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We study a homogenisation problem for problems of mixed type in the framework of

evolutionary equations. The change of type is highly oscillatory. The numerical treat-

ment is done by a discontinuous Galerkin method in time and a continuous Galerkin
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1 INTRODUCTION

A standard problem in engineering is the approximation of highly oscillatory coefficients by averaged ones. In fact, given a partial

differential equation with variable coefficients, numerical procedures might be too involved for nowadays computing devices so

that an effective model is often derived. The process of seeking effective coefficients as replacements for highly oscillatory ones

is summarised under the umbrella term of homogenisation. The mathematical theory of homogenisation goes back to the late

1960s. We refer to the standard references [3,5] for a more detailed account.

Standard applications of homogenisation are elliptic, parabolic or hyperbolic divergence form equations. Only quite recently

see [16], it has been noticed that for certain problems of mixed type, that is, differential equations changing their type from

hyperbolic to parabolic to elliptic on different spatial domains in a highly oscillatory way, one can derive an effective model,

which does not change its type anymore and consists of constant coefficients.

In [16], only a qualitative convergence statement was derived. The techniques developed in [4,7], however, suggest that the

rate of convergence can be quantified. It is one main result of the present exposition – based on the rationale outlined in [4,7] –

that a quantified convergence rate for problems of the type discussed in [16] can be derived. We refer to Section 3 for the precise

equations.

Given the low dimensionality of the problem to be discussed in this paper, we will furthermore numerically study the partial

differential equation with highly oscillatory coefficients and provide a quantitative convergence statement that for highly oscil-

latory coefficients the corresponding numerical solution approximates the true solution of the homogenised model. In fact, the

results in [8] show that for mixed type equations one can derive a numerical scheme. It consists of a discontinuous Galerkin

method in time, see e.g. [6,14,15], combined with a continuous Galerkin method in space. The framework developed in [8] for

a slightly different setting can be extended to our present problem easily and approximation properties proved therein can be

transferred.

In Section 3, we introduce the model under consideration and provide the desired convergence statement. In Section 4 we

recall the numerical scheme derived in [8] and provide the estimate that the numerical solution of the equation with highly

oscillatory coefficients approximates the solution of the effective equation in a certain controlled way. We conclude this paper

with a short numerical example in Section 4.3.

Before, however, we turn to the main body of this article, we shall comment on the applications to mechanics of the studied

problem in the next section.
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2 MIXED TYPE PROBLEMS AS A SPECIAL CASE OF FLUID-SOLID
INTERACTION

In [2], the authors studied the stability of an 1+1-dimensional partial differential equation of mixed type, where a parabolic and

a hyperbolic equation are combined. The equations can be formulated as

⎧⎪⎨⎪⎩
𝜕2
𝑡
𝑢(𝑡, 𝑥) − 𝜕2

𝑥
𝑢(𝑡, 𝑥) = 0, 𝑥 ∈ (0, 1∕2), 𝑡 > 0,

𝜕𝑡𝑤(𝑡, 𝑥) − 𝜕2𝑥𝑤(𝑡, 𝑥) = 0, 𝑥 ∈ (1∕2, 1), 𝑡 > 0,

𝑢(𝑡, 1∕2) = 𝑤(𝑡, 1∕2), 𝜕𝑥𝑢(𝑡, 1∕2) = 𝜕𝑥𝑤(𝑡, 1∕2), 𝑡 > 0

subject to boundary conditions for 𝑢 and𝑤 at 𝑥 = 0 and 𝑥 = 1, respectively, and initial conditions for 𝑢, 𝜕𝑡𝑢 and𝑤. The motivation

for this model stems from a thoroughly simplified model of a problem coupling non-linear elasticity to the Navier–Stokes

equations, which have applications in the study of fluids interacting with solids, see in particular [1]. In this line of simplification,

the interval (0, 1∕2) is the solid domain, where the evolution is governed by elastic waves, where on the interval (1∕2, 1) the

fluid is described, with the evolution governed by a (parabolic, linearised, one-dimensional) variant of Navier–Stokes equations.

While being fully aware of this drastically simplified model, we shall focus on the coupling of the equations with two different

types.

As it was mentioned above, in this simplified setting, we shall discuss now multiple changes of type in the domain. Initial

conditions are implemented as particular right-hand sides. The problem to study now corresponds to interlacing solids and fluids

with smaller and smaller proportion in the occupied space (0, 1). This kind of model has been discussed in [16, Section 4]. More

precisely, for𝑁 ∈ ℕ

⎧⎪⎪⎨⎪⎪⎩
𝜕2
𝑡
𝑢𝑁 (𝑡, 𝑥) − 𝜕2𝑥𝑢𝑁 (𝑡, 𝑥) = 𝜕𝑡𝑓 (𝑡, 𝑥), 𝑥 ∈

⋃
𝑗∈{1,…,𝑁}

(
𝑗−1
𝑁
,
2𝑗−1
2𝑁

)
𝜕𝑡𝑢𝑁 (𝑡, 𝑥) − 𝜕2𝑥𝑢𝑁 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥), 𝑥 ∈

