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Confluent cell monolayers and epithelia tissues show remarkable patterns and correlations in structural ar-
rangements and actively driven collective flows. We simulate these properties using multiphase field models. The
models are based on cell deformations and cell-cell interactions and we investigate the influence of microscopic
details to incorporate active forces on emerging phenomena. We compare four different approaches, one in
which the activity is determined by a random orientation, one where the activity is related to the deformation of
the cells, and two models with subcellular details to resolve the mechanochemical interactions underlying cell
migration. The models are compared with respect to generic features, such as coordination number distribution,
cell shape variability, emerging nematic properties, as well as vorticity correlations and flow patterns in large
confluent monolayers and confinements. All results are compared with experimental data for a large variety of
cell cultures. The appearing qualitative differences of the models show the importance of microscopic details
and provide a route towards predictive simulations of patterns and correlations in cell colonies.
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I. INTRODUCTION

The ability of cells to coordinate their motion is essential
for several in vivo processes, such as morphogenesis, regen-
eration, and cancer invasion [1–3]. To identify the principles
that govern collective cell migration in such systems has seen
a growing interest in recent years. Experimental investigations
on cell monolayers and epithelial tissue of model systems
have shown remarkable patterns and correlations in cell mi-
gration. These include an unjamming transition between a
glassy phase and a fluid phase [4,5], the spontaneous forma-
tion of vortices and topological defects [6], as well as the
emergence of active turbulent flows [7]. The emerging phe-
nomena appear to be rather generic. A fundamental challenge
is to understand how this macroscopic behavior is linked to
the properties of individual cells and physical cell-cell inter-
actions, which is the target of a large variety of modeling
approaches. These approaches differ by the level of coarse-
graining and range from subcellular lattice models [8] and
multiphase field models [9–14], to vertex and Voronoi models
[15–19], particle models [20–24], and continuum models on
a multicellular scale [25–27]. We refer to [28–30] for recent
reviews.

We here concentrate on multiphase field models, which
allow for cell deformations and detailed cell-cell interactions,
as well as subcellular details to resolve the mechanochemical
interactions underlying cell migration. Together with efficient
numerics and appropriate computing power these models are
well suited to model confluent cell structures and have seen
various recent contributions [9–14]. They all follow the same
methodology but differ in detail. Until now these models have
been used to address specific problems but have never been
compared with each other.

The goal of this paper is a systematic comparison of these
approaches and their linkage with statistical observables of
experiments to provide a route towards predictive simulations
of patterns and correlations in cell colonies. After introducing
the multiphase field models, discussing microscopic differ-
ences, and briefly describing the numerical approach enabling
large-scale simulations, we address coordination number
distribution, analyze statistics on shape variability of the
cells and the ratio of multicellular rosettes, velocity distribu-
tions of emerging topological defects, their stress fields, as
well as defect density and creation rates. We further study
vorticity correlations in large confluent monolayers and flow
patterns in confinements. All results are compared with exper-
imental data for a large variety of cell cultures. The appearing
qualitative differences of the models show the importance of
microscopic details. The systematic comparison will hope-
fully help to select the appropriate approach in future studies
and provide a route towards predictive simulations of patterns
and correlations in cell colonies.

II. MODELING

We consider two-dimensional phase field variables φi, one
for each cell. Values of φi = 1 and φi = −1 denote the interior
and the exterior of a cell, respectively. The cell boundary is
defined implicitly by the φi = 0 level set. The dynamics for
each φi is considered as

∂tφi + v0(vi · ∇φi ) = �
δF
δφi

, i = 1, . . . , N, (1)

where N denotes the number of cells, F is a free energy, and
vi a vector field used to incorporate active components, with
a self-propulsion strength v0. We here consider conserved
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dynamics, which ensures constant volume/area of each cell.
The proposed models in [9,11,12,14] consider nonconserved
dynamics and enforce the volume/area constraint weakly by
an additional penalty energy. The free energy F = FCH +
FINT + . . . contains passive contributions, where

FCH =
N∑

i=1

1

Ca

∫
�

ε

2
‖∇φi‖2 + 1

ε
W (φi )dx, (2)

FINT =
N∑

i=1

1

In

∫
�

B(φi )
∑
j �=i

w(d j )dx, (3)

with nondimensional capillary and interaction number, Ca
and In, respectively. The first is a Cahn-Hilliard energy, with
W (φi ) = 1

4 (φ2
i − 1)2 a double-well potential and ε a small

parameter determining the width of the diffuse interface. This
energy stabilizes the cell interface. For simplicity we here
neglect other properties of the cell boundary, e.g., bending
forces. In [31] they are shown to be negligible in the context
of cell migration. The second is an interaction energy with
B(φi ) = 3

