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In many processes for crystalline materials such as precipitation, heteroepitaxy, alloying, and
phase transformation, lattice expansion or compression of embedded domains occurs. This can sig-
nificantly alter the mechanical response of the material. Typically, these phenomena are studied
macroscopically, thus neglecting the underlying microscopic structure. Here we present the prototyp-
ical case of an elastic inclusion described by a mesoscale model, namely a coarse-grained phase-field
crystal model. A spatially-dependent parameter is introduced into the free energy functional to
control the local spacing of the lattice structure, effectively prescribing an eigenstrain. The stress
field obtained for an elastic inclusion in a 2D triangular lattice is shown to match well with the
analytic solution of the Eshelby inclusion problem.
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I. INTRODUCTION

The study of inclusions in crystalline materials is of
great importance for many materials science and engi-
neering applications. For instance, this applies to pro-
cesses such as precipitation, phase-transformation, het-
eroepitaxy [1–3], often with technological relevance and
also involving additional aspects such as capillarity [4].
A prominent example in this context consists of phase
changes introducing structural transformation of the host
lattice, which might even affect the lattice symmetry.
This occurs, for instance, in lithium-ion batteries, where
the flow of lithium into the electrode particle introduces
lattice expansion of the host material. The size of these
systems is typically in the order of 1 µm. Therefore, con-
tinuum methods generally are adopted. For instance, the
numerical modeling of phase transformation in lithium-
ion batteries has been tackled by a classical phase-field
approach coupled to elasticity to account for the mechan-
ical equilibrium of elastic deformation [5].

Continuum approaches are powerful in describing crys-
talline systems at the macroscale. However, they neglect
details of the microscopic scales such as crystal symme-
tries, anisotropies, and orientation of the grains in poly-
crystalline materials. Methods capable of tackling the
resulting effects of these microscopic details in a macro-
scopic description are highly demanded to obtain com-
prehensive descriptions. In this paper, we present the
modeling of an elastic inclusion by the phase-field crys-
tal (PFC) model [6–8], focusing in particular on its am-
plitude expansion (APFC) formulation [9–11]. This ap-
proach allows for describing elasticity on a microscopic
scale [12–15] while bridging the gap among micro- and
macro-scale descriptions of crystal structures under some
approximations [16, 17]. We formulate the problem in-
corporating a prescribed lattice expansion/compression
in the free energy through a spatial dependent parameter

that controls the local lattice spacing. We show that the
model reproduces the stress field of a spherical inclusion,
thus encoding an eigenstrain formulation [18]. The ap-
proach retains details of the underlying lattice structure
as conveyed by the APFC model. A proof of concept for
2D crystals with triangular symmetry is explicitly given,
which can be compared to analytic solutions for the elas-
tic inclusion, i.e., with the Eshelby problem [19–21]. This
comparison serves as a proof of concept for more general
elastic inclusion problems.

II. AMPLITUDE PHASE-FIELD CRYSTAL
MODELING

The PFC model describes the crystal lattices by means
of a continuous, periodic order parameter n : Ω → R,
r 7→ n(r), representing an atomic probability density [6–
8]. The model is based on the free energy

F (n)=

∫
Ω

[
Bx0
2

∣∣(q2
0 +∇2)n

∣∣2 +
∆B0

2
n2 − t

3
n3 +

v

4
n4

]
dr

and an associated conserved gradient flow ∂n/∂t =
∇2δF/δn. The parameter q0 sets the periodicity of n(r)
and it is generally inversely proportional to the lattice
spacing a0. The order parameter n can be well described
by a sum of plane waves

n(r) = n0 +

N∑
j

ηje
iqj ·r + c.c., (1)

with c.c. denoting the complex conjugate and accounting
for the contribution of −qj for which η−qj

= η∗qj
being

n(r) ∈ R, n0 the average density, ηj amplitudes and {qj}
a set of reciprocal lattice vectors encoding the symmetry
of the crystal.
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An eigenstrain [18] encoding a lattice deformation from
a lattice parameter a0 to a lattice parameter ad may be
defined as ε∗ = (ad− a0)/a0 = q0/qd− 1. Therefore, one
may express the change encoded by ε∗ as

qd =
q0

1 + ε∗
= βq0, (2)

with β = 1/(1 + ε∗). Notice that β = 1 corresponds to
ε∗ = 0, while β < 1 and β > 1 correspond to positive or
negative eigenstrains, respectively. Moreover, β diverges
only in the unphysical limit ad → 0. No restrictions exist
to consider this parameter spatially dependent, namely
β(r) = 1/(1 + ε∗(r)). To encode an eigenstrain ε∗ in the
PFC model we consider then a modified energy functional
featuring a slowly varying quantity β(r),

Fβ(n) =

∫
Ω

[
Bx0
2

∣∣(β(r)q2
0 + ∆)n

∣∣2
+

∆B0

2
n2 − t

3
n3 +

v

4
n4

]
dr.