⋃
𝑗∈{1,…,𝑁}

(
2𝑗−1
2𝑁 ,

𝑗

𝑁

)
𝜕𝑥𝑢𝑁 (𝑡, 0) = 𝜕𝑥𝑢𝑁 (𝑡, 1) = 0,

(𝑡 ∈ ℝ), (2.1)

subject to homogeneous initial conditions and conditions for continuity at the junction points { 𝑗

2𝑁 ; 𝑗 ∈ {1,… , 2𝑁 − 1}} for

𝑢𝑁 , where 𝑓 is a given source term. This problem can straightforwardly be rewritten as a first order system in the following way

(using 𝑞𝑁 ∶= −(1 − 1𝑁 )𝜕𝑥𝑢𝑁 )

(
𝜕𝑡

(
1 0
0 1𝑁

)
+
(
0 0
0 1 − 1𝑁

)
+
(

0 𝜕𝑥,0
𝜕𝑥 0

))(
𝑢𝑁
𝑞𝑁

)
=
(
𝑓

0

)
(2.2)

as an equation on ℝ × (0, 1), where 1𝑁 denotes mutiplication by

𝑎𝑁 ∶ 𝑥 → 𝑎(𝑁𝑥), where 𝑎 ∶=
∑
𝑘∈ℤ
𝜒[𝑘,𝑘+1∕2] ∈ 𝐿∞(ℝ).

Here 𝜕𝑥,0 denotes the spatial derivative with a domain consisting of (weakly) differentiable functions vanishing at 𝑥 = 0 and

𝑥 = 1; 𝜕𝑥 acts a (weak) derivative on weakly differentiable functions. By the Sobolev embedding theorem, weakly differentiable

functions are actually continuous. Thus, 𝑢𝑁 (or 𝑞𝑁 ) being in the domain of 𝜕𝑥 (or 𝜕𝑥,0) particularly implies continuity at the

junction points. This also serves as the implementation of the interface conditions imposed on 𝑢 and𝑤 (then𝑁 = 2) mentioned

above for the model from [2].

In the following we shall discuss (among other things) the numerical implementation of the above problem for fixed 𝑁 .

Moreover, we shall further analyse (and quantify) the convergence for the model of when𝑁 → ∞. Furthermore, we numerically

implement the limit model and compare the numerical solution for the problem with fixed𝑁 and the numerical solution of the

limit model. For technical reasons (in the derivation of the quantified estimates), we use periodic boundary conditions instead

of the discussed Neumann boundary conditions.
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3 RESOLVENT ESTIMATES FOR THE CONTINUOUS IN-TIME
HOMOGENISATION PROBLEM

We aim to establish something, which is in spirit similar to the approach developed in [4,7]. The main ingredients for this one-

dimensional situation can readily be found in [4]. The main difference between the cases treated in [4] or [7] is the underlying

spatial domain. In fact, the cited work focused on ℝ and ℝ𝑑 as underlying spatial domain.

In the present case, we treat a linear pde on the unit interval, instead. The homogenisation problem, we like to address is thus

formulated on ℝ × [0, 1] as underlying domain. Here ℝ describes time and (0, 1) describes the spatial scale. The coefficients,

we are dealing with, are highly oscillatory in the sense that we treat multiplication operators and model high oscillations using

𝑁 ∈ ℝ as a parameter describing these oscillations. We like to address the limit of𝑁 → ∞ eventually.

More precisely, using the formulation in [16], one can write the problem in question as the following 2 × 2-block operator

matrix system: For a given 𝐹 ∶ ℝ × (0, 1) → ℂ2 and𝑁 ∈ ℕ find 𝑈𝑁 ∶ ℝ × (0, 1) → ℂ2 such that(
𝜕𝑡𝑀0(𝑁𝑥) +𝑀1(𝑁𝑥) +

(
0 𝜕#
𝜕# 0

))
𝑈𝑁 (𝑡, 𝑥) = 𝐹 (𝑡, 𝑥), (𝑡 ∈ ℝ, 𝑥 ∈ (0, 1)) (3.1)

where 𝜕# is the weak derivative on (0, 1) with periodic boundary conditions, 𝑀0,𝑀1 are 1-periodic, measurable bounded

ℂ2×2-valued functions with the additional property that 𝑀0(𝑥) =𝑀0(𝑥)∗ ≥ 0 (in the sense of positive definiteness of matri-

ces) and that there exists 𝜌 > 0 and 𝑐 > 0 such that

𝜌⟨𝑀0(𝑥)𝜉, 𝜉⟩ℂ2 + Re⟨𝑀1(𝑥)𝜉, 𝜉⟩ℂ2 ≥ 𝑐⟨𝜉, 𝜉⟩ℂ2 (𝜉 ∈ ℂ2).

The special case mentioned in Section 2 is realised with

𝑀0(𝑁𝑥) =
(
1 0
0 1𝑁 (𝑥)

)
and𝑀1(𝑁𝑥) =

(
0 0
0 1 − 1𝑁 (𝑥)

)
(𝑥 ∈ (0, 1)).

