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1 I INTRODUCTION

A standard problem in engineering is the approximation of highly oscillatory coefficients by averaged ones. In fact, given a partial
differential equation with variable coefficients, numerical procedures might be too involved for nowadays computing devices so
that an effective model is often derived. The process of seeking effective coefficients as replacements for highly oscillatory ones
is summarised under the umbrella term of homogenisation. The mathematical theory of homogenisation goes back to the late
1960s. We refer to the standard references [3,5] for a more detailed account.

Standard applications of homogenisation are elliptic, parabolic or hyperbolic divergence form equations. Only quite recently
see [16], it has been noticed that for certain problems of mixed type, that is, differential equations changing their type from
hyperbolic to parabolic to elliptic on different spatial domains in a highly oscillatory way, one can derive an effective model,
which does not change its type anymore and consists of constant coefficients.

In [16], only a qualitative convergence statement was derived. The techniques developed in [4,7], however, suggest that the
rate of convergence can be quantified. It is one main result of the present exposition — based on the rationale outlined in [4,7] —
that a quantified convergence rate for problems of the type discussed in [16] can be derived. We refer to Section 3 for the precise
equations.

Given the low dimensionality of the problem to be discussed in this paper, we will furthermore numerically study the partial
differential equation with highly oscillatory coefficients and provide a quantitative convergence statement that for highly oscil-
latory coefficients the corresponding numerical solution approximates the true solution of the homogenised model. In fact, the
results in [8] show that for mixed type equations one can derive a numerical scheme. It consists of a discontinuous Galerkin
method in time, see e.g. [6,14,15], combined with a continuous Galerkin method in space. The framework developed in [8] for
a slightly different setting can be extended to our present problem easily and approximation properties proved therein can be
transferred.

In Section 3, we introduce the model under consideration and provide the desired convergence statement. In Section 4 we
recall the numerical scheme derived in [8] and provide the estimate that the numerical solution of the equation with highly
oscillatory coefficients approximates the solution of the effective equation in a certain controlled way. We conclude this paper
with a short numerical example in Section 4.3.

Before, however, we turn to the main body of this article, we shall comment on the applications to mechanics of the studied
problem in the next section.
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2 | MIXED TYPE PROBLEMS AS A SPECIAL CASE OF FLUID-SOLID
INTERACTION

In [2], the authors studied the stability of an 141-dimensional partial differential equation of mixed type, where a parabolic and
a hyperbolic equation are combined. The equations can be formulated as

0%u(t, x) — 0%u(t,x) = 0, x €(0,1/2),t>0,
d,w(t,x) — 0*w(t,x) = 0, x € (1/2,1),t> 0,
u(t,1/2) = w(t, 1/2), 0,u(t, 1/2) = o, w(t,1/2), t>0

subject to boundary conditions for u and w at x = 0 and x = 1, respectively, and initial conditions for u, d,u and w. The motivation
for this model stems from a thoroughly simplified model of a problem coupling non-linear elasticity to the Navier—Stokes
equations, which have applications in the study of fluids interacting with solids, see in particular [1]. In this line of simplification,
the interval (0, 1/2) is the solid domain, where the evolution is governed by elastic waves, where on the interval (1/2,1) the
fluid is described, with the evolution governed by a (parabolic, linearised, one-dimensional) variant of Navier—Stokes equations.
While being fully aware of this drastically simplified model, we shall focus on the coupling of the equations with two different
types.

