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Abstract

We derive and numerically solve a surface active nematodynamics model. We
validate the numerical approach on a sphere and analyse the influence of hy-
drodynamics on the oscillatory motion of topological defects. For ellipsoidal
surfaces the influence of geometric forces on these motion patterns is addressed
by taking into account the effects of intrinsic as well as extrinsic curvature con-
tributions. The numerical experiments demonstrate the stronger coupling with
geometric properties if extrinsic curvature contributions are present and provide
a possibility to tune flow and defect motion by surface properties.

Keywords: topological active matter, defect dynamics, hydrodynamic
coupling, surface finite elements

1. Introduction

The driving force behind the huge interest in collective behaviour of ac-
tive matter is the goal to understand the physics of natural materials. One
well-studied class of active matter, which includes, for example, epithelia cells,
elongated bacteria and filamentous particles inside living cells, can be described
by the interaction of rod-shaped particles. This relates these systems to ne-
matic liquid crystals with long-range orientational order between these particles.
Adapting these theories and extending them by active components leads to the
concept of ‘active nematics’, see [7] for a review. The active contribution drives
the system out of equilibrium and leads to spontaneous generation/annihilation
of topological defects, destruction of long-ranged nematic order and the forma-
tion of active turbulence.

If such systems are confined on curved surfaces, topological constraints
strongly influence the emerging spatiotemporal patterns. Using these topologi-
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cal constraints to guide collective cell behavior might be a key in morphogenesis
[8] and active nematic films on surfaces have been proposed as a promising road
to engineer synthetic materials that mimic living organisms [18]. As in passive
systems the mathematical Poincaré-Hopf theorem forces topological defects to
be present in the nematic film. On a sphere this leads to an equilibrium defect
configuration with four +1/2 disclinations arranged as a tetrahedron [20]. The
disclinations repel each other and this arrangement maximises their distance.
In active systems unbalanced stresses drive this configuration out of equilib-
rium. But in contrast to planar active nematics with continuous creation and
annihilation of defects the creation of additional defect pairs can be suppressed
on curved surfaces, which is demonstrated in [18] for an active nematic film of
microtubules and molecular motors, encapsulated within a spherical lipid vesi-
cle. This provides an unique way to study the dynamics of the four defects in
a controlled manner and led to the discovery of a tunable periodic state that
oscillates between the tetrahedral and a planar defect configuration.

Various modeling approaches have been proposed to describe the periodic
defect motion. They range from a coarse-grained model in which the +1/2
disclinations are effectively described by self-propelled particles with a velocity
proportional to the activity [12]. On a sphere this approach leads to oscillations
between the planar and tetrahedral configuration [18]. However, a quantitative
comparison with the experimental results leads to differences, which become
more evident for more general surfaces. For non-constant Gaussian curvature
constraints local geometric properties influence the position of the defects and
thus can be used to control defect dynamics. These effects are addressed with
particle simulations [1, 2, 10]. We here consider a continuous description and
also account for hydrodynamic effects. The considered model belongs to the
class of ’active nematodynamics’, it is a simplified Beris-Edwards model with
active driving, see [17] for a review. We propose a thin-film limit of this mod-
eling approach and numerically solve the corresponding surface model. Related
models have been considered in [43, 37]. However, these models are based on a
simplified surface Landau-de Gennes energy neglecting various curvature con-
tributions [19]. For more detailed surface Landau-de Gennes models which also
take extrinsic curvature contributions into account, see [15, 28, 25]. Another
critical issue is the considered numerical approach for the Navier-Stokes-like
equations. In [43, 37] it is based on a vorticity-stream function formulation and
thus is restricted to surfaces which are topologically equivalent to a sphere [32].
More general numerical approaches have been proposed in [29, 40, 39]. We here
combine such a general formulation with a numerical approach for a surface
Landau-de Gennes model with intrinsic and extrinsic curvature contributions
[28, 31] and demonstrate the relation between flow, topological defects and ge-
ometric properties of the surface for surface active nematodynamics on surfaces
with varying Gaussian curvature.

The paper is structured as follows: Starting from the corresponding model
in three dimensions we derive the surface model as a thin film limit in Section 2.
The numerical approach to solve the surface active nematodynamics model is
described in Section ??. We also provide convergence results of the surface finite
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element approach for the coupled system of vector- and tensor-valued surface
partial differential equations. Results and numerical experiments are discussed
in Section ?? and conclusions are drawn in Section ??. Technical details are
provided in the Appendices.

2. Model

Our starting point are the hydrodynamic modeling approaches for active
nematodynamics in flat space, see [13, 42, 17]. These models are closely related
to the classical Beris-Edwards model [3] but vary in the details of assumed
transport type for the tensorial field [33], as well as variational spaces or the
definition of the molecular field. However, all models share the fundamental
approach of coupling momentum and mass balances with a dynamic equation
for nematic ordering driven by a gradient flow w. r. t. to a free energy. We will
base our modeling on [17, 11], which provide congruent approaches and read in
a three-dimensional space