As equation (3.1) is formulated on (0, 1), the continuous Gelfand transformation used in [4] to divide the problem on the whole

space has to be replaced by its discrete analogue. In the next two subsections, we will derive an estimate for the static case,

which will eventually be applied to the dynamic case by going into the frequency domain.

3.1 The static case
We start out with the discrete analogue of the Gelfand transformation as introduced in [7].

Definition 3.1. Let𝑁 ∈ ℕ, 𝑓 ∶ ℝ → ℂ. Then we define

𝑁𝑓 (𝜃, 𝑦) ∶= 1√
𝑁

𝑁−1∑
𝑘=0
𝑓 (𝑦 + 𝑘)𝑒−𝑖𝜃𝑘 (𝑦 ∈ [0, 1), 𝜃 ∈ {2𝜋𝑘∕𝑁 ; 𝑘 ∈ {0,… , 𝑁 − 1}).

Proposition 3.2. The operator 𝑁 ∶ 𝐿2
#(0, 𝑁) → 𝐿2(0, 1)𝑁 given by

𝑓 →
(𝑁𝑓 (2𝜋(𝑘 − 1)∕𝑁, ⋅)

)
𝑘∈{1,…,𝑁}

is unitary, where 𝐿2
#(0, 𝑁) ∶= {𝑓 ∈ 𝐿2

loc
(ℝ);𝑓 (⋅ +𝑁𝑘) = 𝑓 (𝑘 ∈ ℤ)} endowed with the norm of 𝐿2(0, 𝑁).

Proof. Let 𝑓 ∶ ℝ → ℂ be bounded, continuous with 𝑓 (⋅ +𝑁𝑘) = 𝑓 for all 𝑘 ∈ ℤ. Then, we compute with 𝜃𝓁 = 2𝜋𝓁∕𝑁

𝑁‖𝑁𝑓‖2𝐿2(0,1)𝑁 =
𝑁−1∑
𝓁=0

‖𝑁𝑓 (2𝜋𝓁∕𝑁, ⋅)‖2𝐿2(0,1)
=
𝑁−1∑
𝓁=0

𝑁−1∑
𝑘1=0

𝑁−1∑
𝑘2=0

𝑒−𝑖𝜃𝓁(𝑘1−𝑘2) ∫(0,1) 𝑓 (𝑦 + 𝑘1)𝑓 (𝑦 + 𝑘2)𝑑𝑦.
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We shall argue next that for all 𝑘1, 𝑘2 ∈ {0,… , 𝑁 − 1} with 𝑘1 ≠ 𝑘2, we have

𝑁−1∑
𝓁=0
𝑒−𝑖𝜃𝓁(𝑘1−𝑘2) = 0. (3.2)

For this, denote 𝑛 ∶= 𝑘1 − 𝑘2 ≠ 0 and consider the homomorphism

𝜑 ∶ ℤ𝑁 → 𝐺 ∶= {𝑒−𝑖
2𝜋𝑛
𝑁

𝓁;𝓁 ∈ {0,… , 𝑁 − 1}}

𝓁 → 𝑒−𝑖
2𝜋𝑛
𝑁

𝓁
.

By the fundamental theorem on homomorphisms, 𝐺 = ran(𝜑) ≅ ℤ𝑁∕ ker(𝜑). In particular, |𝐺| divides𝑁 . Furthermore, since

ℤ𝑁 is cyclic, we obtain that ℤ𝑁∕ ker(𝜑) is cyclic and thus 𝐺 is cyclic. Let 𝑧∗ ∈ 𝐺 generate 𝐺. Thus, 𝐺 = {𝑧0∗,… , 𝑧
𝑘−1
∗ } are

the 𝑘 unique, distinct 𝑘th unit roots. In particular, we obtain for all 𝑧 ∈ ℂ

𝑧𝑘 − 1 = (𝑧 − 𝑧0∗) ⋅… ⋅ (𝑧 − 𝑧𝑘−1∗ ).

Expanding the right-hand side and comparing the coefficient of 𝑧𝑘−1 of both sides, we deduce that∑
𝑧∈𝐺
𝑧 = 0.

Hence,

𝑁−1∑
𝓁=0
𝑒−𝑖𝜃𝓁𝑛 =

𝑁−1∑
𝓁=0
𝜑(𝓁) = 𝑁|𝐺| ∑

𝑧∈𝐺
𝑧 = 0,

which settles (3.2). Therefore, we obtain

𝑁‖𝑁𝑓‖2𝐿2(0,1)𝑁 =
𝑁−1∑
𝓁=0

𝑁−1∑
𝑘1=0

∫(0,1) 𝑓 (𝑦 + 𝑘1)𝑓 (𝑦 + 𝑘1)𝑑𝑦 = 𝑁‖𝑓‖2
𝐿2(0,𝑁).

