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The velocity of dislocations is derived analytically to incorporate and predict the intriguing effects
induced by the preferential solute segregation and Cottrell atmospheres in both two-dimensional and three-
dimensional binary systems of various crystalline symmetries. The corresponding mesoscopic description
of defect dynamics is constructed through the amplitude formulation of the phase-field crystal model,
which has been shown to accurately capture elasticity and plasticity in a wide variety of systems.
Modifications of the Peach-Koehler force as a result of solute concentration variations and compositional
stresses are presented, leading to interesting new predictions of defect motion due to effects of Cottrell
atmospheres. These include the deflection of dislocation glide paths, the variation of climb speed and
direction, and the change or prevention of defect annihilation, all of which play an important role in
determining the fundamental behaviors of complex defect network and dynamics. The analytic results are
verified by numerical simulations.
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In crystalline systems, topological defects, such as
dislocations and grain boundaries, play a significant role
in controlling system properties. For example, in poly-
crystals, the average grain size plays a major role in
determining the magnitude of the magnetic coercivity
[1,2], yield stress [3,4], and thermal conductivity [5]. It
is, thus, of critical importance to understand the nature
of defect motion and the corresponding elastoplastic
mechanisms during the evolution of nonequilibrium
material systems, which control, e.g., grain coarsening
rates and, hence, the resulting defected structures and
configurations of polycrystalline systems. Dislocations
lead to strains in crystalline lattices which, in turn, are
offset to some extent in binary alloys by phase segre-
gation, or Cottrell atmospheres [6–8] near the disloca-
tion cores. This segregation influences the motion of
dislocations and grain boundaries [9–13] by modifying
the effective Peach-Koehler driving force that acts on
the dislocations. Typically, this phenomenon was inves-
tigated by focusing on concentration profiles and stress
distribution around dislocations [14–17] and the force-
velocity curves for defect motion. In most cases, either
continuum modeling of defect motion or atomistic
description was considered. This also applies to com-
putational studies, from the first numerical approaches
tracking concentration profiles and velocities [18,19] up
to the most recent advanced numerical investigations
accounting for segregation at both dislocations [20–22]
and grain boundaries [23–25].

Given the complex, mesoscopic characteristics of the
defect motion, it is of fundamental importance to bridge the
above two ends of the description spectrum at atomistic and
long-wavelength continuum scales and examine the key
features of mesoscale effects [26]. This often requires
coarse-grained approaches, handling large length scales
through continuum density fields that still retain relevant
microscopic details of the atomic structures of defects.
Although much progress has been made on this front, such
as those based on the multiscale phase-field crystal (PFC)
method [27–29], most studies have been focused on the
defect dynamics in single-component systems [30–33],
while the understanding of the defect behavior in alloys
or multicomponent systems, especially the novel elasto-
plastic properties originated from the coupling to composi-
tionally generated effects, is still limited.
In this Letter, we construct a mesoscopic description of

dislocation dynamics for binary alloy systems, through an
analytic formulation of dislocation velocities as a function
of the solute expansion coefficient and alloy concentration
(i.e., compositional strain), for various two-dimensional
(2D) and three-dimensional (3D) crystalline symmetries.
It is based on the PFC model in its complex amplitude
expansion formalism (APFC) [32,34–37] and extends the
current description of defect velocities in 2D single-
component systems for triangular lattices [30] to incorpo-
rate the key effects induced by local concentration
variations around defects in both 2D and 3D binary
systems. The mesoscale character of this framework results
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from the coarse-grained description of the lattice structure,
deformation fields, and variations of the alloy concentration
conveyed by the APFC model, although dislocations are
still described as individual objects rather than through an
averaged dislocation density. Numerical APFC simulations
are used to verify the analytic calculations, illuminating the
solute preferential segregation at defects and, importantly,
its influence on defect motion for different configurations
and crystal symmetries. One of the intriguing results is the
prediction of the deflection of dislocations from the glide
paths and the change of climb direction that would be
followed in a pure system. This could even prevent defect
annihilation, indicating the novel effect of Cottrell atmos-
pheres and the compositionally induced stress on defect
dynamics.
The original binary PFC model [29] is formulated in

terms of the dimensionless atomic number density variation
field ϱðr⃗; tÞ and a solute concentration field ψðr⃗; tÞ. For the
purposes of this work, it is useful to consider the corre-
sponding amplitude expansion representation [36], in
which the density field is expanded by

