

To observe this behaviour requires long time simulations and an accurate numerical scheme.
The energy plot clearly shows that the increase in Helfrich energy UH is overcompensated by
the decrease in the Landau-de Gennes energy ULdG. The shape significantly differs from the
proposed equilibrium shape in [27], where n-atic order on deformable surfaces is considered,
but with a much simpler and purely intrinsic model. More recently, it has been demonstrated
that besides these intrinsic curvature terms also extrinsic curvature terms, i. e. curvatures related
to the geometry of the embedding space, are relevant [16,18,21,22,24,25,41–47]. It has been
demonstrated that the intrinsic geometry tends to confine topological defects to regions of
maximal Gaussian curvature, while extrinsic couplings tend to orient the director field along
minimal curvature lines. Extrinsic curvature has also been shown to expel defects from regions of
maximum curvature above a critical coupling threshold [41], to modify the defect arrangement
from tetrahedral to planar [16], to change the phase diagram allowing for coexistence of
nematic and isotropic phases in curved two-dimensional liquid crystals [25] and to modify the
critical geometry deformation parameter, cf. C, in the considered bi-nonic surface which lead
to energetically favourable solutions with more defects than topologically necessary [24]. The
observed arrangements thus add to these phenomena and can also be explained by an interplay
of intrinsic and extrinsic curvature effects.
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Figure 7. (a) Evolution of the Q-tensor field of the Landau-de Gennes-Helfrich model for t = 0, 100, 170, 250. The same initial
condition as in figure 1 is used and energy against time (b) and dissipation rates against time (c) are plotted. (Online version
in colour.)

Mathematically the extrinsic contributions result from the proposed anchoring conditions on
the boundary of the thin film [24,25]. If these terms are neglected the elastic part of the Landau-de
Gennes-Helfrich energy has to be modified to

UEl = L
2

∫
S

∥∥∇Sq
∥∥2

μ. (4.3)

All other energies in equations (2.5)–(2.9) remain. This results in the intrinsic evolution laws for q

kv = −α

(

SH + H

(
H2

2
− 2K

))
+ H

(
a′Tr q2 + cTr q4 + C1

)

− 2L divS
(
q∇Bq − ∇qBq

) − L
〈
(∇Sq)T(123) : ∇Sq, ΠQSB

〉
+ ωa

A2
0

(A − A0)H (4.4)

and
kqq̇ = L�Bq − 2

(
a′ + cTr q2

)
q. (4.5)

This model can be solved with the same numerical approach, just setting various terms to
zero. Figure 8 shows the resulting equilibrium shape in comparison with its full model. The
equilibrium shape corresponds qualitatively with this in [27]. Defects are located at maximal
Gaussian curvature points, the distortion of the surface in the vicinity of the defects is small and a
tetrahedral defect arrangement is most favourable for the nematic case. The comparison between
the equilibrium shape for the intrinsic and the full model including also extrinsic curvature
contributions further highlights the differences.

Our results add to the importance of intrinsic and extrinsic contributions. The derived
thermodynamically consistent model for nematic liquid crystals on deformable surfaces and the
considered numerical approach to solve these highly nonlinear equations show the tight interplay
of these curvature contributions with defect arrangements and shape changes. The results go
well beyond purely intrinsic energy minimization approaches. These phenomena do not only
change the behaviour quantitatively, they qualitatively lead to new solutions. The symmetric
tetrahedral arrangement, which is the basis for proposed self-assembly processes of colloidal
particles with tetrahedral structure [7], is not stable if the surface is deformable. We expect these
qualitative changes to hold also for more realistic liquid crystal models, beyond the one-constant
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Figure 8. (a) Equilibrium shape obtained with the extrinsic Landau-de Gennes-Helfrich model (2.13), (2.14). Red spheres are
the defect positions and green squares are the positions of maximum Gaussian curvature. The distances of the surface from the
origin are marked to highlight the asymmetry. All defects and maximal curvature points are located on one plane (red curve).
(b) Equilibriumshapeobtainedwith the intrinsic Landau-deGennes-Helfrichmodel (4.4), (4.5). TheGaussian curvature is shown
as green contour lines. The defect positions correspond with the maximum Gaussian curvature points. They are arranged in a
tetrahedral configuration. Initial conditions correspond to figure 7. (c) Averaged defect angle 〈γ 〉 (see figure 2) against time
for the extrinsic and the intrinsic Landau-de Gennes-Helfrichmodel; 112◦ is the equilibrium average for the considered ellipsoid
at the initial configuration, 109.5◦ and 120◦ correspond to the tetrahedral and planar defect configuration, respectively. (Online
version in colour.)

approximation. This will lead to even more curvature coupling terms [25]. The tendency towards
asymmetric shapes will even be enhanced, as already present for purely intrinsic models [14]. This
will not only influence applications in soft condensed matter based on liquid crystals on flexible
curved substrates but also has implications in biophysics, concerning morphological changes
during development and the design of bioinspired materials that are capable of self-organization.
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Appendix A
We here provide all necessary details concerning the model and the numerical approach. While
an analytical investigation of the model and the numerical approach is beyond the scope of
this paper, we thereby restrict ourselves to experimental studies. When convenient, we use

https://gitlab.mn.tu-dresden.de/sourcecode/surface-lc
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Ricci calculus [49] with lower-case Latin indices. Please note that for ease of terminology we
exert parentheses of symmetrizing, e.g. r(i

j
k)
l = 1

2 (ri
j
k
l + rk

j
i
l) for a mixed 4-tensor r ∈ T1

1
1
1S. To avoid

confusion, these parentheses are only used pairwise and always concerning neighbouring indices
at the same height of indexing. Another feature concerning the symmetry is that we write one
index below the other directly for mixed symmetric 2-tensors, e.g. Bi

j := Bi
j = Bi

j, where the latter

identity holds, since Bij = B(ij).