As it was mentioned above, in this simplified setting, we shall discuss now multiple changes of type in the domain. Initial
conditions are implemented as particular right-hand sides. The problem to study now corresponds to interlacing solids and fluids
with smaller and smaller proportion in the occupied space (0, 1). This kind of model has been discussed in [16, Section 4]. More
precisely, for N € N

Qun(t,x) = un (.0 = [0, x€Ujepm (5 4) (R @1

0.1y (t,0) = d.un(t, 1) =0,

subject to homogeneous initial conditions and conditions for continuity at the junction points {ﬁ ; j€{l,...,2N —1}} for

uy, where f is a given source term. This problem can straightforwardly be rewritten as a first order system in the following way
(using gy 1= —(1 — 15)0,up)

1 0 0 0 0 o u f
0 x0 N = 22
(0o 0 )65+ () ()= () e
as an equation on R X (0, 1), where 1, denotes mutiplication by

an X a(Nx), where a ;= Z I[k,k+l/2] (S LOO(R)
kez

Here 0, ) denotes the spatial derivative with a domain consisting of (weakly) differentiable functions vanishing at x = 0 and
x = 1; d, acts a (weak) derivative on weakly differentiable functions. By the Sobolev embedding theorem, weakly differentiable
functions are actually continuous. Thus, uy (or gy ) being in the domain of d, (or 9, () particularly implies continuity at the
junction points. This also serves as the implementation of the interface conditions imposed on u and w (then N = 2) mentioned
above for the model from [2].

In the following we shall discuss (among other things) the numerical implementation of the above problem for fixed N.
Moreover, we shall further analyse (and quantify) the convergence for the model of when N — oo. Furthermore, we numerically
implement the limit model and compare the numerical solution for the problem with fixed N and the numerical solution of the
limit model. For technical reasons (in the derivation of the quantified estimates), we use periodic boundary conditions instead
of the discussed Neumann boundary conditions.
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3 | RESOLVENT ESTIMATES FOR THE CONTINUOUS IN-TIME
HOMOGENISATION PROBLEM

We aim to establish something, which is in spirit similar to the approach developed in [4,7]. The main ingredients for this one-
dimensional situation can readily be found in [4]. The main difference between the cases treated in [4] or [7] is the underlying
spatial domain. In fact, the cited work focused on R and R as underlying spatial domain.

In the present case, we treat a linear pde on the unit interval, instead. The homogenisation problem, we like to address is thus
formulated on R X [0, 1] as underlying domain. Here R describes time and (0, 1) describes the spatial scale. The coefficients,
we are dealing with, are highly oscillatory in the sense that we treat multiplication operators and model high oscillations using
N € R as a parameter describing these oscillations. We like to address the limit of N — oo eventually.

More precisely, using the formulation in [16], one can write the problem in question as the following 2 X 2-block operator
matrix system: For a given F : R x (0,1) - C>and N € Nfind Uy : R x (0, 1) — C? such that

0 o,

<atM0(NX)+M1(Nx)+ <a# 0

)> Uyt x)=F(,x), teR,xe(0,1)) 3.1)

where d, is the weak derivative on (0, 1) with periodic boundary conditions, M, M are 1-periodic, measurable bounded
C?*2_valued functions with the additional property that My(x) = My(x)* > 0 (in the sense of positive definiteness of matri-
ces) and that there exists p > 0 and ¢ > 0 such that

P(My(X)E, E)c2 + Re(M | (X)E, E) 2 > c(€,E) 2 (€ €CP).

The special case mentioned in Section 2 is realised with

1
MO(Nx)=<O INO(X)>andM1(Nx)=<g 1—10N(x)> (x €(0,1)).

As equation (3.1) is formulated on (0, 1), the continuous Gelfand transformation used in [4] to divide the problem on the whole
space has to be replaced by its discrete analogue. In the next two subsections, we will derive an estimate for the static case,
which will eventually be applied to the dynamic case by going into the frequency domain.

3.1 | The static case

We start out with the discrete analogue of the Gelfand transformation as introduced in [7].

Definition 3.1. Let N € N, f : R — C. Then we define

N-—
Yy f(6,y) = Z fo+ke (ye[0,1),0 € {2zk/N;k € {0,...,N — 1}).

1
Proposition 3.2. The operator Vy : L2 40, N) - — L%, DN given by

[ (VnfQatk=1D/N.)) e
is unitary, where L2(O N):={f € LlOC(R); fG-+ Nk)=f (k € Z)} endowed with the norm of L*(0, N).