ρ
DV

D t
= ∇ · σ, ∇ · V = 0,

DQ

D t
+ ΩQ−QΩ = −λD + Γ−1H (1)

with V velocity, subject to incompressibility, σ stress and Q the nematic order
parameter, a symmetric trace-free second order tensor. Here D/D t = ∂t+V ·∇
denotes the material derivative and D = 1/2(∇V +∇V T ) and Ω = 1/2(∇V −
∇V T ) are symmetric and antisymmetic contributions of the rate of deformation
tensor. λ denotes the flow alignment parameter for a reactive coupling between
kinetic and Landau-de Gennes energy and Γ−1 is a rotational viscosity. The
molecular field H = −δF/δQ is defined along the variation, in space of trace-
free symmetric tensors, of a free energy

F(V ,Q) =

∫

V

ρV 2

2
dV +

∫

V

L

2
‖∇Q‖2 + aTr3Q

2 +
2

3
bTr3Q

3 + cTr3Q
4dV

consisting of a kinetic contribution and a one-constant approximation of the
Landau-de Gennes energy [45] with L and a, b, c material constants and ρ
density. Tr3 A =

∑

iAii denotes the flat space trace operator. Introduc-
ing pressure P as adjoint force compensating volume work, the total stress
σ = σE + σA can be separated into elastic and active contributions σE =
ηD − IP − λH + QH −HQ and σA = αQ, respectively. Thereby, I is the
identity, α an activity parameter and η denotes the shear viscosity. The terms
with η and Γ−1 provide the dissipation mechanisms of the model. Following
[11] we have neglected equilibirum/Ericksen stress as a second order effect. If
α = 0 the model relates to the Beris-Edwards model [3].

To derive a surface model we confine the equations to a thin film geometry
Sh = S × [−h/2, h/2] with surface S and constant thickness h and formally
let h → 0. As discussed in previous works [28, 30] the choice of boundary
conditions on ∂Sh has a strong effect on the resulting thin film limit. On the
surfaces S and ∂Sh we denote the outward oriented, w. r. t. S, surface normals
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by ν and νh which coincide for h → 0. We further denote Π and Πh as the
associated surface projections, applied to each component. For the velocity we
impose Dirichlet boundary conditions on ∂Sh, V · νh = 0 and require normal
stress condition for the deviatoric part Πh[D · νh] = 0 and the rotational part
Πh[Ω · νh] = 0 of the rate of deformation tensor. Under these conditions the
thin film limit of mass and momentum balance lead to results for the tangential
velocity Πh[V ] → Π[V |S ] = v, see [22]. For the nematic ordering Q we apply
a tangential anchoring condition as detailed in [15, 28]. We therefore split Q
in a tangential part Πh[Q] = qh and a normal part β w. r. t. to νh such that
Q = qh − β/2gh + βνh ⊗ νh on ∂Sh, where gh denotes the associated surface
metric. We impose Neumann boundary conditions Πh[∇Q · νh] = 0 on Sh.
Analogue to velocity, we define the surface order tensor by the thin film limit
Πh[Q] → Π[Q|S ] = q. Given the discussion of [25] we highlight the impact of
the choice of β. With β = 0 we yield a surface model for uniaxial nematics
[19, 16], which essentially has the same properties as a two-dimensional model,
while β 6= 0 results in thin film models of nematics [24, 14, 15, 35, 28, 31] with
several properties shared with three-dimensional models. The differences result
from the consideration of extrinsic curvature contributions. Since the resulting
models exhibit significant differences in the coupling mechanisms to geometry
we will consider both conditions, β = 0 and β = −S∗/3, where S∗ =

√

3/2‖Q∗‖
is defined as preferred degree of nematic ordering prescribed by the values of
a, b, c. For the more details of the thin film limit we refer to Appendix A.

The thin film limit of the free energy results in 1/h F(V ,Q) → FS(v, q)
with the surface free energy

FS(v, q) =

∫

S

ρv2

2
dS +

L

2

∫

S

‖∇Sq‖
2

+ ‖B‖
2

Tr q2 − 6βH〈B, q〉 + C1 dS

+

∫

S

(

a− bβ +
3

2
cβ2

)

Tr q2 + cTr q4 + C2 dS (2)

where C1 = C1(β,B) and C2 = C2(a, b, c, β) are constants. A set of covariant
differential operators is used: ∇S the covariant derivative, divS the surface diver-
gence, ∆B = divS ∇S the Bochner Laplacian and ∇v . the directional derivative
w. r. t. v. Tr a =

∑

ij aijg
ij denotes the trace operator in the curved space. We

further use the curvature quantities: K the Gaussian curvature, H the mean
curvature and B = −Π[∇ν] the Weingarten mapping of S. 〈. , .〉 denotes the
scalar product w. r. t. to the surface metric g. The molecular field is defined
as h = −δFS/δq, by variation w. r. t. trace free and symmetric tensors, which
conforms to h = Π[H |S ], see [28]. Finally by denoting p the surface pressure
and labeling d = Π[D|S ] and ω = Π[Ω|S ] the tangential parts of the symmetric
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and anti-symmetric rate of deformation tensor we yield the surface model

∂tv + ∇vv − η
(

∆Bv + Kv
)

+ ∇Sp+ γv = λdivS h+ divS (qh− hq)

+ α divS q (3)

divS v = 0 (4)

∂tq + ∇vq + ωq − qω = −λd+ Γ−1h, (5)

where, following [36], an additional friction term γv is considered. With

h = L∆Bq − L(H2 − 2K)q + 3LβH

(

B −
1

2
Hg

)

−
(

2a− 2bβ + 3cβ2
)

q

− 2cTrq2q (6)

we observe the significant impact of the choice of β. For β 6= 0 an additional
geometry coupling term emerges which forces the nematic director to align with
minimal curvature lines. We will highlight the impact of the directed geometric
contribution fdir = −6βH〈B, q〉 in eq. (2) and the resulting terms in the
evolution equations in subsequent numerical experiments.