ϱ ¼
X

n

ηneiq⃗n·r⃗ þ c:c:; ð1Þ

where ηnðr⃗; tÞ are complex, slowly varying amplitudes, the
wave vectors q⃗n specify a given crystalline symmetry, “c.c.”
represents the complex conjugate, and, for simplicity, the
average of ϱ is set as constant and zero. By assuming the
lattice spacing R to be linearly proportional to ψ (Vegard’s
law), we have R ¼ R0ð1þ αψÞwith α the solute expansion
coefficient. The dynamic equations for n and ψ in dimen-
sionless form are written as [38]

∂ηn
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∂η�n ;
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∂ψ ; ð2Þ

respectively, where
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0jGnηnj2 −
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jηnj4
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þ fsðfηngÞ þ ðωþ Bl
2ΦÞψ

2

2
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4
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q2nðηnG�
nη

�
n þ c:c:Þψ

�
dr⃗; ð3Þ

Φ ¼ 2
P

n jηnj2, Gn ¼ ∇2 þ 2iq⃗n · ∇⃗, and ΔB0, v, Bx
0, w,

Bl
2, and u are model parameters as described in Ref. [29].

Here, fsðfηngÞ is a polynomial in ηn (and η�n) that depends
on the specific crystalline symmetry under consideration
(see Supplemental Material [39]). It can be shown that,
given q⃗n the basic wave vectors corresponding to a pure
system, the equilibrium wave vectors for binary systems
read q⃗eqn ¼ q⃗n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2αψ

p
[37]. This amplitude model as

written does not impose instantaneous mechanical equilib-
rium, nor does it contain Peierls barriers to defect motion,
although both effects have been included in more complex
models [31,33,41].
A dislocation in a crystalline lattice corresponds to a

discontinuity in the phase (θn) of the complex amplitudes
which can be written as ηn ¼ ϕneiθn . The discontinuity in
the phase corresponds to a discontinuity in the displace-
ment field u⃗ that enters continuum elasticity theory, since
this displacement is equivalent to setting θn ¼ −q⃗n · u⃗
[36,42]. More explicitly, a dislocation with Burgers
vector b⃗ is defined by

H
du⃗ ¼ b⃗, corresponding toH

dθn ¼ −q⃗n · b⃗ ¼ −2πsn, where sn is the winding num-
ber. As in Ref. [30], in what follows the vortex solution
ηn ∝ x − isny will be considered with sn ¼ �1.
To examine the influence of solute concentration on

dislocation motion, it is useful to define the Burgers vector
density B⃗ðr⃗Þ as B⃗ðr⃗Þ ¼ P

m b⃗mδðr⃗ − r⃗mÞ, where b⃗m and r⃗m
are the Burgers vector and position of the mth dislocation,
respectively. At a dislocation core, some of the amplitudes
go to zero; it is, thus, useful to make a transformation from
spatial coordinates to the real and imaginary components of
the complex amplitudes. Generalizing Ref. [30] to the case
of a point dislocation in 2D or an edge dislocation in 3D,
the transformation leads to

B⃗ ¼ −β
X

n

q⃗nDnδðηnÞ; Dn ¼
εjk
2i

∂jηn∂kη
�
n; ð4Þ

where β ¼ 2π=
Pðqnj Þ2 for j ¼ x, y, z, εjk is the Levi-

Civita symbol, and the Einstein summation convention
is implied. By writing B⃗ in terms of the amplitudes, the
dynamics of B⃗ is determined by

∂Bi

∂t ¼ −∂jJ ij ¼ −∂j

�X

m

bmi v
α
jδðr⃗ − r⃗mÞ

�
; ð5Þ

with the dislocation velocity

vmj ¼ β

2π

X

n

ðq⃗n · b⃗mÞ2
jb⃗mj2

Jnj
Dn

; Jnj ¼ εjkImð_ηn∂kη
�
nÞ: ð6Þ

Near the dislocation core, the dynamic equation of motion
for ηn can be approximated as