ε
√

2
W (φi ) an approximation of the delta function of

the cell boundary and a cell-cell interaction potential

w(d j ) = exp

(
−d2

j

ε2

)
, with d j = − ε√

2
ln

(
1 + φ j

1 − φ j

)

(4)

approximating a short-range repulsion potential, with signed
distance function d j computed from the equilibrium tanh
profile of the phase field φ j (see [32,33]). Most previous
multiphase field models consider the interaction only effec-
tively using terms proportional to φ2

i φ
2
j for cell-cell repulsion

and ‖∇φi‖2‖∇φ j‖2 for cell-cell attraction. The approach in
Eq. (4) offers the possibility to also consider more realistic
potentials. Most significantly the proposed models [9–14] dif-
fer in the self-propulsion term, the definition of vi in Eq. (1).

In [14] the propulsion speed is the same for each
cell, but the direction of motion, determined by the angle
θi, is controlled by rotational noise dθi(t ) = √

2DrdWi(t ),
with diffusivity Dr and a Wiener process Wi. With vran

i =
(cos θi, sin θi ) the governing equations can be viewed as a gen-
eralization of a model for active Brownian particles [20,34,35]
to one for a system of deformable cells. Subcellular details are
not considered.

In [12] the propulsion of each cell is related to its deforma-
tion. For each phase field variable φi a Q tensor (symmetric
and trace-free) is defined by

Si =
∫ [

1
2 [(∂yφi )2 − (∂xφi )2] −(∂xφi )(∂yφi )

−(∂xφi )(∂yφi) 1
2 [(∂xφi )2 − (∂yφi )2]

]
dx

from which a continuous Q-tensor field S = ∑N
i=1 Siφ̃i can

be constructed by interpolation, with φ̃i a rescaled phase field
variable with values in [0,1]. The active contribution is defined
as velo

i = ∫
φ̃i∇ · S dx. While the strength and the direction

is constant within a cell, both differ between cells. Also in
this approach, subcellular details are not considered. However,
the coupling with neighboring cells becomes stronger as they
have an influence on the cell deformation.

Subcellular details, modeled as an active polar gel, have
been considered in [31,36–38]. In these approaches for a

single active droplet cell movement results form spontaneous
symmetry breaking in the polarization field of the subcellular,
e.g., actin, filaments. This route to cell motility is used in
[32,39] for collective cell migration and applied to simulate
confluent cell structures in [13,40]. The free energy F has to
be extended by a Frank-Oseen type energy

FP =
N∑

i=1

1

Pa

∫
�

1

2
‖∇Pi‖2 + cp

4
‖Pi‖2(−2φi + ‖Pi‖2)

+βPi · ∇φi dx (5)

with polarization field Pi for each cell and nondimensional
elastic parameter Pa. The second term ensures the unity con-
straint weakly in the interior, φi = 1, and forces Pi = 0 in
the exterior, φi = −1, with cp > 0, and the third term sets
an anchoring condition at the cell boundary, ∇φi �= 0, with
β > 0. The dynamics for each Pi is considered as

∂t Pi = − δF
δPi

, i = 1, . . . , N. (6)

In contrast to previous models [13,32,39] self-advection
in the evolution equation for Pi is omitted, to allow for
better comparability with the other models. The coupling
with Eq. (1) follows by defining vpol

i = Pi. While the local
strength remains constant, the active force is no longer equally
distributed over the cell as the direction results from the sub-
cellular polarization field, which is strongly influenced by the
geometry of the cell. On the single cell level, cell movement
results in the considered setting from contractile stress (see
[31,36] for details and possible modifications to generate mo-
tion by extensile stress).

As an alternative modeling approach with subcellular de-
tails we consider instead a polar structure nematic ordering
within each cell. A nematodynamic approach has been consid-
ered in [41,42] to model movement of a single active nematic
droplet. We here simplify this approach and extend it to mul-
tiple cells. The free energy F is extended by a Landau–de
Gennes type energy

FQ =
N∑

i=1

1

Ne

∫
�

1

2
‖∇Qi‖2 + trQ2

i

(
−cn

2
φ + cn

4
trQ2

i

)

+ γ∇φiQi∇φidx (7)

with Q-tensor field Qi for each cell and nondimensional
elastic parameter Ne. The second term enforces Qi = 0 in the
exterior of the cell, with cn > 0 and the third term again sets
an anchoring condition at the cell boundary, with γ > 0. The
dynamics for each Qi reads

∂t Qi = − δF
δQi

, i = 1, . . . , N, (8)

and vnem
i = ∇ · Qi. In this approach the strength and direc-

tion of the active force for each cell results from subcellular
structures and varies within the cell and between cells. The
influence of the cell shape on the resulting movement is much
stronger and a clear distinction between contractile and exten-
sile behavior on a single cell level is not generally possible.