Appendix B. Derivations

(a) Shape variations
In the following, we investigate some surface quantities and operators of the surface under

perturbation. For consistency with notation of differential geometry, we write ∂i := d
dyi for the

derivative along local coordinates. This is motivated in the sense that we can use ∂i as well
as partial derivatives, i. e. for a function f = f (ξ ) and given ξ we find a function fξ such that
f (ξ (t, y1, y2), y1, y2)) = fξ (t, y1, y2) and it holds that ∂if = ∂ifξ = ∂fξ

∂yi . Moreover, we observe that the

surface variation and ∂i commute, i. e. δS ◦ ∂i = ∂i ◦ δS . For 2-tensor fields r = rij∂iX ⊗ ∂jX ∈ T2S
the surface variation δS gives

ΠSδSr =
(
δSrij

)
∂iX ⊗ ∂jX + rijΠS

[
∂i (δξν) ⊗ ∂jX + ∂iX ⊗ ∂j (δξν)

]
=
(
δSrij

)
∂iX ⊗ ∂jX − (Br + rB) δξ . (B 1)

Obviously, symmetric 2-tensor fields are closed under ΠSδS : T2S → T2S. To show the
closeness w. r. t. Q-tensor fields q ∈QS, we observe that gijδSqij = δSTr q − qijδSgij = 2〈B, q〉δξ , see
equation (B 3) below. Therefore, with equation (B 1) and Tr [∂iX ⊗ ∂jX] = gij we obtain Tr ΠSδSq =
(δSqij − [Bq + qB]ij)gij = 2〈B, q〉δξ − 2〈B, q〉δξ = 0 and it finally holds

∀q ∈QS : ΠQSδSq =
{
δSqij

}
− (

Bq + qB
)
δξ ∈QS. (B 2)

For the components of the metric tensor, we get

δSgij = δS
〈
∂iX, ∂jX

〉= 〈
∂i (δξν) , ∂jX

〉 + 〈
∂iX, ∂j (δξν)

〉= −2
〈
ν, ∂i∂jX

〉
δξ

= −2Bijδξ , (B 3)

and consequently for the components of the inverse metric tensor

δSgij = 2Bijδξ , (B 4)

which follows from δSgij = δS (gikgjlgkl) = 2δSgij + gikgjlδSgkl by using the product rule. Using the
identity D det g = det gTr {Dgij} for derivatives D : T0S → T0S acting on scalar-valued functions,
we obtain

δS
√

det g = 1

2
√

det g
δS det g =

√
det g
2

Tr {δSgij} = −
√

det gHδξ ,

which finally results in

δS

∫
S

fμ =
∫
S

δS f − fHδξμ, (B 5)

for scalar-valued functions f , similar to the well-known transport theorem. Next, we consider
the Christoffel symbols which are needed for covariant differentiation. With equation (B 3), the
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surface variation of the first kind Christoffel symbols reads

δSΓijl = 1
2
δS

(
∂igjl + ∂jgil − ∂lgij

)= 1
2

(
∂iδSgjl + ∂jδSgil − ∂lδSgij

)
= − (

δξ|iBjl + δξ|jBil − δξ|lBij
) − δξ

(
Bjl|i + Bil|j − Bij|l + 2Γ k

ij Bkl

)
= δξ|lBij − δξ|iBjl − δξ|jBil − δξ

(
Bjl|i + 2Γ k

ij Bkl

)
= δξ|lBij − δξ|jBil − (

δξBjl
)
|i − 2δξΓ k

ij Bkl,

where we have used that the shape operator is curl-free, i. e. Bil|j − Bij|l = 0. Furthermore, with
equation (B 4), it holds for the second kind Christoffel symbols that

δSΓ k
ij = δS

(
gklΓijl

)
= 2BklΓijlδξ + gklδSΓijl = δξ |kBij − δξ|jBk

i −
(

Bk
j δξ

)
|i

.

With these evaluations, we obtain for an independent Q-tensor field q ∈QS, i. e. ΠQSδSq = 0 or
δSqij = [Bq + qB]ijδξ , respectively, see (B 2), that

δSqij
|k = ∂kδSqij + 2Γ

(i
kl δSqj)l + 2ql(jδSΓ

i)
kl

= 2
(

B(i
l qj)lδξ

)
|k

− 2ql(j
((

Bi)
l δξ

)
|k

+ δξ|lB
i)
k − δξ |i)Bkl

)

= 2B(i
l qj)l

|k δξ + 2ql(j
(
δξ |i)Bkl − δξ|lB

i)
k

)
for the mixed components of ∇Sq. In a fully contravariant sense this reads

δSqij|k = gklδSqij
|l + qij

|lδSgkl = 2
(

B(i
l qj)l|k + qij|lBk

l

)
δξ + 2ql(j

(
δξ |i)Bk

l − δξ|lBi)k
)

.