Moreover, note that for 𝜑 = (𝜑𝑘+1)𝑘∈{0,…,𝑁−1} ∈ 𝐶𝑐(0, 1)𝑁 , we have that the 𝑁-periodic extension of 𝑓 given by 𝑓 (𝑥) =
𝑒𝑖2𝜋𝑘∕𝑁𝜑𝑘+1(𝑥) for 𝑥 ∈ [𝑘, 𝑘 + 1) with 𝑘 ∈ {0,… , 𝑁 − 1} leads to 𝑁𝑁𝑓 = 𝜑. Hence, 𝑁 has dense range. Thus, 𝑁 is

unitary. □

We shall furthermore introduce the following unitary scaling transformation that scales a problem on (0, 1) onto (0, 𝑁):

Definition 3.3. Let𝑁 ∈ ℕ. Then define for 𝑓 ∈ 𝐿2(0, 1)

𝑁𝑓 ∶= 1√
𝑁
𝑓
( ⋅
𝑁

)
and 𝑁 ∶= 𝑁𝑁

Note that the scaling of the transformations 𝑁 and 𝑁 is chosen in a way that 𝑁 becomes unitary (as a composition of two

unitaries) and such that 𝑁 captures precisely the ‘magnitude’ of oscillations in the problem (3.1).

Furthermore, we define

𝜕𝜃 ∶ 𝐻1
𝜃
(0, 1) ⊆ 𝐿2

#(0, 1) → 𝐿
2
#(0, 1), 𝑓 → 𝑓 ′

and𝐻1
𝜃
(0, 1) = {𝑓 ∈ 𝐻1(0, 1); 𝑓 (1) = 𝑒𝑖𝜃𝑓 (0)}. We use 𝜕# and𝐻1

# (0, 1), if 𝜃 = 0.

Proposition 3.4. Let𝑁 ∈ ℕ. Then

(a) 𝑁𝜕# = 𝑁𝜕#,𝑁𝑁 , where 𝜕#,𝑁 is the weak derivative with periodic boundary conditions,
(b) 𝑁𝜕# = 𝑁 diag

(
(𝜕𝜃𝑘 )𝑘∈{0,…,𝑁−1}

)𝑁 , where 𝜃𝑘 = 2𝜋𝑘∕𝑁 .

(c) For all 𝑎 ∈ 𝐿∞
# (0, 1) we obtain 𝑁𝑎(𝑁 ⋅) = diag

(
(𝑎(⋅))𝑘∈{0,…,𝑁−1}

)𝑁 .
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Proof. The proof follows along elementary calculations. Note that for (a) and (b) it suffices to prove the assertions for smooth

functions, only. □

Next, we introduce a static version of the problem in question:

Definition 3.5. Let 𝑐 > 0 and

𝑐 ∶= {𝑀 ∈ 𝐿∞(0, 1)2×2# ;Re𝑀 ≥ 𝑐12×2},

where𝐿∞(0, 1)# ∶= {𝑎 ∈ 𝐿∞(ℝ); 𝑎(⋅ + 𝑘) = 𝑎 (𝑘 ∈ ℤ)} and 12×2 =
(1 0
0 1

)
and the inequality in the definition of 𝑐 holds

in the sense of positive definiteness almost everywhere.

For all𝑁 ∈ ℕ, find
(
𝑢𝑁
𝑣𝑁

)
∈ 𝐿2(0, 1)2 such that

(
𝑀(𝑁 ⋅) +

(
0 𝜕#
𝜕# 0

))(
𝑢𝑁
𝑣𝑁

)
=
(
𝑓

𝑔

)
(3.3)

for some 𝑓, 𝑔 ∈ 𝐿2(0, 1)2. Note that (3.3) is well-posed by [7, Lemma 2.5]. With the help of Proposition 3.4, we obtain an

equivalent formulation of (3.3)

Corollary 3.6. Let𝑁 ∈ ℕ. Then(𝑁 0
0 𝑁

)(
𝑀(𝑁 ⋅) +

(
0 𝜕#
𝜕# 0

))(𝑁 0
0 𝑁

)∗
=

(
diag(𝑀(⋅))𝑘∈{0,…,𝑁−1} +𝑁 diag

((
0 𝜕𝜃𝑘
𝜕𝜃𝑘 0

))
𝑘∈{0,…,𝑁−1}

)
.

As it has been demonstrated in [7, Section 3], we obtain that [7, Theorem 2.4 and Theorem 2.2] applies to the setting in [7,

Equation (10)]. Here we recall the results found there for the particular case of 𝑛 = 𝑑 = 1. Note that by [7, Remark 4.6] the

one-dimensional homogenised coefficient is given by the integral mean.

Theorem 3.7. For all𝑁 ∈ ℕ and 𝑘 ∈ {0,… , 𝑁 − 1}, we have‖‖‖‖‖‖
(
𝑀(⋅) +𝑁

(
0 𝜕𝜃𝑘
𝜕𝜃𝑘 0

))−1

−
(
∫(0,1)𝑀(𝑦)𝑑𝑦 +𝑁

(
0 𝜕𝜃𝑘
𝜕𝜃𝑘 0

))−1‖‖‖‖‖‖𝐿(𝐿2(0,1)2) ≤
1
𝜋

(
2
(
1 +

‖𝑀‖∞
𝑐

)2
+ 1

)
1
𝑁
.