3. Numerical approach

To solve the surface active nematodynamic model, eqs. (3)-(6), we us an
implicit Euler scheme for temporal discretization. For each time step

ti → ti+1 = ti + τ : [vi, pi, qi, hi] → [vi+1, pi+1, qi+1, hi+1]

we apply an operator splitting approach. Therefore the surface Navier-Stokes-
like equations are solved in a first step with qi, hi of the previous time step.
The equations are solved along the Chorin projection method [6] for a linearized
transport term. As prediction step the intermediate velocity v∗ is determined
by

1

τ
v∗+∇v

∗vi+∇
v
iv∗− η

(

∆Bv∗+ Kv∗
)

=
1

τ
vi+ λdivS h

i+ divS
(

qih
i − hi

qi
)

+ α divS q
i. (7)

This equation is solved by the component wise surface finite element method
(SFEM) for vector-valued fields [27]. For this purpose we use linear Lagrange
elements on a surface triangulation. Surface normals and curvature quantities
are given by analytical results on the nodes of the triangulation. If these quan-
tities are not available we refer to [34, 39] for appropriate ways, how they can
be computed. In the corrector step we evaluate pi+1 via a relaxation scheme
l → l + 1

1

θ
pl+1 + τ∆Spl+1 =

1

θ
pl + divS v

∗ (8)
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with Laplace-Beltrami operator ∆S . We consider a stepsize θ = 10 and p0 = pi

and iterate until ‖pl − pl+1‖L2/‖pl+1‖L2 < 10−3. Given the updated pressure
pi+1 the velocity is projected into solenoidal space such that

vi+1 = v∗ − τ∇Sp
i+1. (9)

As solution procedure we use scalar SFEM [9] with linear Lagrange elements.
As second step of the operator splitting approach the Landau-de Gennes-

like model is solved for updated vi+1 and it’s associated fields di+1, ωi+1. To
evaluate the time step of the nematic quantities qi+1 and hi+1 we insert the
molecular field, see eq. (6), into eq. (5). Due to the strong nonlinearity for
c ≫ L the resulting equation is solved via Newton iteration l → l + 1 with
q0 = qi until ‖ql − ql+1‖L2 < 10−8. The Newton iteration step reads

1

τ
ql+1 + ∇

v
i+1ql+1 + ωi+1ql+1 − ql+1ω

i+1 + λdi+1

=
1

τ
qi + Γ−1

[

∆Bql+1 − L(H2 − 2K)ql+1 − LSH

(

B −
1

2
Hg

)]

(10)

− Γ−1
[(

2a− 2bβ + 3cβ2
)

ql+1 + 2c
[

Tr q2l ql+1 + 2〈ql, ql+1〉 ql − 2 Trq2l ql
]]

.

The system is solved by the component wise SFEM for Q-tensor-valued fields
[27] with linear Lagrange elements. Finally hn+1 is evaluated by numerically
solving the variational form of eq. (6).

The resulting linear systems are assembled and solved in the finite element
toolbox AMDiS [44, 46] using a BiCGStab(l) solver. In Section 4 we discretize
the surface by a surface triangulation with 2500 vertices. Normals and curvature
quantities are given analytically for the considered ellipsoidal shapes and are
evaluated in the vertices. As time step size we use throughout the numeric
experiments τ = 0.01.

Applying component wise SFEM for vector- and Q-tensor-valued equations
along [27] we use the following penalty terms for extended quantities in normal
direction

P (v,ψ) = ωn

∫

S

νiνjψjvi dS, (11)

P (q,Ψ) = ωn

∫

S

(νiqij)(νlΨlj) + (νiνjqij)(νiνjΨij) dS (12)

with penalty parameter ωn = 1000 and appropriate test functions ψ and Ψ.
For validation purposes a numerical convergence study is shown in Figure

1. It considers the dynamics for α = −8 on a unit sphere for t ∈ [75, 75.25] on
surface triangulations with {2.5k, 10k, 40k, 130k} vertices and adjusted time
steps {0.01, 0.005, 0.001, 0.0002}. Using the solution on the triangulation with
130k vertices as reference we obtain quadratic error convergence in the solution
components v and q. This is in agreement with the obtained convergence results
for the individual problems, the surface Navier-Stokes equations [40, 39] and
the surface Landau-de Gennes model [28, 31] and the expected results for the
coupled problem in flat space.
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Figure 1: L2 error convergence of solution procedure: L2 errors for solution components v and
q w. r. t. solution evaluated on triangulation with 130K vertices. Black dashed line indicates
quadratic convergence w. r. t. mesh size h.