Proof. Let f : R — C be bounded, continuous with f(- + Nk) = f for all k € Z. Then, we compute with 8, = 2z¢ /N

N-1
NN 121w = Z Yy f@ae /NI

N-1 N-1N-1
=) D Y ettt / FO+k)f+kpdy.
£=0 k=0 k,=0 0.1



FRANZ AND WAURICK m 1287

We shall argue next that for all k|, k, € {0, ..., N — 1} with k; # k,, we have

N-1
Y etttk = g, (3.2)
=0

For this, denote n := k| — k, # 0 and consider the homomorphism
. 27n
0:Zy—>G:={eN'ref0,...,N-1}}
—i%f.

e

By the fundamental theorem on homomorphisms, G = ran(¢) = Z 5/ ker(¢). In particular, |G| divides N. Furthermore, since
Z y is cyclic, we obtain that Z,; / ker(g) is cyclic and thus G is cyclic. Let z,, € G generate G. Thus, G = {zg, ey zi‘] } are
the k unique, distinct kth unit roots. In particular, we obtain for all z € C

zk—1=(z—z2)- ...-(z—zf‘l).

Expanding the right-hand side and comparing the coefficient of z~! of both sides, we deduce that

Zz:O.

zeG
Hence,
N-1 N-1 N
T = B )= g Z2=0
=0 £=0 |G| z€G

which settles (3.2). Therefore, we obtain

N-1N-1

N”vallzLZ(O,l)N - ;Zo kzo (01)f(y+k1)f(y+k1)dy = N||f“2LZ<o,N>‘
= 1= ’

.....

e27kIN @, 1 (x) for x € [k, k + 1) with k € {0,..., N — 1} leads to NV, f = ¢. Hence, Vy has dense range. Thus, Vy is
unitary. [l

We shall furthermore introduce the following unitary scaling transformation that scales a problem on (0, 1) onto (0, N):

Definition 3.3. Let N € N. Then define for f € L*(0, 1)
T . 1 :
Nfi==f (%)

and gN = VNTN

Note that the scaling of the transformations 7y and Vy is chosen in a way that G, becomes unitary (as a composition of two
unitaries) and such that G, captures precisely the ‘magnitude’ of oscillations in the problem (3.1).
Furthermore, we define

g : H)(0,1) C L3(0,1) > L3O, 1), f > f'

and H;(O, )={f € H'0,1); (1) =€ £(0)}. We use dy and H;(O, 1),if 0 = 0.
Proposition 3.4. Let N € N. Then

(@) Tn0y = N0y nTy, where 0y y is the weak derivative with periodic boundary conditions,
(b) QN()# = Ndlag ((agk)ke{o’”_’N_l})gN, where Hk = 27[k/N

.....
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Proof. The proof follows along elementary calculations. Note that for (a) and (b) it suffices to prove the assertions for smooth
functions, only. |

Next, we introduce a static version of the problem in question:

Definition 3.5. Let ¢ > 0 and

M, 1= {M € L¥(0, D?*;ReM > cly,},

where L*(0, 1)y :={a€ LY°R);a(-+k)=a (k€ Z)}and 1y, = <(1) ?) and the inequality in the definition of M, holds

in the sense of positive definiteness almost everywhere.

For all N € N, find ( N ) € LZ(O, 1)2 such that

u
UN
(e (3 ) (2)-(2)
oy O Uy g
for some f,g € L?(0, 1). Note that (3.3) is well-posed by [7, Lemma 2.5]. With the help of Proposition 3.4, we obtain an

equivalent formulation of (3.3)

Corollary 3.6. Let N € N. Then

Gy O L (0 o 6y O\ (. ‘ , 0 o,
< 0 QN) <M(N)+ <a# 0 >> < 0 QN) = <d1ag(M( MDke(o,... .N~1} +Nd1ag<<aek Ok>>ke{0,,,,,N_1}>.

As it has been demonstrated in [7, Section 3], we obtain that [7, Theorem 2.4 and Theorem 2.2] applies to the setting in [7,
Equation (10)]. Here we recall the results found there for the particular case of n = d = 1. Note that by [7, Remark 4.6] the
one-dimensional homogenised coefficient is given by the integral mean.