The differences of the models are visualized in Fig. 1 for
one representative cell. vran

i is constant within the interior of
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FIG. 1. Visualization of representative vi within one cell in con-
fluent cell structure. From left to right: vran

i , velo
i , vpol

i , and vnem
i .

The length of the arrows is rescaled to be comparable; the blue lines
indicate the φi = 0 level sets of the considered cell and its neighbors.

the cell. While this is also true for velo
i , here the direction is

aligned with the long axis of the cell. vpol
i shows the typi-

cal splay instability resulting from contractile stress [31,36]
with a preferred mean orientation but otherwise constant local
strength. vnem

i shows a more complex behavior. The underly-
ing instability in this model results in a rearrangement of the
topological defects in the Q-tensor field Qi, which strongly
depends on the geometry of the cell and leads to no preferred
mean orientation of vnem

i . To explore the influence of these
differences on macroscopic observables is the target of this
paper.

III. NUMERICS AND PARAMETER SETTING

We employ a parallel and adaptive finite element method
to solve the coupled system of partial differential equations
for φi and Pi or Qi, for i = 1, . . . , N , numerically. The algo-
rithm is implemented in AMDiS [43,44] and the algorithmic
concepts to achieve parallel scaling with the number of cells
N are described in [45]. Briefly, they consider one core for
the evolution of each cell and parallel concepts from particle
methods to reduce the communication overhead due to cell-
cell interaction.

We consider a constant number of equally sized cells
(no cell divisions and apoptosis). First, N = 100 cells in a
rectangular domain, � = [0, 100] × [0, 100], with periodic
boundary conditions are considered. This approximates a
large confluent monolayer with no need for confinement.
Second, confinements are realized in the same computa-
tional domain � by an implicit description using a phase
field variable φδ (x) = tanh[(‖x − c‖ − 50)/(

√
2ε)], where

c = (50, 50)T and the choice of the vector norm determines
the confinement shape. In particular, we use ‖ · ‖2 for a circu-
lar confinement with diameter 100. The repulsive force of the
confinement is introduced using an interaction potential as in
Eq. (4) and an additional energy contribution

FCo =
N∑

i=1

1

Co

∫
�

B(φi )w(dδ )dx,

following the approach of Eq. (3). Within the circular confine-
ment there are N = 106 cells, resulting from regular initial
arrangements. In order to avoid minimal energy configura-
tions as initial conditions, we start with rectangular cells but
avoid higher-order vertices. Various test simulations confirm
that the presented results are independent of these initial
configurations. Considering the zero-level set of φi as cell
boundary the resulting packing fraction is around 90%. The

TABLE I. Chosen values for v0 classified as low, medium, and
high activity.

Random Elongation Polar Nematic

Low 1.2 1.0 1.2 21.0
Medium 2.4 2.0 2.4 24.0
High 3.6 3.0 3.6 30.0

model parameters are chosen as ε = 0.15, In = 0.025, Pa =
Ne = 1, Co = 0.004, and cp = cn = 1. We further consider
Dr = 0.1, β = 0.01, and γ = 0.1. This allows one to only
vary Ca and v0. Other numerical parameters, such as grid
resolution and time step, are considered as large as possible to
ensure stable behavior and resolution of the essential physics.
The grid spacing within the diffuse interface is h ≈ 0.2ε, in
the interior of each cell h � ε, and in the exterior h � 10ε

with increasing values for regions far away from the interior.
The time step is chosen as τ = 0.1.

IV. COORDINATION NUMBER DISTRIBUTION AND
SHAPE VARIABILITY

Coordination number distribution has been extensively
studied in vertex and Voronoi models (see, e.g., [19]), and
identified to depend on the strength of activity and cell de-
formability. While the deformability is typically described in
these models using a shape index, we here follow [14] and
directly consider the surface tension, respectively the capillary
number Ca.

The coordination number q, i.e., the number of neighboring
cells, is measured after an initialization phase, making sure
the evaluated quantities are independent on time. Figure 2
(first row) shows the averaged distribution over all cells and
all time steps for fixed Ca and various v0 for the four models.
We consider three representative levels of activity, termed low,
medium, and high. The precise choice of v0 depends on the
mechanism of activity but is kept constant throughout the
following chapters and can be found in Table I. For all models
the mean value of the coordination number probability is
close to 6 and only slightly decreases with increasing activity.
The coordination number is an easily accessible structural
property, which can be used as a rough measure to identify
solid-to-liquid transitions [14]. Considering the coordination
number q to deviate from the hexagonal ordering, which can
be expressed by the statistic variance μ = ∑

q(q − 6)2P(q) >

θP(q), with P(q) the discrete probability distribution obtained
from counting the presence of each value q and θP(q) = 0.001,
we can identify the solid and liquid phase. Figure 2 (second
row) shows the phase diagram for the four models. Blue are
regions where the observable indicates solidlike behavior and
red are regions where it indicates liquidlike behavior.