4. Results/Numerical Experiments

Various studies indicate a strong dependency of the position of nematic de-
fects on curvature [19, 4, 1]. While the stability of such configurations is well
understood in passive systems, see e.g. [26], and the fundamental differences of
the two systems, β = 0 and β = −S∗/3, already explored [28, 31], these studies
neglect hydrodynamic effects. We here investigate using numerical experiments
how curvature does impact the dynamics of active systems with hydrodynam-
ics. Observed dynamics range from stationary to periodic and turbulent regimes
where activity is the relevant parameter, see [18] for experimental observations.
To limit the complexity in the numeric investigations we focus on activity pa-
rameter values close to the transition between the stationary and the periodic
regime. Furthermore we will consider ’small’ geometries with strong curva-
tures typical for microscopic biological active systems [18]. For this purpose, we
non-dimensionalise the system along a characteristic length of domain l∗ = 1,
velocity v∗ = 1 and, for sake of simplicity, we consider the parameters η = 1,
Γ−1L = 1 such that the Ericksen number is fixed at Er = ηl∗v∗/LΓ−1 = 1
while the Reynolds number Re = ρl∗v∗/η scales by ρ. If not noted otherwise we
use ρ = 1. Furthermore, we chose the alignment parameter λ = 0.7, as in [42],
the friction coefficient γ = 0.05 and the parameters in the Landau-de Gennes
energy as a = −10, b = 0 and c = 5 to maintain stable nematic texture and
defect core covering of approximately 7% of the surface. We focus on extensile
activity, with α ∈ [−10, 0], such that the dynamics is far from transition to low
Reynolds number turbulence. For studies in this regime we refer to [37, 21, 38]
and for other related approaches to [23, 36].

We consider a sphere, and prolate and oblate geometries. The first allows
for comparison with the experimental results in [18] and detailed studies on
the influence of Re on flow, nematic texturing patterns and defect dynamics,
see Figure 2. The other geometries are used to study the influence of varying
curvature. For the sphere the differences between the two systems β = 0 and
β = −S∗/3 are negligible. We therefore systematically only compare the two
systems β = 0 and β = −S∗/3 for the ellipsoidal geometries. For all considered
numerical experiments four +1/2 disclination are present and we analyse their
dynamics. We apply principal component analysis (PCA) to the combined set
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Figure 2: Impact of Flow Regime for Active Nematics on Sphere α = −8: [A] Details
of single period of dynamics at Re = 1. (left) average angle of four defect configuration
indicating oscillation between tetrahedral 〈α〉 = 120 and planar 〈α〉 = 110 configuration via
pairwise rotation along an axis. (right) Kinetic and nematic energy for period of dynamics.
[B] Snapshots of flow (top line, black arrow - direction, color - magnitude), and nematics (left:
texture and ‖q‖ colors, right: schematic of defect configuration). Red lines indicate axis of
defect pair rotation. Snapshots from left to right correspond to t1, t2, t3, t4, t5 marked in
[A] such that t1 for pairwise rotation at axis near planar defect configuration, t2 breakdown
of defect pairs in tetrahedral configuration, t3 stagnation of flow, t4 rearranged pair rotation
and t5 again breakdown of pairs. [C] Long term behavior of defect configuration depending
on Re. (top) For Re = 0.1 we observe single frequency in oscillations. (mid) At Re = 1 inertia
effects become traceable, slowing down axis rearrangement and inducing (periodic) stagnation
events. (bottom) Re = 10 yields aperiodic configurations due to complex interaction of elastic
stresses and inertia.

of defect trajectories to determine the number of dominant temporal frequencies
of the dynamic regime. Along this number we group the evaluated dynamics
into three classes: stationary, single frequency periodicity and dynamics with
increased complexity, for details see Appendix B. All numerical experiments
are concerned with the behaviour of the late dynamics such that the impact of
initial values can be neglected, for details on the setup see Appendix C.

Unit Sphere Experiments. We evaluate the dynamics for α = −8 in the time
domain [0, 75] for Re = 0.1, 1, 10, see Figure 2. To focus on the periodic
dynamics we only analyse the flow patterns and nematic textures in the late time
domain t ∈ [70, 75]. We observe oscillations between planar and tetrahedral
defect configurations, which we quantify using the average defect angle

〈α〉 =
1

6

4
∑

i=1

4
∑

j>i

cos(xi
d · x

j
d),

with xi
d the defect positions. In the case Re = 0.1 (Stokesian like regime)

the experimental observations of [18] are reproduced and a single frequency
oscillation is observed. For Re = 1.0 we yield an additional frequency in the
periodic oscillations and no periodicity is found for Re = 10. We conclude that
increasing inertia effects play a substantial role on the destabilization of the
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oscillating defect configurations. However, spontaneous nematic distortion, as
described in [42, 11], is not observed in the chosen parameter regime.

Given these results we vary α ∈ [−10, 0] and explore the impact of activity
on the defect patterns, see Figure 3(mid line). The defect trajectories are rep-
resented in spherical coordinates for three different activity values. In general
we observe four intertwined defect trajectories oscillating between regular tetra-
hedral and planar configurations. In the light of investigations for a simplified
defect particle model in [5], we asses the ratio of defect speed and rearrangement
time of nematic texture as crucial to enable two different motion patters. For
low activity, with low defect speed, the nematic texture can relax sufficiently
fast and elastic stresses are dominated by active stresses. Therefore the defects
move in more or less straight lines (geodesic circles). Increasing the activity
and defect speed crosses eventually a threshold where elastic stresses no longer
quickly relax and periodicity dominates the active stresses. In such situations
we observe a breakdown of flow and defect motion. In this stagnation phase
the nematic texture relaxes and the flow rearranges, see Figure 2[A,B]. After
this rearrangement the defect motion restarts but with a significant change in
direction, see the kinks in defect trajectories in Figure 3(mid line) at α = −8.
Further increase of activity yields higher magnitudes in flow such that inertia
effects break down the strict periodicity of previous trajectories while the over-
all motion structure (oscillation between tetrahedral and planar configurations)
remains.