In the embedding space, we explicitly obtain

ΠSδS∇Sq =
(
δSqij|k

)
∂iX ⊗ ∂jX ⊗ ∂kX

+ qij|k (∂iν ⊗ ∂jX ⊗ ∂kX + ∂iX ⊗ ∂jν ⊗ ∂kX + ∂iX ⊗ ∂jX ⊗ ∂kν
)
δξ

for ∇Sq = qij|k∂iX ⊗ ∂jX ⊗ ∂kX ∈ T3S, which finally gives

∀q ∈QS with ΠQSδSq = 0 :
[
ΠSδS∇Sq

]ijk = Bk
l

(
qij|lδξ + 2ql(iδξ |j)

)
− 2Bk(iqj)lδξ|l, (B 6)

where ∂iν = −Bk
i ∂kX was used.

To determine the behaviour of extrinsic curvature quantities under surface variations, we
first consider the normal vector ν. The normal part of δSν vanishes and the tangential part is
determined by 〈δSν, ∂iX〉 = −〈ν, ∂iδSX〉 = −〈ν, δξ∂iν + ν∂iδξ〉 = −∂iδξ and thus

δSν = −∇Sδξ . (B 7)

For the covariant components of the shape operator, we obtain

δSBij = −δS
〈
∂iX, ∂jν

〉= − 〈
∂i(δξν), ∂jν

〉 + 〈
∂iX, ∂j∇Sδξ

〉
= − 〈

∂iν, ∂jν
〉
δξ +

〈
∂iX, (∂jδξ

|k)∂kX + δξ |k∂j∂kX
〉

= −
[
B2

]
ij
δξ + gik∂jδξ

|k + Γjkiδξ
|k = −

[
B2

]
ij
δξ + δξ|i|j =

[
∇2
S δξ − B2δξ

]
ij

,

and for the contravariant components

δSBij =
[
∇2
S δξ + 3B2δξ

]ij
,
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where δSBij = δS (gikgjlBkl) and equation (B 4) was used. Furthermore, for the embedded tensor
B = Bij∂iX ⊗ ∂jX, we get

ΠSδSB = ∇2
S δξ + 3B2δξ + Bij (∂iν ⊗ ∂jX + ∂iX ⊗ ∂jν

)
δξ = ∇2

S δξ + B2δξ . (B 8)

Finally, consider the mean curvature H, for which δSH= BijδSgij + gijδSBij can be observed, we
obtain

δSH= 
Sδξ + ‖B‖2 δξ = 
Sδξ +
(
H2 − 2K

)
δξ . (B 9)

(b) Functional derivatives
With the tools from above, we are able to compute the functional derivatives of free energies
depending on independent scalar field ξ ∈ T0S and Q-tensor field q ∈QS, i. e. ΠQSδSq = 0. Note
that we consider a surface without boundary, which drastically reduces the complexity of the
derivations.

(i) Helfrich energy

With equations (B 5) and (B 9), the Helfrich energy UH yields, cf. [50, pp. 280–282],

δSUH = α

∫
S
HδSH − H3

2
δξμ = α

∫
S
H
Sδξ + H

(
H2

2
− 2K

)
δξμ.

Thus, by using integration by parts we get

δUH

δξ
= α

(

SH + H

(
H2

2
− 2K

))
. (B 10)

(ii) Elastic part of the Landau-de Gennes energy

Consider the elastic part of the Landau-de Gennes energy, i. e. equation (2.6), in the equivalent
representation UEl = L

2
∫
S ‖∇Sq‖2 + 〈B2, r〉μ, where r = (‖q‖2 + S2

2 ) IdS +2Sq. Similar to the Frank-
Oseen energy above, we call the first summand the intrinsic part and the second one the extrinsic
part. Considering the intrinsic part, by equation (B 6) and symmetry arguments, variation of the
integrand yields

1
2
δS

∥∥∇Sq
∥∥2 = 〈∇Sq, ΠSδS∇Sq

〉= qij|k
(

Bk
l

(
qij|lδξ + 2ql(iδξ |j)

)
− 2Bk(iqj)lδξ|l

)
= qij|k

(
Bk

l

(
qij|lδξ + 2qliδξ |j

)
− 2Bkiqjlδξ|l

)
=
〈
(∇Sq)T(123) : ∇Sq, B

〉
δξ + 2

〈∇qBq − q∇Bq, ∇Sδξ
〉
.

Hence, with equation (B 5), we obtain

1
2
δS

∫
S

∥∥∇Sq
∥∥2

μ = 1
2

∫
S

δS
∥∥∇Sq

∥∥2 −
〈
(∇Sq)T(123) : ∇Sq, IdS

〉
Hδξμ

=
∫
S

〈
(∇Sq)T(123) : ∇Sq, ΠQSB

〉
δξ + 2

〈∇qBq − q∇Bq, ∇Sδξ
〉

=
∫
S

(〈
(∇Sq)T(123) : ∇Sq, ΠQSB

〉
+ 2 divS

[
q∇Bq − ∇qBq

])
δξμ.