Although the qualitative behavior of the phase diagram is
quite similar for all four models and the previous studies using
vertex and Voronoi models [19], the actual quantitative results
in terms of the parameter range for v0 differ strongly. Both
the random and the polar model are driven by a normalized
vector field with a clearly preferred direction which results in
a quantitatively similar behavior. For the elongation-based and
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FIG. 2. First row: Coordination number probability for Ca = 0.0148 with low (blue), medium (orange), and high (green) values of v0. For
actual values, see Table I. Second row: Phase diagram indicating the transition between solid (blue) and liquid (red) states as a function of the
deformability parameter (capillary number) Ca and the activity (self-propulsion strength) v0.

the nematic model the driving force is computed as divergence
of a tensor field and thus not normalized, indicating why they
have a parameter range which is different from the other two
models.

The snapshots in Fig. 3 show typical cell shapes for the
four models in the liquid and solid phase, respectively. The
cell shapes are isotropic on average in the solid phase and
anisotropic in the liquid phase, leading to differences in the
number of neighbors. Also the cell tracks significantly differ;
they show dynamical arrest due to caging in the solid phase
and diffusion in the liquid phase. These tracks are obtained
by considering the center of mass of each cell in each time
step. While the solid phase is more or less identical in all four
models, the liquid phase differs significantly. We will quantify
these differences below.

Following [5], it should also be possible to identify com-
mon generic features over a wide range of the phase diagrams.
Considering the shape variability of the cells, which is ex-

FIG. 3. Snapshots of tissue morphology for liquid phase (first
row) and solid phase (second row), for the four models, random,
elongation, polar, and nematic (from left to right). Shown are the
zero-level sets of φi together with cell trajectories for some time span
of the cells in the center, indicating diffusion in the liquid phase and
dynamical arrest due to caging in the solid phase.

pressed by the aspect ratio AR of the long and the short
cell axis, the largest and the smallest eigenvalue of Si, and
rescaling x = AR

〈AR〉 , with 〈·〉 the average value, leads to an
empirically proposed universal k-gamma distribution [5] with
probability distribution function PDF(x, k) = kk

�(k) x
k−1e−kx

with Legendre gamma function �(k). This distribution is fully
described by the parameter k and has a mean of unity. Across
diverse epithelia systems, including Madin-Darby canine
kidney (MDCK) cells, human bronchial epithelia cells
(HBECs), and the Drosophila embryo during ventral furrow
formation, [5] shows that this equation pertains to k in a nar-
row range between 2 and 3, which indicates universality. This
result provides the first quantitative comparison for the dif-
ferent phase field models. Figure 4 shows the distribution for
all four models together with maximum-likelihood-estimation
fits for PDF(x, k) for three different parameters v0 and Ca =
0.018. The corresponding k values for each v0 are shown in
Table II.

Indeed, in accordance with the experimental results in [5],
the data can be described by a k-gamma distribution and k
does not vary strongly within each model for the considered
parameters. However, the k values differ between the four
models. While both the elongation-based and the polar model
have values within the experimentally predicted universal

TABLE II. k-gamma parameter fit for different models. Low,
medium, and high correspond to the values used in Fig. 4. The
k values are obtained with maximum-likelihood-estimation fits for
PDF(x, k) for one simulation run over the whole time.

v0 Random Elongation Polar Nematic

Low 3.18 2.68 2.82 3.23
Medium 3.12 2.60 2.87 4.20
High 3.04 2.49 2.85 4.21
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FIG. 4. Shape variability for the four models using the rescaled parameter x = AR
〈AR〉 for different points of the phase diagrams in Fig. 2 with

low (blue), medium (orange), and high (green) activity. Fitted values for the PDF (red) are computed using data for all three values v0 resulting
in kran = 3.11, kelo = 2.59, kpol = 2.84, and knem = 3.88.

range between 2 and 3, both the random and the nematic
model are slightly above with the latter one leading to the
largest values. These larger values for k in the nematic model
become evident from the construction of the model, where
active forces enhance elongation which is also apparent in
Fig. 1. This also explains why k is growing for larger values
of v0 only in the nematic model while it stays approximately
constant in all others. The larger fluctuations in the polar and
especially the nematic model can be explained by the stronger
coupling between shape changes and active forces.

These differences in the shape variability of the cells pro-
vide a first indication on the dependency of macroscopic
observables on the microscopic details considered in each
model.