Interplay of Curvature and Defect Dynamics. Deforming the unit sphere to-
wards prolate and oblate ellipsoidal geometries with the same surface area breaks
the symmetry. We characterize the geometries along a deformation parameter
s = A/C where A and C denote the ellipsoidal body axes in X and Z direction.
The resulting geometries only have positive Gaussian curvature. Most signifi-
cant features are areas of increased and reduced curvature. In the prolate case
curvature is concentrated at the poles while in oblate geometries high curvature
areas form a manifold at the rim of the geometry, see Figure 3[A,B]. Investi-
gations for passive nematics [4, 19, 28, 31] have established that defects are
attracted to regions where curvature matches their topological charge. There-
fore we expect additional geometric forces impacting the dynamics of defect
motion. These effects result from explicit curvature terms and curvature sen-
sitivity of the covariant derivative in h and subsequent forces in momentum
balance via divS(σE). Now, also the differences between the two systems β = 0
and β = −S∗/3 will become apparent. We evaluate the dynamics for a set of
five deformations s ∈ {1/2, 3/4, 1, 5/4, 2} and 20 activity values α = [−10, 0].
Figure 3[C] shows typical examples of observed defect trajectories for the system
with β = 0. The corresponding results for β = −S∗/3 are qualitatively similar
for the prolate and sphere geometries. The differences for the oblate geomatries
will be discussed below.

In case of strong prolate geometry s = 1/2, see Figure 3[C](top line), the
defects are located predominantly close to the poles. In case of weak activity
the curvature forces dominate and fix the positions of defects and even suppress

9



Figure 3: Impact of Curvature Modulations on Defect Trajectories: [A] Considered
ellipsoidal geometries of equal surface area. (top) Strong prolate geometry s = 1/2, (mid)
unit sphere s = 1 and (bottom) strong oblate geometry s = 2. Colors encode Gaussian
curvature K ∈ [6.89, 0.17]. [B] Distribution of Gaussian curvature along azimuthal angle θ.
[C] Typical defect trajectories (described by spherical coordinates (φ, θ), each color denotes
one defect) of active nematodynamics for various activities (columns) and geometries (lines).
[D] Classification of defect dynamics for activity α and geometry s variation for β = 0 and
β = −S∗/3. Dark blue indicates stationary defects, cyan stands for single frequency periodic
trajectories and yellow indicate trajectories with complex periodicity.

motion. The geometric forces even unify the two +1/2 defects on the poles to
form +1 defects as already described in [19] for passive systems. The behaviour
is maintained for |α| < 5. For activity beyond this threshold the geometric
forces are outweighed and defect motion occurs. Here we observe a periodic
motion consisting of two elements. The first is a circling motion of defect pairs
around the poles and the second is a periodic breakdown of these pairs where on
each pole a single defect leaves the pole region, crosses the low curvature region
at the equator and aligns with the remaining defect at the opposing pole. With
increasing activity, as in the unit sphere case, higher velocities emerge, which
eventually destabilizes the defect trajectories, by inertia effect.

An example for oblate geometries is shown in Figure 3[C](bottom line) for
s = 2. Again for low activity |α| < 3.5 a stationary defect configuration emerges,
where the four +1/2 defects are attracted to the rim in a quasi planar configura-
tion. In this configuration the geodesic distance between the defects is no longer
maximized. We thus conclude the localisation of the defects to be a geometric
effect. Increasing activity yields a breakdown of this stationary configuration
and the emergence of a periodic defect movement pattern. Remarkably, we ob-
serve a large variety of defect motion patterns drastically rearranging through
a small change in activity magnitude. Based on ideas of [48] for the spherical
case, we suspect these patterns to emerge from the relation of defect motion
wavelengths and characteristic curvatures and lengths in the geometry. To clas-
sify the emerging variety of patterns is beyond the scope of this paper and has
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to be investigated elsewhere. As in the spherical and prolate case we yield for
higher activity a destabilization of movement patterns.

We conclude these numerical experiments by a systematic evaluation and
classification of defect trajectories. The results are summarized in the form of
a phase diagram in Figure 3[D](top). For sake of clarity the observed dynamics
are clustered along three groups: (i) stationary, (ii) single frequency and (iii)
complex dynamics. For details regarding this classification see Appendix B.
We observe two prominent effects. First, breaking the symmetry of geometry
introduces additional geometric forces acting on nematic texture, prescribing a
preferred defect position. Compared with the unit sphere case these station-
ary defect configurations persist for stronger activities for prolate and oblate
geometries. As second effect we highlight the impact on trajectory periodic-
ity. Even mild geometry deformations yields a strong reduction of activities
enabling single periodic movement patterns. In the case of strong geometry
deformations the range of single periodic movement is below our activity test-
ing resolution such that we observe an immediate transition from stationary
to complex trajectories. Contrary to the first effect, this effect is stronger for
prolate geometries compared to oblates. Recalling the distribution of Gaussian
curvature, see Figure 3[B], this can be attributed to the different magnitudes in
curvature of the deformations, e. g. in strong prolate poles K ≈ 6.5 and strong
oblate rim K ≈ 2.5.