Theorem 3.7. Forall N e Nandk € {0, ..., N — 1}, we have

1

) 0)) - (o %))
M)+ N k - M(y)dy+ N K
H( e (" R

3.2 | The dynamic case

-1

1 Ml \* 1
<—=12(1+ +1 ) —.
_71'< < c N

L(L2(0,1)?)

With the estimate in the latter theorem, we also obtain results for the full time-dependent problem. The strategy has been outlined
in the concluding sections of [4] already. We will, however, provide the necessary notions and a corresponding estimate in this
exposition, as well. For p > 0 and a Hilbert space H, we define

Li(R; H) :={f : R > H; f measurable, / £ (113, exp(=2pt)dt < oo},
R

endowed with the obvious scalar product. Employing the usual identification of functions being equal almost everywhere, we
obtain that LIZ,(R; H) is a Hilbert space. We denote by H ; (R; H) the first Sobolev space of weakly differentiable functions with

weak derivative being representable as an element of Li(IR; H). Then we put
9, : H;(R;H) C Li(R;H) N Li([R{;H),f - f.

A spectral representation of d, as multiplication operator is given by the Fourier—Laplace transformation, that is, the unitary
extension of the operator £ - Li(R; H) - L*(R; H) given by

L,p¢) = () exp(—its — ptydt (¢ € C.(R; H)),

v

where C,(R; H) is the space of continuous functions with compact support. The spectral representation reads as follows:
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Theorem 3.8 [9, Corollary 2.5]. Let p > 0. Then
0, = C;(im + )L,
where
m:{f €Ly R;H);(tr1f(1) € Ly(R;H)} C Lr,(R; H) — L,(R; H)
[ tf@)

is the multiplication by the argument operator with maximal domain.

Next, we recall an elementary version of the well-posedness theorem for evolutionary equations, which is particularly relevant
to the case studied here. For this, note that we will use the same notation for an operator acting in H and its corresponding lift
as an abstract multiplication operator on Li(IR; H).

Theorem 3.9 [12, Solution Theory], [13, Theorem 6.2.5]. Let A be a skew-selfadjoint operator in H, 0 < M = MS‘, M, e
L(H). Assume there exists c, p > 0 with
p{(Myp, 9) +Re(M 9, 9) > c{p,p) (p € H). (34
—1
Then the operator B := 0,My+ M| + A with D(I3) = D(d,) N D(A) is closable in LI%(R; H). Moreover, S, := B is well-
defined, continuous and bounded with ||S,|| 12y < 1/c.
P

We can now state and prove the full time-dependent version of Theorem 3.7. We shall also refer to [4, Theorem 7.1] for a
corresponding result with R instead of (0, 1) as underlying state space.

Theorem 3.10. Let p > 0, H = L*(0,1)?, My, M, € L=(0, 1)?(2((_: L(H)), My = Mg‘ > 0. Assume there exists ¢ > 0 such
that

p{Myp, @) + Re{M @, ) > c{p,p) (p€ H),

0 oy

A= (
set a# 0

). Then, there exists k > 0 such that for all N € N, we have

K
)

(@ Mo(N ) + M (N + A~ = @M + MY + A7) 072z <

where Mj.“’ = j;o’l)Mj(y)dyfor all j € {0, 1}.

Proof. Using the unitarity of the Fourier-Laplace transformation, we deduce that the claim is equivalent to showing that there
exists ¥ > 0 such that for all N € Nand € € R:

. - . 1\ s - K
(& + PIMo(N-) + My(N-) + A7 = (GE+ MG + MY + A7) GE+ )l S - (3.5)
For this, we deduce from the positive definiteness estimate imposed on M, and M that
(i&+p)My() + M () € M,
for all £ € R. Hence, using Theorem 3.7 and Corollary 3.6, we obtain the existence of k¥ > 0 such that forall N € Nand £ € R
: -1 . av av -1 K 2 2
I (& +pIYMo(N-) + M{(N)+ A~ = (@& + M + MY + A7) |y < ﬁ(l + 1A+ Ml + 1Ml )"
Thus, we conclude