For the extrinsic part, we observe that the 2-tensor r ∈ T2S is also a surface independent tensor
quantity, i. e. ΠSδSr = 0, as ΠSδSq = 0 and ΠSδS IdS = ΠSδS (gij∂iX ⊗ ∂jX) = 0. Therefore, by
using the product rule, the symmetric behaviours and equation (B 8), we obtain 1

2 δS〈B2, r〉 =
〈BδSB, r〉 = 〈rB, δSB〉 = 〈rB, ∇2

S δξ + B2δξ〉 = 〈rB, ∇2
S δξ〉 + (H2 − K)〈r, B〉δξ − HKTr rδξ , where we
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have used B3 = (H2 − K)B − HK IdS . Furthermore, with equation (B 5) and B2 =HB − K IdS , this
results in

1
2
δS

∫
S

〈
B2, r

〉
μ = 1

2

∫
S

δS
〈
B2, r

〉
− H2 〈r, B〉 δξ + HKTr rδξμ

=
∫
S

(
divS divS,2 (rB) +

(
H2

2
− K

)
〈B, r〉 − HK

2
Tr r

)
δξμ

=
∫
S

(
divS (∇Br + r∇SH) +

(
H2

2
− K

)
〈B, r〉 − HK

2
Tr r

)
δξμ. (B 11)

Next, we reinsert r = (‖q‖2 + S2

2 ) IdS +2Sq term by term, i. e.

[∇Br]i = Bkl

[(
qmnqmn + S2

2

)
gik + 2Sqik

]
|l

= 2Bkl (qmnqmn|lgik + Sqik|l
)

= 2
[
q : (∇Sq)B + S∇Bq

]
i

r∇SH=
(

Tr q2 + S2

2

)
∇SH + 2Sq∇SH

〈B, r〉 =
(

Tr q2 + S2

2

)
H + 2S

〈
B, q

〉
Tr r = 2Tr q2 + S2.

Therefore, equation (B 11) results in

1
2
δS

∫
S

〈
B2, r

〉
μ =

∫
S

(
2 divS

(
q : (∇Sq)B + S∇Bq + 1

2
Tr q2∇SH + Sq∇SH

)

+ S2

2

SH + S ‖B‖2 〈B, q

〉 + H
(
H2

2
− 2K

)(
Tr q2 + S2

2

))
δξμ.

Finally, we sum up the results for the intrinsic and extrinsic parts and get

δUEl

δξ
= L

[
2 divS

(
q∇Bq − ∇qBq + q : (∇Sq)B + S∇Bq + 1

2
Tr q2∇SH + Sq∇SH

)

+ S ‖B‖2 〈B, q
〉 + H

(
H2

2
− 2K

)
Tr q2 +

〈
(∇Sq)T(123) : ∇Sq, ΠQSB

〉

+ S2

2

(

SH + H

(
H2

2
− 2K

))]

δUEl

δq
= L

[
−�Bq + ‖B‖2 q + SHΠQSB

]
.

(iii) Bulk energy part of the Landau-de Gennes energy

For the bulk energy part of the Landau-de Gennes energy UB, by using δSTr q2 = 2〈q, δSq〉 = 0
and δSTr q4 = Tr q2δSTr q2 = 0 it can be easily seen that the energy density is independent w. r. t.
perturbation. Hence, equation (B 5) yields

δSUB = −
∫
S
H
(

a′Tr q2 + cTr q4 + C1

)
δξμ,

and therefore
δUB

δξ
= −H

(
a′Tr q2 + cTr q4 + C1

)
,

δUB

δq
= 2

(
a′ + cTr q2

)
q.
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(iv) Surface area penalization energy

Considering equation (B 5) and the surface area penalization energy Ua with A := ∫
S μ, it follows

that

δSUa = ωa

A2
0

(A − A0) δSA = −ωa

A2
0

(A − A0)

∫
S
Hδξμ.

Thus, the functional derivative of the penalization energy is given by

δUa

δξ
= − ωa

A2
0

(A − A0)H.

Appendix C. Operators
The contravariant components of some of the used operators are considered, i. e.[�Bq]ij =
qij|k
|k , [q∇Bq]i = qijBklqjk|l, [∇qBq]i = qjkBklqij

|l, [q : (∇Sq)B]i = qjkBliqjk|l, [∇Bq]i = Bjkqij|k and [(∇Sq)T(123) :

∇Sq]ij = qkl|iq|j
kl.

Appendix D. Kinetic considerations
We consider kinetic properties, i. e. time-dependent behaviours of some quantities such as
material time derivative, rate of normal vector or energy dissipation.

(a) Time derivative
Since particle motion is considered only in The normal direction, the Lagrangian and the
transversal or intrinsic Eulerian observer coincide due to vanishing relative velocity. For
simplicity, we here only consider these equivalent observers and define the material time
derivative covariantly by the tangential part of the time derivative in the embedding space and
denote it by a dot. Thus, for scalar fields f ∈ T0S, vector fields p ∈ T1S and 2-tensor fields r ∈ T2S
we state that

ḟ := ∂tf (D 1)

ṗ := ΠS
[
∂tp

]= gik〈∂tp, ∂kX〉∂iX (D 2)

and ṙ := ΠS [∂tr] = gikgjl〈∂tr, ∂kX ⊗ ∂lX〉∂iX ⊗ ∂jX. (D 3)

With chain rule, ν⊥∂kX and (2.1) the covariant components of ṗ read

[
ṗ
]

k = 〈∂tp, ∂kX〉 = 〈
(
∂tpi

)
∂iX + pi∂iẊ, ∂kX〉 = gik∂tpi − vpiBik, (D 4)

which eventually gives the time derivative of the vector filed p in terms of contravariant proxy
rates, i. e.