Figure 3[D](bottom) shows the corresponding phase diagram for the system
β = −S∗/3. The comparison of the phase diagrams highlights the quantitative
differences between the two systems β = 0 and β = −S∗/3. These differences
can be explained by two effects. The first is present already in the passive case,
α = 0, and does not required hydrodynamic interactions. The additional di-
rected geometric forces in the system with β = −S∗/3 have an impact on the
nematic texture [25]. Reviewing the contributions of isotropic and directed dis-
tortion energy in the steady state configurations, see Figure 4[A], we observe a
strong directed contribution providing a strong energy sink for geometries with
broken symmetry. These contributions reach a magnitude of approximately
half of the isotropic energy for strong deformations. Turning to the spatial
distribution of the directed distortion energy density, see Figure 4[B], shows
low magnitudes covering the bulk of prolate geometries, while on oblate ge-
ometries the energy density reaches high magnitudes on the rim with almost
zero magnitude on quasi planar top and bottom part. As detailed in [25] this
distribution can be attributed to the alignment of nematic texture with lines
of minimal curvature. The stationary defect configurations for pure isotropic
distortion (β = 0) and including directed distortion energy (β = −S∗/3) match
for prolate geometries and the sphere. But for oblate geometries, with its high
localized directed geometric energies and subsequent strong forces, we yield an
almost in plane defect configuration for β = 0, while for β = −S∗/3 the defects
form a distinct tetrahedral configuration.

Considering the active dynamics as a destabilization of the passive nematic
texture and defect configuration explains most of the differences in the phase
diagrams for the system with β = 0 and β = −S∗/3 in Figure 3[D]. Already for
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Figure 4: Directed Geometric Forces in System with β = −S∗/3: [A] Distortion
energy of steady state for geometries s ∈ [1/2, 2] for β = 0 (blue bars) vs directed geometric
contribution by fdir = −6βH〈B,q〉 (red bars) for β = −S∗/3. [B] Curvature distribution
of geometry impacts strength of directed geometric energy (color code) and final nematic
texture (black lines). At s = 1/2 curvature is concentrate on poles where at each pole two
+1/2 merge to one +1 defect, see insert schematics. Defects with ‖q‖ = 0 cancel directed
geometric contribution at poles while nematic texture aligns with lines of minimal curvature
on other parts of geometry with limited directed geometric contribution fdir ≈ −1.5. For
the unit sphere s = 1 geometry provides no prefered alignment fdir = 0 such that typical
tetrahedral configuration (insert schematics) is observed for β = 0 and β = −S∗/3. At
strong oblate geometry s = 2 the curvature is focused at the rim manifold yielding there
strong directed geometric energy contribution fdir < −5. The nematic texture aligns parallel
with the rim, pushing defects off the rim and forming a tetrahedral configuration, see yellow
configuration in insert schematic. This is not observed for β = 0 where defects align with the
rim in an planar configuration, see red configuration in insert schematics.

Figure 5: Impact of Directed Geometric Forces on Defect Dynamics: [A] Defect
trajectories(left) on mild oblate deformation s = 5/4 at α = −3.5 for β = 0 exhibit pairwise
defect rotation similar to Fig 3. Here trajectories cross the high curvature rim but defect pair
rotation axes are fixed to the plane of the rim. Flows(mid: front, right: back, black arrows
indicate direction, colors for magnitude) consist of two counter rotating vortices. [B] Same
setup for β = −S∗/3 yields dynamics with broken symmetry such that three defects align to
two frequency configuration below oblate rim and a single quasi stationary defect above the
rim. A strong central jet(mid: front) in double vortex structure at three defect configuration
and weak flow at isolated defect(right: back). [C] For strong prolate deformation s = 1/2
at α = −5 and β = −S∗/3 a stationary nematic texture(top: black strokes, colors encode
‖q‖) is observed, exhibiting rotational symmetry with two +1 defects(yellow dots) on poles
yielding no flow(bottom). [D] On strong oblate geometry s = 2, α = −5 and β = −S∗/3
nematic texture(top) exhibits broken symmetry with four +1/2 defects. Defects induce strong
flows(bottom), but geometric forces on nematic texture dominate and no defect motion is
observed.
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weak distortions of the sphere in prolate and oblate direction s ∈ {3/4, 5/4}
a distinct impact of directed geometric forces emerge. Curvature forces sup-
press dynamics for low activity such that the transition to the simple dynamics
regime is shifted to stronger activity. The remarkable effect of the system with
β = −S∗/3 is the earlier onset of complex dynamics (compared to spherical case)
effectively shrinking the domain of simple dynamics for increasing geometric dis-
tortions. This effect can be addressed to the situation that curvature drives the
defects to configuration with non-maximal distance. As flow is associated with
defects the resulting closer defect proximity yields stronger flows. Subsequently
inertia effects are increased and ’earlier’ transition to complex defect dynamics
occurs. Such chain of effects culminates for strong curvatures in the direct tran-
sition of stationary defects to complex defect dynamics. Especially in the case
of strong prolate distortion, where on each pole two +1/2 defects merge to form
one radial symmetric +1 defect with an associated stable radial symmetric ne-
matic texture which does not induce any flow. See Figure 5[C]. This drastically
changes as soon as the symmetry is broken and the described effect cascade
yields strong flows and immediately complex defect dynamics. However, as in
the passive case, the differences between the two systems β = 0 and β = −S∗/3
are limited for prolate geometries. This changes for oblate geometries, where a
decisive difference in the phase diagram is observed. Here the immediate tran-
sition between stationary to complex defect dynamics occurs already for weak
oblate deformation, indicating a decisive impact of directed geometric forces on
defect dynamics, see Fig 5[A,B].