I (e + MN )+ My N+ A =G+ MG+ M+ 4 e+l
1k 1+&

= (I + 1Myl + 1M1l )%,
lig+p? Np2+& ” ”

K
<+ 1€ + IMyll o, + 1M 1] o)

which implies (3.5) and, thus, the assertion. |
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4 | NUMERICAL IMPLEMENTATION

We use as numerical method a discontinuous Galerkin method in time and a continuous Galerkin method in space. For a similar
problem this approach is already considered and analysed in [8]. Therefore, we will only describe the method here shortly and
point to the differences in the numerical analysis.

4.1 | Numerical method

We will start by describing the method and providing a convergence result for an arbitrary problem of type (3.1), that is, we
shall focus on problems of the type

(o,My+M;+A)U =F, “.1)

0 0y
oy O
Li([R; L?(Q)?). Throughout, we shall assume the condition (3.4).

Let the time-interval [0, T] be partitioned into subintervals I,, = (¢,,_;,t,] of length 7, for m € {1,2,..., M} with 75 =
0 and 7, = T. Let the space-interval  := (0, 1) also be partitioned into subintervals J, = [x,_;, x,] of length A for k €
{1,2,...,K} with x; = 0 and xgx = 1. Furthermore, let a temporal-polynomial degree g € N and a spatial-polynomial degree
p € N be given.

Then we define the discrete space

where A =< ) and My=M;>0, M, are in L®(Q)>*2, which are readily extended to operators acting on

U= { e 0) € H,Rs H)sugly, 04l € Pyl V@) mE (1,00, M) |
where the spatial space is
VQ) = {u € HL(Q); vl;, € P,(J), ke, ... ,K}} .

Furthermore, P,(1,,) is the space of polynomials of degree up to ¢ on the interval I,, and similarly P,(J}). Thus our discrete
space consists of functions that are piece-wise polynomials of degree p and continuous w.r.t. the space variable, and piece-wise
polynomial of degree g and discontinuous at the time-points ¢, w.r.t. time.

The method reads: For given F € U*" and x, € H, find U" € U7, such that for all ® € U"* and m € {1,2,..., M} it
holds

0, [0, My + M, + AV, @] + (My[UT? @ )=0,I[F,®],. (4.2)

m—1’

Here, we denote by

xx . JUu -V, =), me2,.., M)}
“qW“_{v%ﬂ—m, m=1,

the jump at7,,_;, by ®*  :=®(t,_,+) and by

1
Tm a
Q,la.b], 1= % ; @t ), bt 1))

a right-sided weighted Gau8—Radau quadrature formula on I,, approximating

tm
(a,b),, 1= / (a(®), b(t)) exp(=2p(t — t,,_1))dt,

Tm—1

see [8] for further details. We denote by U ;\'[’T the numerical solution obtained by above method (4.2) for the problem with
periodic, rough coefficients and by U’*" for the homogenised data.
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U]}\l['rT Uh,T
Thm. 3.1 fem. 3.2 Thm. 3.1
U U
N Thm. 2.7

FIGURE 1 Diagram showing the connections between the different problems

4.2 | Numerical analysis
We are ready to provide the convergence result for the above method assuming enough regularity of the solution of Example (4.1)

measuring the error in an L®-L? sense with

Eszup(a) := sup <M0a(t), a(l)>L2(g)2
1€[0,T]

and with the discrete version of the L%(IR; H)-norm, given by

M
Ej(a) :=¢”" Y 0,,[a,a],e n1.

m=1

Theorem 4.1. We assume for the solution U = (u, v) of Example (4.1) the regularity
Ue H; (R; H(Q) x H{(Q)) n Hg+3(R; L*(Q) x L*(Q))
as well as
AU € H,(R; H{(Q) X H}(Q)).
Then we have for the error of the numerical solution by (4.2) with a generic constant C

E; (U -U")+ E5U - U"") < Ce?T (@D + Th?),
Proof. The proof is basically identical to the one given in [8]. The only difference being the periodic boundary condition instead
of the homogeneous Dirichlet condition. But all estimates are the same, as only local estimates in space are used, independent
of boundary conditions. [

Considering now the problem coming from the homogenisation process, we essentially have two different problems we can
approximate numerically, see Figure 1, where in addition U, denotes the solution to the problem with rough coefficients.