ṗ =
(
∂tpi

)
∂iX − vBp. (D 5)

Analogously, we obtain for the 2-tensor field r that

ṙ =
(
∂trij

)
∂iX ⊗ ∂jX − v (Br + rB) . (D 6)

Similar to the surface variation δS , the time derivative for 2-tensors is closed w. r. t. symmetry and
trace-free behaviour. This means, it holds for all q ∈QS that q̇ ∈QS, since ∂tgij = −2vBij and thus
gij∂tqij = 2v

〈
B, q

〉
.
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(b) Normal vector rate
Equation (2.1), ν⊥∂jX and ‖ν‖ = 1 yield

∂tν = 〈∂tν, ν〉ν + gij〈∂tν, ∂jX〉∂iX = −gij〈ν, ∂jẊ〉∂iX = −gij〈ν,
(
∂jv

)
ν〉∂iX

= −∇Sv. (D 7)

A similar evolving geometric quantity has been considered in [51] in the context of mean
curvature flow.

(c) Dissipation of energy
With the L2-gradient flow (2.13)–(2.14), the assumption of independence and the theorem below
the energy dissipation rate is given by

d
dt

UQ = −
(

k ‖v‖2
L2(S,T0S) + kq ∥∥q̇

∥∥2
L2(S,QS)

)
≤ 0, (D 8)

i. e. the energy decrease in a L2-manner, similar to classical geometric evolution equations of
L2-gradient flows structure and L2-gradient flows on stationary surfaces, as considered in [25].

Theorem D.1. Assume that a tensor field r ∈ TnS is independent of a surface S = S[ξ ] in the sense of
ΠSδSr = 0 or dr

dξ
= 0, equivalently. Then it holds for an energy functional U = U[ξ , r] the chain rule

d
dt

U = ∇∗
(ξ̇ ,ṙ)U :=

(
δU
δξ

)∗ [
ξ̇
] +

(
δU
δr

)∗
[ṙ] , (D 9)

where the star ∗ denotes the dual element w. r. t. the L2-inner product.

Proof. By linearity of the integral, it is sufficient to show this statement on a subset Σ :=
X[ξ ](Y) ⊆ S with Y = (y1, y2) ⊂ R

2. To use common differential calculus locally, we formulate the
energy functional as

UΣ [ξ , r] =
∫
Σ

u (ξ , r) μ =
∫

Y
f (ξ , r) dY,

where dY = dy1∧dy2, i. e. the function f equals energy density u times area density function√
det g =√

det g(ξ ). By definitions of functional and function derivative and the independence
between ξ and r the right-hand side of (D 9) reads

∇∗
(ξ̇ ,ṙ)UΣ = lim

εξ →0

UΣ

[
ξ + εξ ξ̇ , r

] − UΣ [ξ , r]
εξ

+ lim
εr→0

UΣ [ξ , r + εrṙ] − UΣ [ξ , r]
εξ

=
∫

Y
lim
εξ →0

f
(
ξ + εξ ξ̇ , r

) − f (ξ , r)
εξ

+ lim
εr→0

f (ξ , r + εrṙ) − f (ξ , r)
εξ

dY

=
∫

Y

(
∂f
∂ξ

)
ξ̇ +

(
∂f
∂r

)∗
(ṙ) dY =

∫
Y

(
df
dξ

)
dξ

dt
+ 〈df

dr
,

dr
dt

〉R3 dY

=
∫

Y

d
dt

f dY = d
dt

UΣ ,

since df/dr ∈ TnS.
Actually, the circuit over the local R

3-inner product is not necessary, if we reformulate f such
that it depends on the contravariant proxy functions of the tensor field r, partially. To sum up,
we have (

df̃
dξ

)
ξ̇ +

(
df̃
dp

)∗ (
ṗ
)= ∂ f̃

∂ξ

dξ

dt
+ ∂ f̃

∂pi

dpi

dt
= d

dt
f̃ = d

dt
f .

Note that for n > 1 the argumentation would be exactly the same, but with 2n contravariant proxy
functions. For n = 0, the situation is much simpler, since f̃ = f . Note that in this case the projection
ΠS stated in the assumption is just the scalar identity. �
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Figure 9. (a) Normal vector error against time-step width τ . Thereby, | · |1 denotes the spatial H1 semi-norm and νS2 is the
normal vector of the unit sphere. (b) Normal vector error together with experimental order of convergence (EOC) values for
various time-step widths τ . (Online version in colour.)
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Figure 10. (a) Initial condition as stable configuration on the unit sphere (top left), reached steady-state solution on the
deformed surface (top right) and surface area error against surface area penalization parameterωa (bottom)with the temporal
maximum norm ‖ · ‖∞,t . (b) Surface area error together with experimental order of convergence (EOC) values for various
surface area penalization parametersωa. (Online version in colour.)