V. LIQUID PHASE

We now only concentrate on the liquid phase and com-
pare the four models with other statistical observables of
experiments. We consider vorticity correlation functions and
statistical data on topological measures, such as number of
neighboring cells and distributions of topological defects. In
order to be comparable we parametrize all models to fulfill
one common topological measure. While the deformability
parameter, the capillary number, can be chosen as Ca = 0.018
in all models, the activity parameter v0 differs to model
the same physical state in the phase diagram. We consider

the variance in the coordination number μ = 0.4 as a ref-
erence value. This value corresponds to a value measured
in Drosophila embryos [46] at an early stage of devel-
opment (up to stage 7 before intercallation). Using vran

0 =
1.3, velo

0 = 0.6, v
pol
0 = 1.3, and vnem

0 = 19.0, we obtain μ =
0.41, 0.40, 0.44, and 0.45, respectively. The resulting config-
urations with these parameters are considered as comparable
physical states.

A. Rosette formation

Multicellular rosettes or higher-order vertices, where four
or more cells meet, have been found in many tissues [47,48].
The importance of cellular rosettes has been widely recog-
nized and they have been proposed as an efficient mechanism
for tissue remodeling. In [49] the influence of rosettes on the
mechanics of a confluent tissue is studied using a generalized
vertex model. While in these models the formation of rosettes
requires a collapse of cell edges, T 1 junctions and rosettes
form naturally within our multiphase field models [13]. The
considered parameters lead to the formation of rosettes. The
rosette ratio, the fraction of all vertices that connect more than
three cells, is shown in Table III.

The rosette ratio has been measured in various develop-
mental processes. Experimental data for the rosette ratio for
the early stage of development (up to stage 7 before interca-
lation) in Drosophila embryos [46] show values between 5%
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TABLE III. Average rosette ratio for different models, consid-
ered for one simulation over a time interval after initialization for
comparable physical states.

Random Elongation Polar Nematic

Rosette ratio 4.8% 2.6% 5.5% 1.3%

and 6%. The considered parameters can at least phenomeno-
logically be linked to this situation. The measured values are
reproduced by the polar model. The random model leads to
a ratio which is only slightly below. The other two models
lead to significantly lower values. Even if only one physical
state is considered, which allows for a calibrated comparison
with experimental data, the results strongly differ between the
four models. These differences on the rosette ratio indicate a
further dependency on the mechanism of propulsion.

B. Nematic order and topological defects

Many cellular systems in its liquid phase display properties
of active liquid crystals, such as local nematic alignment and
the appearance of topological defects. For MDCK cells it has
been shown that these defects can control death and extru-
sion in cell monolayers [6]. This relation has been used to
model collective cell migration on a multicellular scale (see
[27]). In [12] the formation of nematic order is addressed
using a multiphase field model. We follow this procedure
and compare the emergence of global nematic order and the
proliferation of topological defects in the orientation field in
all four models. We thereby determine nematic order from cell
deformations and compute the local Q tensor Si for each phase
field φi. The eigenvalues and eigenvectors of Si measure the
strength and orientation of the main deformation axis of cell i.
Interpolating Si, as described for the elongation-based model
above, defines a global Q tensor S. Different methods exist
to identify topological defects in S; they have been compared
in [40]. We here consider a physics-based approach, which
addresses degenerated points of S to identify the location of
defects and the sign of δ = ∂xS11∂yS12 − ∂yS11∂xS12 to distin-
guish between + 1

2 and − 1
2 defects. Figure 5 illustrates the

process for one snapshot.
Localization and identification of defects is done in each

time step. In order to connect the defects from frame to frame
we consider a particle tracking algorithm [50], available in
ImageJ/FiJi [51] and shown to reliably consider different de-
fect types and defect appearance and disappearance [40]. This
allows one to statistically examine the velocity distribution of
topological defects in all four models (see Fig. 6).

While these distributions strongly differ between the four
models, in all models the velocity distribution of + 1

2 and
− 1

2 defects is similar. This qualitative difference with coarse-
grained active nematodynamics and experimental data, e.g.,
for active microtubule networks, which indicate a difference
in the velocity distribution between the different types of
defects (see [52,53]), has already been found in [40]. Detailed
data on the velocity distribution of + 1

2 and − 1
2 defects for

epithelia cell cultures are not separately available. However,
for HBECs, [7] indicates no apparent quantitative differences

FIG. 5. Left: Tissue morphology represented by φi = 0 level
lines, together with the normalized largest eigenvector of Si corre-
sponding to the orientation of the long cell axis in the center of mass
of each cell (red lines). Right: Global nematic field S obtained by
interpolation of Si, represented by director field (blue lines) and + 1

2
(green) and − 1

2 (purple) defects. The φi = 0 level lines are shown to
indicate the position of defects in relation to the morphology.

between both types of defects in terms of their trajectories on
long timescales, which might support the simulation results.
However, differences between + 1

2 and − 1
2 defects become

evident if the direction of the defect velocity is correlated
with the local properties of the defect. Figure 7 shows the
distribution of directions with respect to symmetry properties
of + 1

2 and − 1
2 defects.