(3)

The PFC model naturally accounts for elasticity [6, 7].
Elastic effects can be characterized by focusing on small
perturbation of the density in eq. (1) due to a displace-
ment field u. As a result, elasticity effects may be fully
described by complex amplitudes ηj = φje

iqj ·u with φj
the (real) amplitudes for a relaxed crystal [12, 14, 15]. In
the amplitudes expansion of the PFC model, the APFC
model, η = [ηj ]j=1,...,N are the variable to solve for [9–
11]. They are associated to a minimal set of N reciprocal
lattice vectors that describes a targeted lattice symme-
try entering eq. (1). This approach allows for coarse-
grained description of the lattice that approaches macro-
scopic lengthscales but still retaining microscopic details
[16, 17]. The corresponding equation may be derived by
substituting the ansatz in eq. (1) in eq. (3) and integrat-
ing over the unit cell. This procedure may be rigorously
justified by multiple scales expansions or renormaliza-
tion group calculations [9, 10]. The APFC free energy
obtained by this procedure, with n0 = 0 without loss of
generality, reads

F̃β(η) =

∫
Ω

[
N∑
j=1

(
Bx0 |Gjηj |

2 − 3v

2
|ηj |4

)
+

∆B

2
Φ +

3v

4
Φ2 + f s(η,η∗)

]
dr,

(4)

where Φ ≡ 2
∑N
j=1 |ηj |

2
and

Gj(r) ≡ ∆ + 2iqj · ∇+ β(r)2 − 1. (5)

f s is a polynomial which takes different forms according
to the considered symmetry [12, 22]. Here we consider
2D crystals with triangular symmetry described in a one-
mode approximation (considering the shortest reciprocal

lattice vectors only), i.e. N = 3: q1 = q0

(
−
√

3/2,−1/2
)
,

q2 = q0(0, 1), q3 = q0

(√
3/2,−1/2

)
with q0 = 1 and

f tri = −2t(η1η2η3 + η∗1η
∗
2η
∗
3). (6)

With these choices, a0 = 4π/
√

3. The dynamics of ηj
considered to minimize the energy in eq. (4) reads

∂ηj
∂t

=− |qj |
δF̃β
δη∗j

=−
(

∆B0 +Bx0G2
j + 3v(Φ− |ηj |2)

)
ηj −

∂f s

∂η∗j
.

(7)

Minimizers of F̃β denote equilibrium configurations. A
relaxed crystal, corresponding to the lattice represented
by {qj} is described by real, constant amplitudes, which
take some values depending on the length of the corre-
sponding qj vectors [12, 22]. If we assume ηj = φ for
some real φ we obtain

F̃β(φ) =

∫
Ω

[
3(∆B0 + (β2 − 1)2)φ2 +

45v

2
vφ4 − 4tφ3

]
dr.

This energy is minimized by

φ± =
t±
√
t2 − 15v(∆B0 + (β2 − 1)2)

15v
. (8)

Here we will look at φ+ by restricting our analysis to
t > 0 without loss of generality. Real solutions thus
exist if ∆B0 < (t2/15v) − (β2 − 1)2, while the solid
phase is favored if ∆B0 < 8t2/135v − (β2 − 1)2 and
∆B0 = 8t2/135v − (β2 − 1)2 is the solid/liquid or or-
dered/disordered coexistence condition. For β = 1 we
recover the conditions given in [22].

From the energy in eq. (3) one can also derive the stress
field σn [17, 23–25]. In our case, considering a slowly
varying inhomogeneous β, we obtain

σn = 2Sym

(
∇
(
(∇2 + β(r2)n

)
⊗∇n

)
, (9)

where we have omitted the isotropic pressure term due
to negligible contribution. Inserting now the amplitude
ansatz from eq. (1), leads to an amplitude depending
deformation gradient ση, given by

ση
lm =

N∑
j=1

(
(∂l + iqjl )Gjηj (∂m − iqjm)η∗j+

(∂m + iqjm)Gjηj (∂l − iqjl )η
∗
j

)
,

(10)

for l,m ∈ {1, 2}, where Gj is defined in eq. (5), recovering
the expressions in [17] for β = 1. eq. (10) is expected
to deliver stress fields accounting for non-linearities and
strain-gradient terms [15, 17].