Appendix E. Numerical tests

(a) Numerical computation of geometric quantities
To numerically solve equation (2.13) requires a sound approximation of all geometric quantities.
They all can be computed from the normal vector, which is obtained through ∂tν = −∇Sv, see
equation (D 7). This approach turns out to be much more accurate than the often used (weighted)
element normal vector. We show the numerical convergence (by means of the time-step width τ )
of this equation for the Helfrich and the surface area penalization energy for an ellipsoidal shape
with axes parameters (1, 1, 1.25) as initial geometry. The ellipsoid converges to a sphere, for
which the normal vector is analytically known. Thus, we compare the computed normal vector
according to equation (D 7) and the analytical one in the steady-state regime according to the H1

semi-norm. Figure 9 shows the results, where a linear convergence rate w. r. t. the time-step width
τ can be observed. It is noted that we use a much smaller time-step width—according to table 1—
for the simulation as for the convergence evaluations in figure 9 in order to reduce the temporal
error made in the normal velocity equation.
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(b) Surface area conservation
In the Landau-de Gennes-Helfrich model, the surface area penalization energy is included in
order to achieve constant surface area over time. This approximation depends on the penalty
parameter ωa. In the following, the convergence rate w. r. t. ωa is numerically investigated. Here,
we use qualitatively the same setup as in Figure 3, but with slightly different parameters, see
table 1. The results are shown in figure 10, where a linear convergence rate w. r. t. ωa can be
observed.

References
1. Bowick MJ, Giomi L. 2009 Two-dimensional matter: order, curvature and defects. Adv. Phys.

58, 449–563. (doi:10.1080/00018730903043166)
2. Serra F. 2016 Curvature and defects in nematic liquid crystals. Liq. Cryst. 43, 1920–1936.

(doi:10.1080/02678292.2016.1209698)
3. Bausch A, Bowick M, Cacciuto A, Dinsmore A, Hsu M, Nelson D, Nikolaides M, Travesset

A, Weitz D. 2003 Grain boundary scars and spherical crystallography. Science 299, 1716–1718.
(doi:10.1126/science.1081160)

4. Irvine WTM, Vitelli V, Chaikin PM. 2010 Pleats in crystals on curved surfaces. Nature 468,
947–951. (doi:10.1038/nature09620)

5. Jesenek D, Kralj S, Rosso R, Virga EG. 2015 Defect unbinding on a toroidal nematic shell. Soft
Matter 11, 2434–2444. (doi:10.1039/C4SM02540G)

6. Lubensky T, Prost J. 1992 Orientational order and vesicle shape. J. Phys. II 2, 371–382.
(doi:10.1051/jp2:1992133)

7. Nelson D. 2002 Toward a tetravalent chemistry of colloids. Nano Lett. 2, 1125–1129.
(doi:10.1021/nl0202096)

8. Seung H, Nelson D. 1988 Defects in flexible membranes with crystalline order. Phys. Rev. A
38, 1005–1018. (doi:10.1103/PhysRevA.38.1005)

9. Lidmar J, Mirny L, Nelson D. 2003 Virus shapes and buckling transitions in spherical shells.
Phys. Rev. E 68, 051910. (doi:10.1103/PhysRevE.68.051910)

10. Aland S, Raetz A, Roeger M, Voigt A. 2012 Buckling instability of viral capsides - a continuum
approach. Multisc. Model. Sim. 10, 82–110. (doi:10.1137/110834718)

11. Nelson D. 1983 Order, frustration, and defects in liquids and glasses. Phys. Rev. B 28,
5515–5535. (doi:10.1103/PhysRevB.28.5515)

12. Dzubiella J, Schmidt M, Lowen H. 2000 Topological defects in nematic droplets of hard
spherocylinders. Phys. Rev. E 62, 5081–5091. (doi:10.1103/PhysRevE.62.5081)

13. Bates MA, Skacej G, Zannoni C. 2010 Defects and ordering in nematic coatings on uniaxial
and biaxial colloids. Soft Matter 6, 655–663. (doi:10.1039/B917180K)

14. Shin H, Bowick MJ, Xing X. 2008 Topological defects in spherical nematics. Phys. Rev. Lett. 101,
037802. (doi:10.1103/PhysRevLett.101.037802)

15. Prinsen P, van der Schoot P. 2003 Shape and director-field transformation of tactoids. Phys.
Rev. E 68, 021701. (doi:10.1103/PhysRevE.68.021701)

16. Nguyen TS, Geng J, Selinger RLB, Selinger JV. 2013 Nematic order on a deformable vesicle:
theory and simulation. Soft Matter 9, 8314–8326. (doi:10.1039/c3sm50489a)

17. Martinez A, Ravnik M, Lucero B, Visvanathan R, Zumer S, Smalyukh II. 2014 Mutually
tangled colloidal knots and induced defect loops in nematic fields. Nat. Mater. 13, 259–264.
(doi:10.1038/nmat3840)

18. Segatti A, Snarski M, Veneroni M. 2014 Equilibrium configurations of nematic liquid crystals
on a torus. Phys. Rev. E 90, 012501. (doi:10.1103/PhysRevE.90.012501)

19. Alaimo F, Koehler C, Voigt A. 2017 Curvature controlled defect dynamics in topological active
nematics. Sci. Rep. 7, 5211. (doi:10.1038/s41598-017-05612-6)