While the velocity of − 1
2 defects do not show any pre-

ferred orientation for all models, which supports the passive
(diffusive) role of these defects, the velocity of + 1

2 defects
is strongly correlated with the head or the tail of the defect.
Only the random model does not show this property. All
other models support the active role of + 1

2 defects in active
nematic systems [27]. The elongation model shows a strong
correlation of the direction of movement with the head of the
defect, indicating extensile behavior. The polar and nematic
models show a stronger correlation with the tail of the defect,
indicating contractile behavior. For a detailed discussion of
these relations in active nematics we refer to [54].

To further elaborate on the hypothesis that microscopic
details on the single cell level determine the mechanical prop-
erties of the system, we compute the strain rate tensor in the
vicinity of + 1

2 defects. The essential quantity is the velocity
v obtained by linear interpolation of the cell velocities vcell

i ,
which are computed from the movement of the center of mass
of the cells. The strain rate tensor E = 1

2 [∇v + (∇v)T ] is
defined in the vicinity of the + 1

2 defects and averaged after
appropriate reorientation over all defects. Figure 8 shows the
averaged fields for all models.

With the exception of the random model, which does not
show any significant pattern, the other models support our
hypothesis. The elongation model leads to patterns character-
istic for extensile systems, while the polar and nematic models
show patterns characteristic for contractile systems. The strain
rate along the tail-to-head direction (yy strain) shows nega-
tive (positive) values at the head indicating the presence of
compression (extensional deformation). The presence of both
types is known from experiments, e.g., epithelial [6,7] or
neural progentior [55] monolayers behave as an extensile
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FIG. 6. Velocity distribution of topological defects (+ 1
2 and − 1

2 ) for all four models: random, elongation, polar, and nematic, from top left
to bottom right.

system, while monolayers of fibroblasts [56] behave as a
contractile system. The extensile behavior of the elongation

FIG. 7. Distribution of direction of motion with respect to sym-
metry properties of + 1

2 (top) and − 1
2 (bottom) defects for all four

models. A schematic description of the defects defines the considered
symmetry.

model has already been found in [12]. The model is con-
structed to elongate the cell further along its long axis (see
definition of velo and Fig. 1). Due to the interaction of cells
this behavior leads to extensional deformations. For the polar
model the contractile stress on the single cell level also gener-
ates contractile behavior at the collective level. In the nematic
model the behavior on the single cell level strongly depends
on the shape of the cell. However, the collective behavior
shows contractile patterns.

The differences between epithelial and mesenchymal cells,
which show extensile and contractile behavior at the collective
level, respectively, have been explored in [57]. The differ-
ent mechanical behavior is associated with strong cell-cell
adhesion in epithelial monolayers, which allows for active
intercellular force transmission. Weakening this intercellular
adhesion results in contractile behavior at the collective level,
consistent with the contractile stress on the single cell level.
The multiphase field model used in [57] to confirm these find-
ings combines features of our elongation, polar, and nematic
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FIG. 8. Average fields for both the xy component (top) and the yy component (bottom) of the strain rate tensor E in the vicinity of + 1
2

defects for all models: random, elongation, polar, and nematic from left to right. Each plot shows a box of dimension 8 × 8 centered at the
defect core. The average is taken over data of more than 3000 defects for each model.

models. However, the mechanical behavior on the single cell
level remains unclear. The purpose of our study is to first fully
understand the emerging behavior of each microscopic effect
separately, before these effects are combined. In any case the
experiments in [57] suggest that additional cell-cell adhesion
can change the collective mechanical properties from con-
tractile to extensile in the polar and nematic models. Also in
[57] the average velocity in monolayers is compared between
extensile and contractile systems at similar density, with larger
velocities for the extensile system. Comparing the velocity
distribution in Fig. 6 between the elongation model (extensile)
and the polar and nematic models (contractile) we find for
the average velocity of + 1

2 defects a consistent behavior (see
Table IV). The even higher number for the random model
results from the large velocity fluctuations in this model.

C. Active turbulence and vorticity correlation

For large enough activities also flow patterns reminiscent
of active turbulence can be found in confluent cell structures.
Examples are collectively migrating MDCK cells, fibrob-
lastlike normal rat kidney cells, and HBKCs, which show
long-range flows and patterns of vorticity (see, e.g., [7,58]). In
models for active liquid crystals such turbulent states emerge
as a result of spontaneous defect pair creation. In [12] the
velocity field is also analyzed for a multiphase field model.
We here follow this approach and compare the four models.
Figure 9 shows snapshots of the cell dynamics, visualized
using LIC to highlight the active turbulent character of the
dynamics. The vorticity is computed from the velocity field as

TABLE IV. Average velocities for + 1
2 defects for all four models.