3.2 The dynamic case
With the estimate in the latter theorem, we also obtain results for the full time-dependent problem. The strategy has been outlined

in the concluding sections of [4] already. We will, however, provide the necessary notions and a corresponding estimate in this

exposition, as well. For 𝜌 > 0 and a Hilbert space𝐻 , we define

𝐿2
𝜌
(ℝ;𝐻) ∶= {𝑓 ∶ ℝ → 𝐻 ;𝑓 measurable,∫ℝ ‖𝑓 (𝑡)‖2

𝐻
exp(−2𝜌𝑡)𝑑𝑡 < ∞},

endowed with the obvious scalar product. Employing the usual identification of functions being equal almost everywhere, we

obtain that 𝐿2
𝜌
(ℝ;𝐻) is a Hilbert space. We denote by𝐻1

𝜌
(ℝ;𝐻) the first Sobolev space of weakly differentiable functions with

weak derivative being representable as an element of 𝐿2
𝜌
(ℝ;𝐻). Then we put

𝜕𝑡 ∶ 𝐻1
𝜌
(ℝ;𝐻) ⊆ 𝐿2

𝜌
(ℝ;𝐻) → 𝐿2

𝜌
(ℝ;𝐻), 𝑓 → 𝑓 ′.

A spectral representation of 𝜕𝑡 as multiplication operator is given by the Fourier–Laplace transformation, that is, the unitary

extension of the operator 𝜌 ∶ 𝐿2
𝜌
(ℝ;𝐻) → 𝐿2(ℝ;𝐻) given by

𝜌𝜑(𝜉) = 1√
2𝜋 ∫ℝ 𝜑(𝑡) exp(−𝑖𝑡𝜉 − 𝜌𝑡)𝑑𝑡 (𝜑 ∈ 𝐶𝑐(ℝ;𝐻)),

where 𝐶𝑐(ℝ;𝐻) is the space of continuous functions with compact support. The spectral representation reads as follows:
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Theorem 3.8 [9, Corollary 2.5]. Let 𝜌 > 0. Then

𝜕𝑡 = ∗
𝜌
(𝑖𝑚 + 𝜌)𝜌,

where

𝑚 ∶ {𝑓 ∈ 𝐿2(ℝ;𝐻); (𝑡 → 𝑡𝑓 (𝑡)) ∈ 𝐿2(ℝ;𝐻)} ⊆ 𝐿2(ℝ;𝐻) → 𝐿2(ℝ;𝐻)

𝑓 → (𝑡 → 𝑡𝑓 (𝑡))

is the multiplication by the argument operator with maximal domain.

Next, we recall an elementary version of the well-posedness theorem for evolutionary equations, which is particularly relevant

to the case studied here. For this, note that we will use the same notation for an operator acting in𝐻 and its corresponding lift

as an abstract multiplication operator on 𝐿2
𝜌
(ℝ;𝐻).

Theorem 3.9 [12, Solution Theory], [13, Theorem 6.2.5]. Let 𝐴 be a skew-selfadjoint operator in 𝐻 , 0 ≤𝑀0 =𝑀∗
0 ,𝑀1 ∈

𝐿(𝐻). Assume there exists 𝑐, 𝜌 > 0 with

𝜌⟨𝑀0𝜑,𝜑⟩ + Re⟨𝑀1𝜑,𝜑⟩ ≥ 𝑐⟨𝜑,𝜑⟩ (𝜑 ∈ 𝐻). (3.4)

Then the operator  ∶= 𝜕𝑡𝑀0 +𝑀1 + 𝐴 with 𝐷() = 𝐷(𝜕𝑡) ∩𝐷() is closable in 𝐿2
𝜌
(ℝ;𝐻). Moreover, 𝜌 ∶= −1

is well-
defined, continuous and bounded with ‖𝜌‖𝐿(𝐿2𝜌) ≤ 1∕𝑐.

We can now state and prove the full time-dependent version of Theorem 3.7. We shall also refer to [4, Theorem 7.1] for a

corresponding result with ℝ instead of (0, 1) as underlying state space.

Theorem 3.10. Let 𝜌 > 0, 𝐻 = 𝐿2(0, 1)2, 𝑀0,𝑀1 ∈ 𝐿∞(0, 1)2×2# (⊆ 𝐿(𝐻)), 𝑀0 =𝑀∗
0 ≥ 0. Assume there exists 𝑐 > 0 such

that

𝜌⟨𝑀0𝜑,𝜑⟩ + Re⟨𝑀1𝜑,𝜑⟩ ≥ 𝑐⟨𝜑,𝜑⟩ (𝜑 ∈ 𝐻),

set 𝐴 ∶=
( 0 𝜕#
𝜕# 0

)
. Then, there exists 𝜅 ≥ 0 such that for all𝑁 ∈ ℕ, we have

‖ ((𝜕𝑡𝑀0(𝑁 ⋅) +𝑀1(𝑁 ⋅) + 𝐴)−1 − (𝜕𝑡𝑀av
0 +𝑀av

1 + 𝐴)−1
)
𝜕−2
𝑡
‖𝐿(𝐿2𝜌(ℝ;𝐻)) ≤ 𝜅

𝑁
,

where𝑀av
𝑗

∶= ∫(0,1)𝑀𝑗(𝑦)𝑑𝑦 for all 𝑗 ∈ {0, 1}.