∂ηn
∂t ¼ −q2nBx

0½G2
nηn − 2αq2nðψGnηn þ GnηnψÞ�; ð7Þ

which can be further simplified to

∂ηn
∂t ¼ −i8q2nBx

0q⃗n · ∇⃗ϕnðq⃗n · ∇⃗θn þ q2nαδψÞeiθn ; ð8Þ

with δψ ¼ ψ − ψ core ≈ ψ̄ − ψ core, i.e., the difference
between the concentration far away from the dislocation
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and its value at the defect core, where ψ̄ is the average
concentration. Substituting Eq. (8) into Eq. (6) and using
the results i∂jηn ¼ −1=snεjk∂kηn and Imð∂jηn∂kη

�
nÞ ¼

εjkDn [30] leads to

Jnj
Dn

¼ 8

sn
q2nBx

0εjkq
n
kðqnl qnp∂lup − q2nαδψÞ; ð9Þ

and, in turn,

vmj ¼ 8βBx
0b

m
i

jb⃗mj2
εjk

X

n

q2nqni q
n
kðqnl qnp∂lup − q2nαδψÞ: ð10Þ

Furthermore, since Eq. (10) is symmetric in l and p, it can
be written in terms of the strain tensor Uij ¼ ð∂iuj þ
∂juiÞ=2 as follows:

vmj ¼ 8βBx
0b

m
i

jb⃗mj2
εjk

X

n

q2nqni q
n
kðqnl qnpUlp − q2nαδψÞ: ð11Þ

Equation (11) is consistent with the classical Peach-
Koehler force [43], since the corresponding stress (σijÞ
is proportional to the strain, i.e., σjk ¼ λjklmUlm, where
λjklm is the rank-four elastic modulus tensor [44]. More
explicitly, the calculations reported in Ref. [30] can be
easily extended to more complex crystal structures where
the magnitude ϕn of the complex amplitudes ηn are not all
the same in equilibrium, giving

σjk ¼ 8Bx
0Ulp

X

n

ϕ2
nqnjq

n
kq

n
l q

n
p: ð12Þ

Note that both Eqs. (11) and (12) are of mesoscopic nature,
given the mesoscale amplitudes, displacements, and con-
centration variations. For the case of a 2D triangular lattice
or a 3D bcc crystal, where it is possible to construct the
lattice by retaining only one mode of the lowest order (with
qn ¼ 1), the velocity takes the form

vmj ¼ Mεjk

�
σkibmi − 4Bx

0ϕ
2
0αδψb

m
i

X

n

qni q
n
k

�
; ð13Þ

with a mobility M ¼ 2β=ðϕ2
0jb⃗mj2Þ and the equilibrium

amplitude magnitude ϕ0 of the lowest-order mode. The last
term in Eqs. (11) and (13) accounts for the new contribution
from the compositionally generated stress, as a result of the
compositional strain (∼αψ) arising from local concentra-
tion variations, particularly solute preferential segregation
(Cottrell atmospheres) around defects. Thus, Eqs. (11) and
(13) provide explicit predictions for the influence of solute
concentration on dislocation motion for general crystalline
symmetries and are the main results of this Letter.
In what follows, we consider the lowest-order mode

expansion that is a good approximation of the full

PFC models near melting and is exact for the APFC. A
2D triangular (T) or honeycomb lattice requires three
reciprocal vectors, q⃗1 ¼ h− ffiffiffi

3
p

=2;−1=2i, q⃗2 ¼ h0; 1i,
and q⃗3 ¼ −q⃗1 − q⃗2, and, thus,

vx ¼ γ½2Uxybx þ ðUxx þ 3UyyÞby − 4αδψby�;
vy ¼ −γ½2Uxyby þ ð3Uxx þ UyyÞbx − 4αδψbx�; ð14Þ

where γ ≡ 4πBx
0=jb⃗mj2. Explicit expressions for a point

dislocation in 2D square lattice and an edge dislocation
in 3D bcc and fcc systems are given in Supplemental
Material [39].
To validate the above analytical results, we numerically

integrate the amplitude Eqs. (2) and (3) for some repre-
sentative cases. Here, we consider the system in the single-
phase regime of the phase diagram and do not investigate
the influence of dislocations on phase separation in a
two-phase state [25]. The simulations exploit the finite
element toolbox AMDiS [45,46] and build on the algo-
rithms described in Refs. [47,48]. The initial concentration
field is set to be uniform, i.e., ψðr⃗Þ ¼ ψ̄ . The initial
conditions for amplitudes are set to encode a distortion
of a relaxed crystal having equilibrium wave vectors q⃗eqn .
Details are reported in Supplemental Material [39].
We first consider an edge dislocation in a 2D triangular