Random Elongation Polar Nematic

Velocity 0.954 0.710 0.653 0.294

ω = curl v. A vorticity-vorticity correlation function can be
computed, which is shown in Fig. 10. It has a well-defined
minimum and thus confirms a macroscopic length scale for
long-range flows, which is mediated by the activity of the
individual cells and their interaction. This length scale more

FIG. 9. LIC visualization of cell dynamics for the four models:
random, elongation, polar, and nematic (from left to right). Color
represents the magnitude of the velocity with the same scaling for all
models.
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FIG. 10. Vorticity-vorticity correlation function Cω(r) =
〈ω(r)ω(0)〉/〈ω(0)2〉 depending on the distance r for all models.
The data is averaged over 3three simulations with the “low” values
for the self-propulsion velocity (see Table I). The other values lead
to qualitatively similar results. The inlet shows the position of the
minima for the other activity values.

or less coincides for the four models and only slightly changes
with the strength of activity.

As the turbulent collective flow is characterized by the
spontaneous emergence of mesoscopic vortices and nematic
defects, we also analyze the defect density and creation rate
(see Fig. 11). Simulations for active nematics and experiments
on MDCK cells (with activity reduced by blebbistatin) [6],
show a linear dependency of the defect density on activity.
This behavior is qualitatively reproduced by the random, elon-
gation, and polar models. The nematic model shows slight
deviations with no consistent slope. The behavior correlates
with the defect creation rate. Comparing the absolute values,
the nematic model leads to significantly larger defect densities

but lower creation rates, which indicates stronger persistence
of defects. In contrast, the random model leads to significantly
larger creation rates, which might be explained by the random
component of the model.

D. Confinement

While all investigations above consider a large conflu-
ent monolayer, we are now concerned with the influence
of confinement on the emerging macroscopic behavior. The
first multiphase field simulations of such situations consider
persistent rotational motion of two cells [10] on adhesive
micropatterns. In this model vi follows from a reaction-
diffusion equation to be solved within each cell. The emerging
patterns in concentration of Rho GTPase define a polarity,
which determines strength and direction of motion. For a
more detailed modeling approach in this direction we refer
to [59], and the references therein. Already these simulations,
which consider the simplest possible collective motion, show
a strong dependency on subcellular features on the emerging
behavior. Recent studies with more cells in a rectangular con-
finement could reproduce sustained oscillation experimentally
observed for MDCK cells, human keratinocytes (HaCat), and
enterocytes (CaCo2) [60]. The considered multiphase field
models in these studies are related to the elongation model
[12] and the polar model [40].

To compare the four models we focus on experiments
for MDCK cells in circular confinements [61]. They show
that confined epithelia exhibit collective low-frequency radial
displacement modes and rotational motion, which was partly
reproduced in corresponding particle-based simulations [28].
The circular geometry allows one to split the velocity v into
radial and orthoradial components, which can be averaged
over all angles to obtain their mean spatial distributions. These
values are shown in Fig. 12 for all four models. While the
radial component is qualitatively similar in all four models,
the orthoradial component qualitatively differs between the

FIG. 11. Averaged defect density (left) and creation rate (right) as a function of activity with low, medium, and high values defined
in Table I.
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FIG. 12. Kymographs of radial and orthoradial velocity components for the four models: random, elongation, polar, and nematic, from left
to right. Corresponding movies of the evolution are provided in the Supplemental Material [62].

models. Only the polar model could reproduce the rotation of
the monolayer as a whole and a change in direction of the inte-
rior part, which is assumed to be responsible for a comparable
size of the confinement and the spatial scale resulting from
the vorticity-vorticity correlation in Fig. 10. The simulations
are performed with the “medium” values in Table I.

To further analyze the emerging properties in the circular
confinement, Fig. 13 shows snapshots of the configuration,
highlighting the cell morphology and their neighbor relations.
We also compute the bond number |�6| to be 1 for a perfectly
hexagonal arrangement and 0 for an isolated cell (see [14]).
The quantity is computed locally and averaged over time,
essentially showing a global liquidlike behavior for all four
models. The coordination number probability is computed as
in Fig. 2, but excluding the cells in contact with the confine-
ment. All four models show a decrease in the mean value as a
result of the confinement. The elongation and nematic models
also show an increase in the variance if compared with the
results in Fig. 2 and thus indicate a shift of the solid-to-liquid
transition towards lower activities in the phase diagram.

In real systems confinement has a tremendous effect on
the emerging macroscopic behavior and might even induce
morphgenesislike processes. Our simulation results indicate
that the emerging behavior in confinements strongly depends
on subcellular details and the way in which activity is enforced
on the cellular level in the modeling approach.