Proof. Using the unitarity of the Fourier–Laplace transformation, we deduce that the claim is equivalent to showing that there

exists 𝜅 ≥ 0 such that for all𝑁 ∈ ℕ and 𝜉 ∈ ℝ:

‖ (((𝑖𝜉 + 𝜌)𝑀0(𝑁 ⋅) +𝑀1(𝑁 ⋅) + 𝐴)−1 − ((𝑖𝜉 + 𝜌)𝑀av
0 +𝑀av

1 + 𝐴)−1
)
(𝑖𝜉 + 𝜌)−2‖𝐿(𝐻) ≤ 𝜅

𝑁
. (3.5)

For this, we deduce from the positive definiteness estimate imposed on𝑀0 and𝑀1 that

(𝑖𝜉 + 𝜌)𝑀0(⋅) +𝑀1(⋅) ∈ 𝑐

for all 𝜉 ∈ ℝ. Hence, using Theorem 3.7 and Corollary 3.6, we obtain the existence of 𝜅 ≥ 0 such that for all𝑁 ∈ ℕ and 𝜉 ∈ ℝ

‖ (((𝑖𝜉 + 𝜌)𝑀0(𝑁 ⋅) +𝑀1(𝑁 ⋅) + 𝐴)−1 − ((𝑖𝜉 + 𝜌)𝑀av
0 +𝑀av

1 + 𝐴)−1
) ‖𝐿(𝐻) ≤ 𝜅

𝑁
(1 + |𝜉|2)(1 + ‖𝑀0‖∞ + ‖𝑀1‖∞)2.

Thus, we conclude

‖(((𝑖𝜉 + 𝜌)𝑀0(𝑁 ⋅) +𝑀1(𝑁 ⋅) + 𝐴)−1 − ((𝑖𝜉 + 𝜌)𝑀av
0 +𝑀av

1 + 𝐴)−1
)
(𝑖𝜉 + 𝜌)−2‖

𝐿(𝐻)

≤ 𝜅

𝑁
(1 + |𝜉|2)(1 + ‖𝑀0‖∞ + ‖𝑀1‖∞)2 1|𝑖𝜉 + 𝜌|2 = 𝜅

𝑁

1 + 𝜉2

𝜌2 + 𝜉2
(1 + ‖𝑀0‖∞ + ‖𝑀1‖∞)2,

which implies (3.5) and, thus, the assertion. □
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4 NUMERICAL IMPLEMENTATION

We use as numerical method a discontinuous Galerkin method in time and a continuous Galerkin method in space. For a similar

problem this approach is already considered and analysed in [8]. Therefore, we will only describe the method here shortly and

point to the differences in the numerical analysis.

4.1 Numerical method
We will start by describing the method and providing a convergence result for an arbitrary problem of type (3.1), that is, we

shall focus on problems of the type (
𝜕𝑡𝑀0 +𝑀1 + 𝐴

)
𝑈 = 𝐹 , (4.1)

where 𝐴 =
( 0 𝜕#
𝜕# 0

)
and 𝑀0 =𝑀∗

0 ≥ 0, 𝑀1 are in 𝐿∞(Ω)2×2, which are readily extended to operators acting on

𝐿2
𝜌
(ℝ;𝐿2(Ω)2). Throughout, we shall assume the condition (3.4).

Let the time-interval [0, 𝑇 ] be partitioned into subintervals 𝐼𝑚 = (𝑡𝑚−1, 𝑡𝑚] of length 𝜏𝑚 for 𝑚 ∈ {1, 2,… ,𝑀} with 𝑡0 =
0 and 𝑡𝑀 = 𝑇 . Let the space-interval Ω ∶= (0, 1) also be partitioned into subintervals 𝐽𝑘 = [𝑥𝑘−1, 𝑥𝑘] of length ℎ𝑘 for 𝑘 ∈
{1, 2,… , 𝐾} with 𝑥0 = 0 and 𝑥𝐾 = 1. Furthermore, let a temporal-polynomial degree 𝑞 ∈ ℕ and a spatial-polynomial degree

𝑝 ∈ ℕ be given.

Then we define the discrete space

 ℎ,𝜏 ∶=
{
(𝑢ℎ, 𝑣ℎ) ∈ 𝐻𝜌(ℝ;𝐻); 𝑢ℎ|𝐼𝑚 , 𝑣ℎ|𝐼𝑚 ∈ 𝑞(𝐼𝑚;𝑉 (Ω)), 𝑚∈{1,… ,𝑀}

}
,

where the spatial space is

𝑉 (Ω) ∶=
{
𝑣 ∈ 𝐻1

# (Ω); 𝑣|𝐽𝑘 ∈ 𝑝(𝐽𝑘), 𝑘∈{1,… , 𝐾}
}
.

Furthermore, 𝑞(𝐼𝑚) is the space of polynomials of degree up to 𝑞 on the interval 𝐼𝑚 and similarly 𝑝(𝐽𝑘). Thus our discrete

space consists of functions that are piece-wise polynomials of degree 𝑝 and continuous w.r.t. the space variable, and piece-wise

polynomial of degree 𝑞 and discontinuous at the time-points 𝑡𝑘 w.r.t. time.