III. THE ELASTIC INCLUSION PROBLEM

The calculation of the stress/strain field in the presence
of an elastic inclusion, namely a portion of a material
with an eigenstrain ε∗ surrounded by a relaxed medium,
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is known as Eshelby’s inclusion problem [19–21]. The
original formulations focused on the elastic field in the in-
clusion and involved the assumption of an infinite matrix
surrounding it. Following works focused on the deriva-
tion of the solution addressing finite systems with spe-
cific boundary conditions [21, 26–28]. For the example
delivered in this work, we consider explicitly the analytic
solutions obtained in an infinite medium.

The stress tensor in the presence of an inclusion with
eigenstrain matrix ε∗kl can be expressed as

σe
ij = Cijklεe

kl = Cijkl
(
Sklpqε∗pq − χ(r)ε∗kl

)
, (11)

with Cijkl the rank-four elasticity tensor, Sklpq the Es-
helby tensor, εe

pq the elastic strain tensor and χ(r) an
indicator/characteristic function which is 1 in the inclu-
sion and 0 outside. The deformation leading to a change
in the lattice parameter translates to a diagonal eigen-
strain matrix ε∗kl = ε∗δkl. The elasticity tensor for an
isotropic medium is expressed as

Cijmn = λδijδmn + µ
(
δimδjn + δinδjm

)
, (12)

where λ and µ are material parameters. For the APFC
description considered in Sect. II the elastic constants,
using eq. (8), read λ = µ = 3φ2

+ [14, 23].
The analytical solutions for the Eshelby tensor S∞ of

an inclusion embedded in an infinite medium at the in-
terior and exterior to the inclusion reads [21, 26, 27],

S∞ijmn = χ(r)SI,∞
ijmn + (1− χ(r))SE,∞

ijmn with

SI,∞
ijmn =

3− 4ν

8(1− ν)
(δimδjn + δijδmn) +

(4ν − 1)

8(1− ν)
δimδjn,

and

SE,∞
ijmn =

ρ2

8(1− ν)

[
(ρ2 + 4ν − 2)δijδmn + 4(1− ρ2)δijrmrn

+ (ρ2 − 4ν + 2)(δimδjn + δinδjm) + 4(1− 2ν−
ρ2)δmnrirj + 4(ν − ρ2)(δmnejen + δjmeien+

δinejem + δjneiem) + 8(3ρ2 − 2)eiejemen

]
,

with r = (x1, x2), ei(r) := xi/|r|, ρ := a/|r|, |r| =√
x2

1 + x2
2, a is the radius of the inclusion and ν is the

Poisson ratio (equal to 0.25 in the considered plane-
strain settings [23]). Equivalent formulations in terms
of the stress field and elastic constants ν and E =
µ(3λ+ 2µ)/(λ+ µ) can be found in Ref. [29].

IV. NUMERICAL APFC SIMULATIONS

In this section, we address the numerical simulation
of the elastic inclusion problem within the APFC model
illustrated in Sect. II and discuss the results together with
the analytic solution reported in Sect. III.

FIG. 1. Stress field components from APFC simulations (eq.
(10), left column) and analytic solution for an inclusion in an
infinite domain (eq. (10), right column). Black contour lines
are set to representative values for each stress component,
and kept the same for both APFC and analytical stress field.
R = 10a0, ε = a0, ε = 0.01 (other parameters are reported in
the text).

To deal with the continuous fields entering the (A)PFC
models, the inclusion is described by a smooth approx-
imation of the characteristic function χ considered in
Sect. III. Defining a signed distance d(r) from the bound-
ary of the inclusion with negative sign in the inclusion
and positive sign in the surrounding matrix, for a spher-
ical inclusion with radius R one obtains d(r) = |r| − R.
The characteristic function χ may then be approximated
by χε(r) : Ω→ [0, 1] with

χε(r) :=
1

2

[
1− tanh

(
d(r)

ε

)]
, (13)

which varies smoothly from 0 in the matrix to 1 inside
the inclusion with ε a parameter controlling the exten-
sion of the smoothing region. χε(r) is used to set the
lattice spacing in the inclusion and thus the eigenstrain
therein. Using eq. (2) this is achieved by setting a spatial
dependent β(r) in eq. (4) as

β(r) = 1−
(

1 +
qd
q0

)
χε(r), (14)

which delivers βq0 = q0 in the matrix, βq0 = qd in the
inclusion and provides an interpolation among these two
values in between.
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FIG. 2. σyy(x, 0) for different values of ε ∈ [0.25a0; 8a0] en-
tering eq. (13) (other parameters as in Fig. 1). The stress
field from the Eshelby solution for an infinite domain (E∞)
from eq. (11) and for a finite (circular) domain with Dirich-
let boundary condition from Ref. [27] (EL) with domain size
L = 100a0.