20. Kralj S, Rosso R, Virga EG. 2011 Curvature control of valence on nematic shells. Soft Matter 7,
670–683. (doi:10.1039/C0SM00378F)

21. Napoli G, Vergori L. 2012a Surface free energies for nematic shells. Phys. Rev. E 85, 061701.
(doi:10.1103/PhysRevE.85.061701)

22. Napoli G, Vergori L. 2012b Extrinsic curvature effects on nematic shells. Phys. Rev. Lett. 108,
207803. (doi:10.1103/PhysRevLett.108.207803)

http://dx.doi.org/doi:10.1080/00018730903043166
http://dx.doi.org/doi:10.1080/02678292.2016.1209698
http://dx.doi.org/doi:10.1126/science.1081160
http://dx.doi.org/doi:10.1038/nature09620
http://dx.doi.org/doi:10.1039/C4SM02540G
http://dx.doi.org/doi:10.1051/jp2:1992133
http://dx.doi.org/doi:10.1021/nl0202096
http://dx.doi.org/doi:10.1103/PhysRevA.38.1005
http://dx.doi.org/doi:10.1103/PhysRevE.68.051910
http://dx.doi.org/doi:10.1137/110834718
http://dx.doi.org/doi:10.1103/PhysRevB.28.5515
http://dx.doi.org/doi:10.1103/PhysRevE.62.5081
http://dx.doi.org/doi:10.1039/B917180K
http://dx.doi.org/doi:10.1103/PhysRevLett.101.037802
http://dx.doi.org/doi:10.1103/PhysRevE.68.021701
http://dx.doi.org/doi:10.1039/c3sm50489a
http://dx.doi.org/doi:10.1038/nmat3840
http://dx.doi.org/doi:10.1103/PhysRevE.90.012501
http://dx.doi.org/doi:10.1038/s41598-017-05612-6
http://dx.doi.org/doi:10.1039/C0SM00378F
http://dx.doi.org/doi:10.1103/PhysRevE.85.061701
http://dx.doi.org/doi:10.1103/PhysRevLett.108.207803


22

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200313

...........................................................

23. Golovaty D, Alberto Montero J, Sternberg P. 2017 Dimension reduction for the
Landau-de Gennes model on curved nematic thin films. J. Nonln. Sci. 27, 1905–1932.
(doi:10.1007/s00332-017-9390-5)

24. Nestler M, Nitschke I, Praetorius S, Voigt A. 2018 Orientational order on surfaces: the coupling
of topology, geometry, and dynamics. J. Nonlin. Sci. 28, 147–191. (doi:10.1007/s00332-017-
9405-2)

25. Nitschke I, Nestler M, Praetorius S, Löwen H, Voigt A. 2018 Nematic liquid crystals on
curved surfaces–a thin film limit. Proc. R. Soc. A 474, 20170686. (doi:10.1098/rspa.2017.
0686)

26. Nitschke I, Reuther S, Voigt A. 2019 Hydrodynamic interactions in polar liquid
crystals on evolving surfaces. Phys. Rev. Fluids 4, 044002. (doi:10.1103/PhysRevFluids.4.
044002)

27. Park J, Lubensky T, MacKintosh F. 1992 N-atic order and continuous shape
changes of deformable surfaces of genus zero. Europhys. Lett. 20, 279–284.
(doi:10.1209/0295-5075/20/3/015)

28. Keber FC, Loiseau E, Sanchez T, DeCamp SJ, Giomi L, Bowick MJ, Marchetti MC, Dogic Z,
Bausch AR. 2014 Topology and dynamics of active nematic vesicles. Science 345, 1135–1139.
(doi:10.1126/science.1254784)

29. Marsden J, Hughes T. 2012 Mathematical foundations of elasticity. Dover Civil and Mechanical
Engineering. Dover Publications.

30. Nestler M, Nitschke I, Voigt A. 2019 A finite element approach for vector- and tensor-valued
surface PDEs. J. Comput. Phys. 389, 48–61. (doi:10.1016/j.jcp.2019.03.006)

31. Reuther S, Voigt A. 2018 Solving the incompressible surface Navier-Stokes equation by surface
finite elements. Phys. Fluids 30, 012107. (doi:10.1063/1.5005142)

32. Vey S, Voigt A. 2007 AMDiS: adaptive multidimensional simulations. Comput. Vis. Sci. 10,
57–67. (doi:10.1007/s00791-006-0048-3)

33. Witkowski T, Ling S, Praetorius S, Voigt A. 2015 Software concepts and numerical algorithms
for a scalable adaptive parallel finite element method. Adv. Comput. Math. 41, 1145–1177.
(doi:10.1007/s10444-015-9405-4)

34. Dziuk G, Elliott CM. 2013 Finite element methods for surface PDEs. Acta Numer. 22, 289–396.
(doi:10.1017/S0962492913000056)

35. Smereka P. 2003 Semi-implicit level set methods for curvature and surface diffusion motion.
J. Sci. Comput. 19, 439–456. (doi:10.1023/A:1025324613450)

36. Rusu R. 2005 An algorithm for the elastic flow of surfaces. Inerf. Free Boundaries 7, 229–239.
(doi:10.4171/IFB/122)

37. Barrett J, Garcke H, Nuernberg R. 2007 Parametric approximation of Willmore
flow and related geometric evolution equations. SIAM J. Sci. Comput. 31, 225–253.
(doi:10.1137/070700231)