Remark 4.2. Following the diagram in Figure 1, we have by the Theorems 3.10 and 4.1 for a suitable choice of polynomial
degrees p =g+ 1 > 1 and meshwidths 7 = ¢ h = jv—z, ¢y, ¢y > 0 the convergence result

Eo(Uy" =U) < Eg(Uy" = Uy) + EqWUy = U) < Eg(Uy* =Uy) +CllUy = Ull ey < CN 7,

where the second inequality comes from Sobolev's embedding theorem (see e.g. [9, Lemma 5.2]) and the final one from applying
Theorems 3.10 and 4.1. Note that for this estimate to hold we have to impose suitable regularity in time for the right-hand side
in (3.1) (or (4.1)).

4.3 | Numerical example

We shall revisit the example mentioned in Section 2 in the following. Another interpretation of the model is a case of one-
dimensional Maxwell's equations with eddy current type approximation on the parabolic parts, see [11] for a 3-dimensional
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FIGURE 2 Computed solutions Ey, for N € {4, 8, 16} and E from top left to bottom right

setting. To also stress this way of interpreting the equations studied, we rename the coefficients and functions in the following.
Let N € N be even and with

1, aieNO:xe[ﬂ 2041

en(x) 1= N’ N ) , on(x) i=1—enx)

0, otherwise

we consider the rough-coefficient problem for Uy = (Ey, Hy)

<6’< 0 1>+< 0 o>+<a# 0o))\u, ) \k 4-3)
and the homogenised problem for U = (E, H)

1
a2 %)+
0 1

ONI=

0 0 o E\ _(J
o)< (o 0))(0)- (%) “

where J (¢, x) = sin(2zx) - min{1, 107} and K(¢,x) = 0 for all # > 0, x € [0, 1]. For our numerical experiment we use the Mat-
lab/Octave software SOFE.[!9 The exact solutions are unknown. Therefore, we use reference solutions computed on a very fine
grid and higher polynomial degree in the computation of the errors. Figures 2 and 3 present computed pictures of the solutions
for rough coefficients (N € {4, 8, 16}) and the homogenised solutions. It is clearly visible that the homogenised data will be
the limiting case.

In Table 1 we present the simulation results of U ]i\’,’T = (EM*

h,t _ _ — _
N Hy)forh=1/K,r=1/M and M =2K =8N and poly-
nomial degrees p =g+ 1= 2. In the second and third column we see almost second order convergence of U ;’,’T towards

Uy = (Ey, Hy) in accordance with Theorem 4.1, while in the last two columns we observe first order convergence of UI}\II’T
towards U = (E, H) in accordance with Remark 4.2.
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0.2

X

FIGURE 3 Computed solutions Hy for N € {4, 8, 16} and H from top left to bottom right

TABLE 1 Convergence results for Uy — U and U — U”, of problem (4.3)

Egy(Uy —UY) Eq(Uy —UNT) Eg,(U —UY) Eo(U — UL
4 2.857e-03 1.117e-03 1.381e-01 3.683e-02
8 9.490e-04 1.59 3.623e-04 1.62 3.418e-02 2.01 1.297e-02 1.51
16 2.802e-04 1.76 1.151e-04 1.65 1.328e-02 1.36 4.463e-03 1.54
32 8.611e-05 1.70 3.713e-05 1.63 5.890e-03 1.17 2.039¢e-03 1.13
64 2.306e-05 1.90 9.136e-06 2.02 2.802e-03 1.07 9.983e-04 1.03
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