The APFC evolution equations (7) are solved exploit-
ing the adaptive finite element toolbox AMDiS [30, 31]
with integration schemes as in Refs. [22, 32] and mi-
nor adaptation to account for the β(r) function. Fur-
ther details concerning adaptive refinement, problem-
tailored preconditioners and parallelisation strategies can
be found therein. As initial condition we consider a
spherical inclusion with radius R = 10a0 in a squared
domain 100a0 × 100a0. The model parameters are set to
t = 1/2, v = 1/3, Bx0 = 1, ∆B0 = 0.04, the latter setting
the system relatively close to the solid-liquid coexistence
without loss of generality. Amplitudes are initialized to
φ+ and the system in eq. (7) is allowed to relax until a
steady state is reached. Periodic boundary conditions are
used for all the amplitudes to consider the case usually
adopted for APFC simulations.

In Figure 1 the stress field obtained by evaluating eq.
(10) with η computed from APFC and ε = a0, is com-
pared with the analytic solution given in Sect. (III). The
diffuse nature of the inclusion boundary encoded in eq.
(13) leads to a smooth field, still entailing the main fea-
tures of the analytic solution.

Deeper insights on this comparison and the role played
by ε are shown in Fig. 2 in terms of the σyy component
extracted along the x−direction crossing the inclusion in
its center. A progressively sharper stress field transition
across the inclusion boundary is obtained by decreasing
this parameter, qualitatively approaching the continuum
solution. From a quantitative point of view, minor de-
viations are observed for the decay far away from the
inclusion and for the exact stress value in the inclusion,
which may be ascribed to different contributions. First,
periodic boundary conditions adopted in the simulations
are not considered in the analytical solution. Notice that
boundary conditions may affect the solution everywhere.

FIG. 3. Deviation from linear elasticity. (a) Normalized
stress field σyy(x, 0) for different ε∗. (b) Deviation of the
minimum of σyy as function of ε∗ from the reference value
(σref

yy ) obtained with ε∗ = 10−5.

Indeed, if considering a different analytical solution ac-
counting for Dirichlet boundary conditions for a circular
domain as in Ref. [27], a (small) difference is obtained in
the inclusion (see EL values in Fig. 2) once setting the ra-
dius of the circular domain to L = 50a0. Notice, however,
that this solution accounts for a different domain shape
Second, the (A)PFC model naturally encodes elasticity
contributions beyond classical linear elasticity, namely
non-linearities, strain gradient terms, and anisotropies
[15]. The latter should be considered generally, but for
the example they don’t play a role as the triangular lat-
tice has isotropic elastic constants. However, other de-
viations from linear elasticity are still expected. This is
further illustrated in Fig. 3. The stress field obtained
with different ε∗ is normalized w.r.t to the minimum
value of a reference case with ε = 10−5. The devia-
tion from the normalized curve increases with increasing
eigenstrain (up to ∼ 15% for maximum and minimum
values of the considered stress component). Notice that
due to the linear elasticity underlying eq. (11), the corre-
sponding normalized curves would coincide as ε∗ enters
as a factor only. Numerical convergence to a limiting
normalized curve is achieved for ε∗ → 0. Fig. 3(b) shows
such a behavior for what concerns the minima of σyy.
A very similar convergence behavior is obtained for the
maxima of σyy.

V. CONCLUSION

In this work, we presented an (A)PFC formulation en-
coding an eigenstrain. This is achieved by acting on the
quantity entering the free energy, which controls the equi-
librium lattice parameter. The model has been bench-
marked against the prototypical case of a mismatched
inclusion, and it is found to match well with the solution
of the Eshelby problem. Deviation from the classical an-
alytical solutions may be ascribed to the considered sim-
ulation setup and the more detailed elasticity description
conveyed by the APFC model.

The model formulation and the example of an elastic
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inclusion set the ground for the coarse-grained model-
ing of crystalline material involving mechanical deforma-
tion not caused by external mechanical stress (namely
eigenstrains [18]). Examples of potential applications
are heterostructures undergoing thermal treatment and
experiencing thermal expansion [5], heteroepitaxial sys-
tems [3], prestretched crystalline domains [33] and the
already mentioned lithiumization in lithium-ion batter-
ies [5]. The approach provides a possibility to con-
sider the effect of eigenstrain in (A)PFC models. Fu-
ture work will focus on exploiting the capabilities of
the model in describing different lattice symmetries and
three-dimensional systems as well as specific, technolog-
ically relevant applications. Various possibilities to en-
force different lattice symmetries in PFC have been com-
pared in [34]. Our approach can be adapted to all of
them. Also, the considered setting, including the approx-
imation of the characteristic function of the inclusion in
eq. (13), already provides the grounds for dynamic cou-

plings with classical phase field models, as e.g. considered
in [35] using a Cahn-Hilliard-PFC model for diffusion-
induced grain boundary migration.
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[8] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I.
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