lattice, with Burgers vector b⃗ ¼ ð�bx; 0Þ and bx ¼ atri ¼
4π=

ffiffiffi
3

p
, forming between regions with opposite deforma-

tion ux and corresponding to an equilibrium configuration
in a pure system where no motion is expected with zero
Peach-Koehler force. The solute segregation near defect
cores is illustrated in Fig. 1, showing the ψðr⃗Þ profiles
computed. For ψ̄ ¼ 0, two lobes with positive and negative
ψðr⃗Þ form [see Figs. 1(a) and 1(b)]. For ψ̄ ≠ 0, the
concentration shows a well-shaped distribution with a
slightly asymmetric profile around the defect core
[Figs. 1(d) and 1(e)]. The corresponding volumetric strain

FIG. 1. Profiles of phase segregation and strain around a
dislocation in a 2D triangular crystal with b⃗ ¼ ðbx; 0Þ: (a)–
(c) ψðy − ycoreÞ, ψðr⃗Þ, and UV ¼ Uxx þUyy distributions for
α ¼ 0.02 and ψ̄ ¼ 0; (d)–(f) ψðy − ycoreÞ, ψðr⃗Þ, and UV distri-
butions for α ¼ 0.02 and ψ̄ ¼ 0.05.
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field UV ¼ Uxx þUyy, which accounts for both lattice
distortion and compositional strain (see Supplemental
Material [39]), is reported in Figs. 1(c) and 1(f). Notice
that for ψ̄ ¼ 0 the segregation slightly opposes the lattice
deformation induced by the defect. For ψ̄ ¼ 0.05, the solute
depletion at the core is observed, while an asymmetric
contribution is present that resembles the effect observed
for ψ̄ ¼ 0.
As described by Eq. (11) or (13), the preferential

segregation (i.e., Cottrell atmospheres) at dislocations
affects the defect velocity, with quantitative effects depend-
ing on the lattice symmetry. For the triangular case, the
velocities vTy ðα; ψ̄Þ obtained by simulations [Fig. 2(a), blue
dashed lines] match well with the prediction of Eq. (14)
[Fig. 2(a), red solid lines] with δψ extracted from simu-
lations. Note that the velocity values in Fig. 2 have been
subtracted by a small correction vyð0; 0Þ. This small drift is
caused by the weak anisotropy in APFC Eq. (3) for
displacements with the same magnitude but different sign
[49]. It is not included in Eq. (13) and is found to be
independent of α and ψ̄ . The velocities of dislocations in
bcc and fcc crystals, forming between layers with opposite
deformations ux (see Supplemental Material [39]), are also
calculated by both numerical simulations and Eq. (11),
showing a good agreement as well, as demonstrated in
Fig. 2(b). In these 3D cases, we have set the lattice
displacements to obtain edge dislocations parallel to the

z axis and b⃗s ¼ bsxx̂s, with x̂B ¼ ½100�, bBx ¼ 2π
ffiffiffi
2

p
(bcc),

x̂F ¼ ½110�, and bFx ¼ π
ffiffiffi
6

p
(fcc). The simulation results

verify the linear dependence of dislocation velocity on the
compositional strain or stress as predicted by Eq. (11).
More insights on the effects predicted by Eqs. (11) and

(13) can be obtained by focusing on nonequilibrium
configurations involving defect dynamics of glide and
climb. For instance, we consider dislocation pairs in a
triangular lattice that are expected to move by pure glide
(G) and climb (C), with b⃗1;2 ¼ ð�atri; 0Þ and positions
ð�d; 0Þ and ð0;�dÞ, respectively, in a L × L simula-
tion box with L ≫ 2d and d ∼ 28atri. These configurations
are initialized using the displacement field induced by
straight edge dislocations [50] and the corresponding
ηn [33] (see Supplemental Material [39]). The dynamics
of these defects, depending on α and ψ̄ , is illustrated in
Figs. 3(a)–3(c) for α ¼ 0.02 and different values of ψ̄ .
For configuration G, a nonzero vy component is obtained,
directly corresponding to the ones reported in Fig. 2(a),
while a small but nonzero vx encodes the effect of strain
induced by the presence of a second dislocation, repro-
ducing the effect of the Peach-Koehler force that leads to
defect annihilation by pure glide in single-component
systems. Interestingly, at relatively large values of αψ̄ ,
the annihilation of the dislocations by glide can be avoided
[see Fig. 3(a) and Supplemental Videos [39] ]. This new
effect can be understood through Eq. (14): Given
jvt¼0þ

y j > jvt¼0þ
x j, this absence of annihilation would occur

FIG. 2. Segregation-induced dislocation velocity vyðα; ψ̄Þ
evaluated from APFC simulations and the analytic result
Eq. (11), for (a) triangular and (b) bcc and fcc symmetries.