While in the case of β = 0, Fig 5[A], we observe a pairwise, single frequency,
defect rotation similar to the unit sphere, the case of β = −S∗/3, Fig 5[B], ex-
hibits two defect motion patterns. A single defect remains quasi stationary on
the upper half of the oblate rim, while the remaining three defects form a two
frequency moving pattern. This ’separation’ of dynamics is facilitated by the
directed geometric forces inducing the preferred nematic alignment along the
rim such that defects tend to move parallel with the rim. Finally the directed
forces become dominant for strong oblate deformation such that stationary de-
fect dynamics are observed across the complete range of activity α ∈ [−10, 0].
As discussed in the passive case the ringlike domain of high curvature of the
oblate geometries induces a forcing on the nematic texture to align and thus
is effectively limiting the possible defect positions. Yet these geometric forces
fix the nematic texture, see Figure 5[D](top), but do not suppress flows. Con-
trary to the prolate case with a radial symmetric texture and two +1 defects,
the oblate case yields a nematic texture with broken symmetry and subsequent
strong flows, see Figure 5[D](bottom). Such phenomena of stationary defects
and non zero flows could in principal also be present for β = 0 but only for much
lower magnitudes of activity and thus for much weaker flows. The stationary
defects and non zero flows contradict the assumption in coarse grained models
of active nematodynamics, which consider defects as active particles, solely re-
sponsible for the induced flow [13] and thus provide an other example of the
limited applicability of this modeling approach on curved surfaces.

13



5. Conclusion

We derived a surface model for active nematodynamics by considering a
thin film limit of a hydrodynamic liquid crystal theory. This ensures physical
significance in the sense of thermodynamic consistency and independence of
chosen coordinates of the model. By specifying the normal components of ne-
matic ordering β = νQν on the boundary of the thin film we consider intrinsic
and extrinsic curvature contributions in the derived surface model. We set up
a numeric solution procedure by combining surface finite element approaches
for vector- and tensor-valued surface PDEs [27] in an operator-splitting ap-
proach and established in numerical experiments quadratic L2 error convergence
w. r. t. mesh refinement in tangential surface fluid velocity v and tangential sur-
face Q-tensor q.

The numerical approach is used to explore the coupling of active dynam-
ics and geometry in small domains with strong curvature. We validate the
approach on a sphere and analyse the effect of hydrodynamics on the experi-
mentally found oscillations between tetrahedral and planar defect arrangements
[18]. Deforming the sphere to prolate and oblate geometries allows the curvature
to shape defect trajectories, creating a wide range of movement patterns beyond
these oscillations. We classify the defect dynamics into stationary defects, single
frequency periodic trajectories and trajectories with complex periodicity. We
found that the tight coupling of nematics/geometry and flow/geometry has a
strong impact on the transitions between these regimes of defect motion. Es-
pecially if extrinsic curvature effects are taken into account, β = −S∗/3, the
distribution of curvature has a decisive impact on dynamics. In the case of
concentrated curvature in point like areas, as in strong prolate deformations,
the coupling mechanisms act predominantly on defect position, while the bulk
of nematic texture is not affected. In this case the regime of stationary defects
extends to medium activity ranges and suppresses any flow. Quite contrary
for shapes with extended areas of high curvature, as in the oblate geometry,
the defects and nematic texture are affected by curvature yielding a geometric
forcing which limits the range of defect trajectories. In this case situations for
medium activities occur where defect configurations are stationary but strong
flow patterns are present. Beyond an activity threshold, which strongly depends
on the geometry, the geometric forces determine the defect motion and can be
used to control them. We have only concentrated on the onset of these motion
patterns. To fully understand the complex periodicity of the defect motion pat-
terns would require further investigations. As started for spherical surfaces [48]
also for non-spherical surfaces the coupling of characteristic geometric lengths
and defect movement pattern wavelength seems crucial to understand the mech-
anism of selection of motion patterns. The proposed model in principle provides
the numerical tools to analyse this for general surfaces.
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Appendix A. Thin Film Limit

To perform the thin film limit of the state equations (1) in full detail includes
extensive calculations as presented in [28] for passive dry nematics or [22, 30]
for the Navier-Stokes equations. Therefore, we will present here only essential
steps and refer for detail to [28, 30].