38. Dziuk G. 2008 Computational parametric Willmore flow. Numer. Math. 111, 55–80.
(doi:10.1007/s00211-008-0179-1)

39. Kovacs B, Li B, Lubich C. 2019 A convergent evolving finite element algorithm for
mean curvature flow of closed surfaces. Numer. Math. 43, 797–853. (doi:10.1007/s00211-019-
01074-2)

40. Oza AU, Dunkel J. 2016 Antipolar ordering of topological defects in active liquid crystals. New
J. Phys. 18, 093006. (doi:10.1088/1367-2630/18/9/093006)

41. Mbanga BL, Grason GM, Santangelo CD. 2012 Frustrated order on extrinsic geometries. Phys.
Rev. Lett. 108, 017801. (doi:10.1103/PhysRevLett.108.017801)

42. Napoli G, Vergori L. 2016 Hydrodynamic theory for nematic shells: the interplay
among curvature, flow, and alignment. Phys. Rev. E 94, 020701. (doi:10.1103/PhysRevE.94.
020701)

43. Segatti A, Snarski M, Veneroni M. 2016 Analysis of a variational model for nematic shells.
Math. Mod. Methods Appl. Sci. 26, 1865–1918. (doi:10.1142/S0218202516500470)

44. Koning V, Lopez-Leon T, Darmon A, Fernandez-Nieves A, Vitelli V. 2016 Spherical nematic
shells with a threefold valence. Phys. Rev. E 94, 012703. (doi:10.1103/PhysRevE.94.012703)

45. Duan X, Yao Z. 2017 Curvature-driven stability of defects in nematic textures over spherical
disks. Phys. Rev. E 95, 062706. (doi:10.1103/PhysRevE.95.062706)

46. Napoli G, Vergori L. 2018 Influence of the extrinsic curvature on two-dimensional nematic
films. Phys. Rev. E 97, 052705. (doi:10.1103/PhysRevE.97.052705)

http://dx.doi.org/doi:10.1007/s00332-017-9390-5
http://dx.doi.org/doi:10.1007/s00332-017-9405-2
http://dx.doi.org/doi:10.1007/s00332-017-9405-2
http://dx.doi.org/doi:10.1098/rspa.2017.0686
http://dx.doi.org/doi:10.1098/rspa.2017.0686
http://dx.doi.org/doi:10.1103/PhysRevFluids.4.044002
http://dx.doi.org/doi:10.1103/PhysRevFluids.4.044002
http://dx.doi.org/doi:10.1209/0295-5075/20/3/015
http://dx.doi.org/doi:10.1126/science.1254784
http://dx.doi.org/doi:10.1016/j.jcp.2019.03.006
http://dx.doi.org/doi:10.1063/1.5005142
http://dx.doi.org/doi:10.1007/s00791-006-0048-3
http://dx.doi.org/doi:10.1007/s10444-015-9405-4
http://dx.doi.org/doi:10.1017/S0962492913000056
http://dx.doi.org/doi:10.1023/A:1025324613450
http://dx.doi.org/doi:10.4171/IFB/122
http://dx.doi.org/doi:10.1137/070700231
http://dx.doi.org/doi:10.1007/s00211-008-0179-1
http://dx.doi.org/doi:10.1007/s00211-019-01074-2
http://dx.doi.org/doi:10.1007/s00211-019-01074-2
http://dx.doi.org/doi:10.1088/1367-2630/18/9/093006
http://dx.doi.org/doi:10.1103/PhysRevLett.108.017801
http://dx.doi.org/doi:10.1103/PhysRevE.94.020701
http://dx.doi.org/doi:10.1103/PhysRevE.94.020701
http://dx.doi.org/doi:10.1142/S0218202516500470
http://dx.doi.org/doi:10.1103/PhysRevE.94.012703
http://dx.doi.org/doi:10.1103/PhysRevE.95.062706
http://dx.doi.org/doi:10.1103/PhysRevE.97.052705


23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200313

...........................................................

47. Nitschke I, Reuther S, Löwen H, Voigt A. 2020 Properties of surface Landau-de Gennes
Q-tensor models. Soft Matter 16, 4032–4042. (doi:10.1039/C9SM02475A)

48. Nitschke I, Reuther S, Voigt A. 2019 Data from: Liquid crystals on deformable surfaces. See
https://gitlab.mn.tu-dresden.de/sourcecode/surface-lc.

49. Schouten J. 1954 Ricci-calculus: an introduction to tensor analysis and its geometrical applications.
Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer.

50. Willmore T. 1996 Riemannian Geometry. Oxford science publications. Clarendon Press.
51. Huisken G. 1984 Flow by mean curvature of convex surfaces into spheres. J. Diff. Geometry 20,

237–266. (doi:10.4310/jdg/1214438998)

http://dx.doi.org/doi:10.1039/C9SM02475A
https://gitlab.mn.tu-dresden.de/sourcecode/surface-lc
http://dx.doi.org/doi:10.4310/jdg/1214438998

	Introduction
	Notation and model derivation
	Free energy
	Steepest decent method

	Numerical approach
	Time discretization
	Space discretization

	Results
	Prescribed normal velocity
	Surface response
	Fully coupled system
	Discussion
	Shape variations
	Functional derivatives

	References