FIG. 3. (a) Trajectories of two 2D edge dislocations in the G
configuration, for α ¼ 0.02 and various values of ψ̄ , with ψ̄ ¼ 0
corresponding to pure glide. (b) Time evolution of the y position
of the upper dislocation in configuration C with α ¼ 0.02. ψ̄ ¼ 0
corresponds to pure climb. (c) Dislocation velocity as a function
of ψ̄ as identified from (b).
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when jαδψ j > jUxyj=2 with Uxy corresponding to the strain
field component caused by the other dislocation in the
dipole while Ut¼0þ

xx ¼ Ut¼0þ
yy ¼ 0. Therefore, as driven by

purely thermodynamic driving forces, a threshold value
exists for jαδψ j above which the defect annihilation is
prevented, with dislocations moving away from the tradi-
tional glide planes.
For configuration C, the velocity is oriented only along

the y axis as predicted by Eq. (14) as by ¼ 0. The symmetry
of the simulations setup is such that the two dislocations are
separated by Ly=4 (leaving them a distance > 3Ly=4 from
their periodic counterpart). The contribution of composi-
tional strain can then accelerate, slow down, or even
prevent the annihilation, as illustrated in Figs. 3(b) and
3(c) (see also Supplemental Videos [39]). A change of the
sign of the dislocation velocity is shown in Fig. 3(c),
implying that the defects are moving toward their farther-
away periodic counterpart. In this case, a threshold can be
estimated through Eq. (14) again as the condition vy ¼ 0,
yielding αδψ ¼ ð3Uxx þ UyyÞ=4, with Uxy ¼ 0.
A more complex configuration involving many defects is

also examined, forming the dislocation network embedded
in a crystalline matrix. In particular, we illustrate the case of
a 3D bcc crystal with an embedded grain tilted by 10° about
the [110] direction and of radius∼15abcc with abcc ¼ 2π

ffiffiffi
2

p
[32,51]. As illustrated in Fig. 4(a), a spherical network of

dislocations, namely, a small-angle grain boundary, forms,
and it is expected to shrink anisotropically [51–53]. The
simulated solute segregation at defects is illustrated in
Figs. 4(c) and 4(d). The rate of shrinkage of the dislocation
network is affected by the solute expansion coefficient
and average concentration [see Fig. 4(b)], which can be
ascribed to the interplay of changes of defect dynamics as
reported in Fig. 3. It is noted that analytic expressions (11)
and (13) apply to straight dislocations. Extensions to
arbitrarily curved dislocations in 3D, and, in turn, to con-
figurations as in Fig. 4, are expected to follow by
accounting for the local orientation of curved dislocation
lines and the corresponding distortion in the lattice, e.g.,
through the use of the Nye tensor [54,55]. This formalism is
being developed for single-component systems and will be
extended to binary alloys.
In conclusion, through a coarse-grained approach we

have identified analytic expressions for the velocities of
dislocations in binary systems. The results predict the
effects of compositional stress generated by the solute
preferential segregation near the dislocation cores (i.e.,
Cottrell atmospheres) for different 2D and 3D crystalline
symmetries, as confirmed by numerical simulations of the
APFC model. While the influence of solute concentration
on the magnitude of dislocation velocity was expected, this
work also predicts some novel, segregation-induced behav-
iors of defect dynamics, such as the velocity components
parallel to the Burgers vector in glide, leading to deflections
from the traditional glide planes that could avert defect
annihilation, as well as altering of the dislocation climb
rate, reverse of climb direction, or even stagnation. The
mesoscopic formulation constructed here provides a power-
ful tool to understand the nature of defect motion in binary
alloys which controls the structural dynamics and proper-
ties of the material system.
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