For velocity we impose homogeneous Dirichlet boundary condition V ·νh =
0 on ∂Sh. By [28](Lemma 7), such conditions continue into the thin film such
that

V · ν = O(h), ∂ν(V · ν) = O(h2), ∂2
νν

(V · ν) = O(h2) on S. (A.1)

This immediately establishes the thin film limit of the incompressibility condi-
tion

∇ · V = 0 →
h→0

divS v = 0. (A.2)

We also impose the normal stress boundary condition Πh[σ · νh] = 0 on ∂Sh

which can be interpreted as the right normal part of σ does not contain any
tangential parts. In this sense we can write equivalently t · [σ ·νh] = 0 ∀t ∈ TSh,
where TSh denotes the tangent bundle of Sh. Such condition again continues
into the thin film and yields

t · [σ · ν] = O(h), t · ∂ν [σ · ν] = O(h2), t · ∂2
νν

[σ · ν] = O(h2) (A.3)

∀t ∈ TS on S. Given these conditions and defining the surface stress by σS =
Π[σ|S ] yields

∇ · σ|S = divS σS + ∂ν(σ|S · ν) +B · (σ|S · ν) + O(h) →
h→0

divS σS . (A.4)

Combined with the limit h → 0 for DV /D t → Dv/Dt by (A.1) the thin film
limit of the tangential part of momentum balance follows. Inserting now the
definition of total stress σ = ηD − IP − λH +QH −HQ+ αQ we can check
the conformity of the chosen boundary conditions for V and Q with the normal
stress condition of the total stress. For isotropic stress IP the normal stress
condition holds as well as for the deviatoric part ηD subject to homogeneous
Navier boundary conditions Π[D ·νh] = 0. The normal anchoring condition for
the Q tensor νh ·Q·νh = β on ∂Sh and the molecular field νh ·H ·νh = 0 on ∂Sh

also conform, via [28](Lemma 7), to the normal stress condition enabling the
usage of the limit (A.4) in the momentum balance for active nematics. Finally,
by using normal anchoring of Q and ∇νh

Q = 0 on ∂Sh we can establish the
thin film limit h→ 0 of the Laplacian

∇ · ∇Q|S →
h→0

∆Bq. (A.5)

and yield, in combination with Π[Ω · νh] = 0 on ∂Sh, the thin film limit of the
nematic state equation.
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Appendix B. Data Analysis

To obtain a qualitative understanding of the evolution of active nematody-
namics we apply Principal Component Analysis (PCA), see e. g. [47], to the
trajectories of the nematic defects.

As first step we evaluate the dynamics of eqs. (3)-(5) in spatial and temporal
resolution via the described SFEM on a time domain t ∈ [0, 500]. For the ne-
matic texture we evaluate ‖q‖ and use regions with ‖q‖ < S∗/4 to identify defect
positions within each time step. In temporal direction we assemble these posi-
tions to trajectories dn(t), n ∈ {1 . . .N} by using the particle tracking capacities
of MOSAIC toolbox[41]. From the defect trajectories at time ti we assemble the
defect positions dn(ti) into a configuration vector C(ti) = [d1(ti), . . . ,dN (ti)]

T .
To suppress the impact of initial conditions we include only results of late dy-
namics. Given M time steps ti ∈ [450, 500] we yield the data set to apply
PCA.

In short, we assemble the configuration snapshots of N trajectories to the
data matrix X ∈ R

M×3N . With the zero mean data B = X − [1, . . . , 1]T ⊗

[
∑3N

i=1

∑M

j=1Xijej]/M , we obtain the covariance matrix C = 1/(M−1)BT ·B ∈

R
3N×3N and its eigenvalue λi and eigenvector V i decomposition. Assuming a

decreasing order of eigenvalues, each λi encodes the variance captured in the
direction V i. Therefore, we select a subset of eigenvalues i ∈ {1, . . . , L} such
that 99% of the covariance is captured. The associated eigenvectors are compiled
to the matrix W = [V 0, . . . , V L] ∈ R

3N×L which is used to project the data
onto this eigenvector basis A = B ·W . By this definition the i-th column of A
contains the PCA coefficient function associated with λi and V i.

For the purpose of regime classification we use the average trajectory length,
the number of eigenvalues necessary to capture 99% variance and an estimate
of periodicity in the PCA coefficients function. A stationary defect dynamic
is given if the total covariance

∑

i λi < 10−4 across time domain [450, 500]
vanishes. For instationary cases we classify the dynamics as single frequency if
L ≤ 3 and all associated PCA coefficient functions can be approximated by a
periodic expansion by a sample of the coefficient function within a 20% relative
l2 error bound. Hereby, the expansion sample length is given by the global
peak(beside identity) of the autocorrelation of the PCA coefficient function.
Any other dynamics we classify as complex or with increased complexity.

Appendix C. Initial Values

To obtain an inital four +1/2 defect configuration we start from a ne-
matic texture consisting of two +1 vortex defects and evaluate its evolution
for t ∈ [0, 0.05] in a dry v ≡ 0 and passive α = 0 setup. By this preliminary evo-
lution we yield a smooth nematic texture, where defects are distributed slightly
unbalanced along the XY equator of the spheroid and exhibit ‖q‖ = 0 in core
regions.

The inital two defect nematic texture is evaluated by splitting the geometry
S by the XZ plane. On each half a constant vector field P is projected to TS
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and normalized. With p0 = Π[P]/‖Π[P]‖ × ν we define the nematic texture
q0 = S∗(p0p0 − 1/2g). For y > 0 : P = [0, 1, 0] and y ≤ 0 : P = [0.1, 1, 0.1].
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