The method reads: For given 𝐹 ∈  ℎ,𝜏 and 𝑥0 ∈ 𝐻 , find  ∈  ℎ,𝜏 , such that for all Φ ∈  ℎ,𝜏 and 𝑚 ∈ {1, 2,… ,𝑀} it

holds

𝑄𝑚
[
(𝜕𝑡𝑀0 +𝑀1 + 𝐴) ,Φ]

𝜌
+ ⟨𝑀0[[ ]]𝑥0

𝑚−1,Φ
+
𝑚−1⟩ = 𝑄𝑚 [𝐹 ,Φ]𝜌 . (4.2)

Here, we denote by

[[ ]]𝑥0
𝑚−1 ∶=

{ (𝑡𝑚−1+) − (𝑡𝑚−1−), 𝑚 ∈ {2,… ,𝑀}
 (𝑡0+) − 𝑥0, 𝑚 = 1,

the jump at 𝑡𝑚−1, by Φ+
𝑚−1 ∶= Φ(𝑡𝑚−1+) and by

𝑄𝑚 [𝑎, 𝑏]𝜌 ∶=
𝜏𝑚

2

𝑞∑
𝑖=0
𝜔𝑚
𝑖
⟨𝑎(𝑡𝑚,𝑖), 𝑏(𝑡𝑚,𝑖)⟩

a right-sided weighted Gauß–Radau quadrature formula on 𝐼𝑚 approximating

⟨𝑎, 𝑏⟩𝜌,𝑚 ∶=

𝑡𝑚

∫
𝑡𝑚−1

⟨𝑎(𝑡), 𝑏(𝑡)⟩ exp(−2𝜌(𝑡 − 𝑡𝑚−1))d𝑡,
see [8] for further details. We denote by 𝑈

ℎ,𝜏

𝑁
the numerical solution obtained by above method (4.2) for the problem with

periodic, rough coefficients and by 𝑈ℎ,𝜏 for the homogenised data.
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Uh,τ
N Uh,τ

UN U

Thm. 3.1
Rem. 3.2

Thm. 2.7

Thm. 3.1

F I G U R E 1 Diagram showing the connections between the different problems

4.2 Numerical analysis
We are ready to provide the convergence result for the above method assuming enough regularity of the solution of Example (4.1)

measuring the error in an 𝐿∞-𝐿2 sense with

𝐸2
sup(𝑎) ∶= sup

𝑡∈[0,𝑇 ]
⟨𝑀0𝑎(𝑡), 𝑎(𝑡)⟩𝐿2(Ω)2

and with the discrete version of the 𝐿2
𝜌
(ℝ;𝐻)-norm, given by

𝐸2
𝑄
(𝑎) ∶= e2𝜌𝑇

𝑀∑
𝑚=1
𝑄𝑚 [𝑎, 𝑎]𝜌 e−2𝜌𝑡𝑚−1 .

Theorem 4.1. We assume for the solution 𝑈 = (𝑢, 𝑣) of Example (4.1) the regularity

𝑈 ∈ 𝐻1
𝜌

(
ℝ;𝐻𝑝# (Ω) ×𝐻

𝑝

# (Ω)
)
∩𝐻𝑞+3

𝜌
(ℝ;𝐿2(Ω) × 𝐿2(Ω))

as well as

𝐴𝑈 ∈ 𝐻𝜌
(
ℝ;𝐻𝑝# (Ω) ×𝐻

𝑝

# (Ω)
)
.

Then we have for the error of the numerical solution by (4.2) with a generic constant 𝐶

𝐸2
sup(𝑈 − 𝑈ℎ,𝜏 ) + 𝐸2

𝑄
(𝑈 − 𝑈ℎ,𝜏 ) ≤ 𝐶e2𝜌𝑇 (𝜏2(𝑞+1) + 𝑇ℎ2𝑝).

Proof. The proof is basically identical to the one given in [8]. The only difference being the periodic boundary condition instead

of the homogeneous Dirichlet condition. But all estimates are the same, as only local estimates in space are used, independent

of boundary conditions. □

Considering now the problem coming from the homogenisation process, we essentially have two different problems we can

approximate numerically, see Figure 1, where in addition 𝑈𝑁 denotes the solution to the problem with rough coefficients.