VI. CONCLUSIONS

We use multiphase field models to analyze confluent mono-
layers of deformable cells. The advantage of such a modeling
approach has been pointed out in various recent contributions
[9–14]. Cell deformations and detailed cell-cell interactions,
as well as subcellular details to resolve the mechanochem-
ical interactions underlying cell migration can naturally be
handled. Also topological changes, such as rosettes or T 1
transitions, follow naturally in a multiphase field frame-
work. Using efficient numerics and appropriate computing
power we analyze the emerging macroscopic behavior in such
models and compare with known universal features of cell

054410-10



MULTIPHASE FIELD MODELS FOR COLLECTIVE CELL … PHYSICAL REVIEW E 104, 054410 (2021)

FIG. 13. First row: Cell morphology and number of neighbors. Second row: Time-averaged bond number. Third row: Coordination number
probability computed excluding cells in contact with confinement. The corresponding curves from Fig. 2 are shown for comparison (dashed
curves).

monolayers and epithelia tissue. We consider four different
minimal models. They all follow the same methodology and
only differ at microscopic details on the incorporation of
activity: The random model [14] determines the direction of
motion on the single cell level by a stochastic process, and
the elongation model [12] aligns the direction of motion with
the long axis of the cell and two models, the polar [13] and
a nematic model, which use subcellular details to determine
strength and direction of motion on a single cell level.

Various of the known generic features of confluent mono-
layers are reproduced by all four models, highlighting the
robustness of these features on microscopic details. This in-
cludes coordination number distribution, which leads after
appropriate calibration of parameters to similar phase dia-
grams as obtained with vertex and Voronoi models [19]. Other
common features are the spontaneous formation of vortices
and topological defects as well as the emergence of active
turbulent flows.

TABLE V. Comparison of considered emerging properties. � indicates observed agreement, X indicates disagreement, and (�) indicates
only qualitative agreement with universal feature. If experimental data are not available or insufficient for a comparison, only similarities or
differences of the models are noted. This summary only accounts for the specific form of the models and the considered parameters in this
paper; for more details see the sections above.

Random Elongation Polar Nematic

Coordination number distribution (�) (�) (�) (�)
Shape variability (�) � � (�)
Rosette ratio Differences between models
Velocity distribution of topological defects Differences between models
Correlation between direction of motion and orientation of defect X � � (�)
Elastic property of + 1

2 defect X Extensile Contractile Contractile
Active turbulence (�) (�) (�) (�)
Vorticity-vorticity correlation Similar for all models
Dependency of defect density on activity Linear Linear Linear Constant
Rotational motion in circular confinement X (�) X X

054410-11



D. WENZEL AND A. VOIGT PHYSICAL REVIEW E 104, 054410 (2021)

However, the four models also lead to different results if
more quantitative measures are considered. This becomes ap-
parent for the deformation of cells. While the shape variability
of the cells can be described by a k-gamma distribution over
a broad range of parameters for all four models, the narrow
range of the parameter k found in [5] for various epithelia
systems, could only be reproduced by the elongation and
polar model. Not only geometrical properties of the cells,
but also topological features differ between the four models.
The ratio of multicellular rosettes depends on the microscopic
details. As these rosettes provide an efficient mechanism for
tissue remodeling (see, e.g., [49]), these differences need to
be considered in further model extensions. The most striking
differences between the four models are found by analyzing
the emerging nematic liquid crystal properties of the mono-
layer and its topological defects. The different role of + 1

2 and
− 1

2 defects in active nematodynamics can only be reproduced
by the elongation, polar, and nematic models. However, the
mechanical properties differ. The elongation model is con-
structed to produce extensile behavior on the multicellular
level. In the polar model the contractile behavior on the single
cell level carries over to the multicellular level and also the
nematic model, where the properties on the single cell level
depend on shape, leads to contractile behavior on the mul-
ticellular level. As suggested by the experiments on MDCK
cells [57], the emerging mechanical properties of these models
on the multicellular level might be influenced by changing
the considered cell-cell interactions. Also the simulations in

confinement bring differences of the models to light. In-
duced global rotation, as observed in circular confinements
for MDCK cells in [61] and reproduced by particle-based
simulations [28] could only be observed with the polar model.
However, all models show a slight change in coordination
number distribution if considered in confinements. A sum-
mary of these comparisons is given in Table V.

The comprehensive comparison of multiphase field models
for confluent cell monolayers shows the strong effect of the
way activity is considered on a single cell level and highlights
the need to take these effects into account for predictive sim-
ulation results at the multicellular level. However, the results
also show the robustness of these models in producing generic
qualitative features for cell monolayers and epithelia tissue.
The flexibility of multiphase field models, not only in terms
of cell deformability and topological changes, such as forma-
tion of rosettes and T 1 transitions, but also in incorporating
mechanochemical effects on a single cell level and for cell-cell
interactions offers this modeling approach a huge potential for
multiscale simulations of multicellular dynamics.
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