Remark 4.2. Following the diagram in Figure 1, we have by the Theorems 3.10 and 4.1 for a suitable choice of polynomial

degrees 𝑝 = 𝑞 + 1 ≥ 1 and meshwidths 𝜏 = 𝑐1ℎ = 𝑐2
𝑁
, 𝑐1, 𝑐2 > 0 the convergence result

𝐸𝑄
(
𝑈
ℎ,𝜏

𝑁
− 𝑈

) ≤ 𝐸𝑄(𝑈ℎ,𝜏𝑁 − 𝑈𝑁
)
+ 𝐸𝑄(𝑈𝑁 − 𝑈 ) ≤ 𝐸𝑄(𝑈ℎ,𝜏𝑁 − 𝑈𝑁

)
+ 𝐶‖𝑈𝑁 − 𝑈‖𝐻1

𝜌 (ℝ,𝐻) ≤ 𝐶𝑁−1,

where the second inequality comes from Sobolev's embedding theorem (see e.g. [9, Lemma 5.2]) and the final one from applying

Theorems 3.10 and 4.1. Note that for this estimate to hold we have to impose suitable regularity in time for the right-hand side

in (3.1) (or (4.1)).

4.3 Numerical example
We shall revisit the example mentioned in Section 2 in the following. Another interpretation of the model is a case of one-

dimensional Maxwell's equations with eddy current type approximation on the parabolic parts, see [11] for a 3-dimensional
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F I G U R E 2 Computed solutions 𝐸𝑁 for𝑁 ∈ {4, 8, 16} and 𝐸 from top left to bottom right

setting. To also stress this way of interpreting the equations studied, we rename the coefficients and functions in the following.

Let𝑁 ∈ ℕ be even and with

𝜀𝑁 (𝑥) ∶=

{
1, ∃𝑖 ∈ ℕ0 ∶ 𝑥 ∈

[
2𝑖
𝑁
,
2𝑖+1
𝑁

)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝜎𝑁 (𝑥) ∶= 1 − 𝜀𝑁 (𝑥)

we consider the rough-coefficient problem for 𝑈𝑁 = (𝐸𝑁,𝐻𝑁 )(
𝜕𝑡

(
𝜀𝑁 0
0 1

)
+
(
𝜎𝑁 0
0 0

)
+
(

0 𝜕#
𝜕# 0

))(
𝐸𝑁
𝐻𝑁

)
=
(
𝐽

𝐾

)
(4.3)

and the homogenised problem for 𝑈 = (𝐸,𝐻)(
𝜕𝑡

(
1
2 0
0 1

)
+

(
1
2 0
0 0

)
+
(

0 𝜕#
𝜕# 0

))(
𝐸

𝐻

)
=
(
𝐽

𝐾

)
, (4.4)

where 𝐽 (𝑡, 𝑥) = sin(2𝜋𝑥) ⋅min{1, 10𝑡} and 𝐾(𝑡, 𝑥) = 0 for all 𝑡 > 0, 𝑥 ∈ [0, 1]. For our numerical experiment we use the Mat-

lab/Octave software SOFE.[10] The exact solutions are unknown. Therefore, we use reference solutions computed on a very fine

grid and higher polynomial degree in the computation of the errors. Figures 2 and 3 present computed pictures of the solutions

for rough coefficients (𝑁 ∈ {4, 8, 16}) and the homogenised solutions. It is clearly visible that the homogenised data will be

the limiting case.

In Table 1 we present the simulation results of 𝑈
ℎ,𝜏

𝑁
= (𝐸ℎ,𝜏

𝑁
,𝐻

ℎ,𝜏

𝑁
) for ℎ = 1∕𝐾 , 𝜏 = 1∕𝑀 and 𝑀 = 2𝐾 = 8𝑁 and poly-

nomial degrees 𝑝 = 𝑞 + 1 = 2. In the second and third column we see almost second order convergence of 𝑈
ℎ,𝜏

𝑁
towards

𝑈𝑁 = (𝐸𝑁,𝐻𝑁 ) in accordance with Theorem 4.1, while in the last two columns we observe first order convergence of 𝑈
ℎ,𝜏

𝑁

towards 𝑈 = (𝐸,𝐻) in accordance with Remark 4.2.
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F I G U R E 3 Computed solutions𝐻𝑁 for𝑁 ∈ {4, 8, 16} and𝐻 from top left to bottom right

T A B L E 1 Convergence results for 𝑈𝑁 − 𝑈ℎ
𝑁

and 𝑈 − 𝑈ℎ
𝑁

of problem (4.3)

𝒏 𝑬𝐬𝐮𝐩(𝑼𝑵 − 𝑼
𝒉,𝝉

𝑵
) 𝑬𝑸(𝑼𝑵 − 𝑼

𝒉,𝝉

𝑵
) 𝑬𝐬𝐮𝐩(𝑼 − 𝑼

𝒉,𝝉

𝑵
) 𝑬𝑸(𝑼 − 𝑼

𝒉,𝝉

𝑵
)

4 2.857e-03 1.117e-03 1.381e-01 3.683e-02

8 9.490e-04 1.59 3.623e-04 1.62 3.418e-02 2.01 1.297e-02 1.51

16 2.802e-04 1.76 1.151e-04 1.65 1.328e-02 1.36 4.463e-03 1.54

32 8.611e-05 1.70 3.713e-05 1.63 5.890e-03 1.17 2.039e-03 1.13

64 2.306e-05 1.90 9.136e-06 2.02 2.802e-03 1.07 9.983e-04 1.03
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