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A B S T R A C T

We introduce a dislocation density tensor and derive its kinematic evolution law from a phase
field description of crystal deformations in three dimensions. The phase field crystal (PFC) model
is used to define the lattice distortion, including topological singularities, and the associated
configurational stresses. We derive an exact expression for the velocity of dislocation line
determined by the phase field evolution, and show that dislocation motion in the PFC is driven
by a Peach–Koehler force. As is well known from earlier PFC model studies, the configurational
stress is not divergence free for a general field configuration. Therefore, we also present a
method (PFCMEq) to constrain the diffusive dynamics to mechanical equilibrium by adding an
independent and integrable distortion so that the total resulting stress is divergence free. In
the PFCMEq model, the far-field stress agrees very well with the predictions from continuum
elasticity, while the near-field stress around the dislocation core is regularized by the smooth
nature of the phase-field. We apply this framework to study the rate of shrinkage of an
dislocation loop seeded in its glide plane.

. Introduction

Plasticity in crystalline solids primarily refers to permanent deformations resulting from the nucleation, motion, and interaction
f extended dislocations. Classical plasticity theories deal with the yielding of materials within continuum solid mechanics (Hill,
998; Wu, 2004). Deviations from elastic response are described with additional variables (e.g., the plastic strain), which effectively
escribe the onset of plasticity (yielding criteria), as well as the mechanical properties of plastically deformed media (e.g., work
ardening). A macroscopic description of the collective behavior of dislocation ensembles is thus achieved, usually assuming
omogeneous media for large systems. In crystal plasticity, inhomogeneities and anisotropies are accounted for, with the theory
aving been implemented as a computationally efficient finite element model (Roters et al., 2010; Pokharel et al., 2014). These
heories are largely phenomenological in nature, and rely on constitutive laws and material parameters to be determined by other
ethods, or extracted from experiments. They can be finely tuned, but sometimes fail in describing mesoscale effects (Rollett et al.,
015). On the other hand, remarkable mesoscale descriptions have been developed by tracking single dislocations (Kubin et al.,
992; Bulatov et al., 1998; Sills et al., 2016; Koslowski et al., 2002; Rodney et al., 2003). These approaches typically evolve
islocation lines through Peach–Koehler type forces while incorporating their slip system, mobilities, and dislocation reactions
henomenologically. Stress fields are described within classical elasticity theory (Anderson et al., 2017). Since linear elasticity
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predicts a singular elastic field at the dislocation core, theories featuring its regularization are usually exploited. Prominent examples
are the non-singular theory obtained by spreading the Burgers vector isotropically about dislocation lines (Cai et al., 2006), and
the stress field regularization obtained within a strain gradient elasticity framework (Lazar and Maugin, 2005). Plastic behavior
then emerges when considering systems with many dislocations and proper statistical sampling (Devincre et al., 2008). Still, the
accuracy and predictive power of these approaches depend on how well dislocations are modeled as isolated objects. In this context,
mesoscale theories that require a limited set of phenomenological inputs are instrumental in connecting macroscopic plastic behavior
to microscopic features of crystalline materials.

The Phase Field Crystal (PFC) model is an alternative framework to describe the nonequilibrium evolution of defected materials
at the mesoscale (Elder et al., 2002; Emmerich et al., 2012; Momeni et al., 2018). Within the phase field description, complex
processes such as dislocation nucleation (Skogvoll et al., 2021b), dislocation dissociation and stacking fault formation (Mianroodi
and Svendsen, 2015), creep (Berry et al., 2015), fracture (Liu et al., 2020), and boundary driven grain motion (Provatas et al., 2007;
Wu and Voorhees, 2012; Yamanaka et al., 2017; Salvalaglio et al., 2018) have been studied. The phase field allows a short scale
regularization of defect core divergences inherent in classical elasticity, while allowing for the treatment of defect topology, grain
boundary structures, and associated mobilities. For static studies, the only constitutive input required is the (defect free) equilibrium
free energy, functional of the phase field, which has a minimizer that corresponds to a spatially periodic configuration. For time
dependent problems, the phase field is generally assumed to obey a gradient flow that minimizes the free energy functional. When
topological defects are present in the phase field configuration, their motion directly follows from the gradient flow, without any
additional specification of slip systems, stacking fault energies, and line or boundary mobilities. The PFC model thus begins with
the definition of a scalar order parameter (or phase field) 𝜓(𝐫, 𝑡), function of space and time, so that its equilibrium configuration
corresponds to a perfectly periodic, undistorted, configuration. A non-convex free energy functional 𝐹 [𝜓] of the field and its gradients
is chosen so that its minimizer has the same spatial symmetry as the lattice of interest (Elder et al., 2010). The requisite free
energies have been derived by using the methods of density functional theory (Elder et al., 2007; Huang et al., 2010; Archer et al.,
2019), although our calculations below will rely on modified forms of the classical Brazovskii functional description of modulated
phases (Brazovskii, 1975), also known as the Swift–Hohenberg model in the convection literature (Swift and Hohenberg, 1977).

Despite the model’s successes to date, a clear connection with classical theory of dislocation motion in crystalline solids is lacking.
At its most basic level, the phase field does not carry mass, and hence momentum. Therefore the only stresses (momentum current)
that appear in the theory are the reversible contributions that arise from variations of the free energy with respect to distortions
of the phase field (Skaugen et al., 2018a). Neither momentum currents that arise in a material due to Galilean invariance, nor
dissipative currents that would couple directly to the material distortion are present (Forster, 1975). Unlike classical theories of
dislocation motion, the primary object of the model is the phase field, from which other quantities are derived. For an appropriate
choice of the free energy functional, the phase field minimizer is a ‘‘crystalline’’ phase in that translational symmetry is broken. As
is conventionally the case, the minimizer admits an expansion in a reciprocal space basis set. This expansion is further restricted to
include only those wave vector modes in reciprocal space that are critical at onset of the broken symmetry phase. Configurational
distortions of the phase field appear as slow (in space and time) modulations of the complex amplitudes of the expansion. A
displacement vector is defined from the phase of the modulation. Configurational topological defects are possible and appear as
(combinations of) zeros of the complex amplitudes, points at which the phases of the modulation are singular. The corresponding
defect current, however, is solely related to the phase field, and to the equation governing its temporal evolution. This is in contrast
with more general dislocation density currents in solid mechanics which also include dissipative contributions. An attempt to bridge
the PFC description and a field theory of dislocation mechanics has been given in Ref. Acharya and Viñals (2020), where an extended
free energy is introduced, which includes a material elastic contribution and the coupling between the two.

Since the theory lacks a proper description of momentum conservation, it also cannot describe the relaxation of elastic excitations.
The first attempt at extending the PFC model to include elastic interactions considered a phenomenological second order temporal
derivative in the equation of motion for the phase field (Stefanovic et al., 2006), which allowed for fast relaxation of short-
wavelength elastic disturbances. Later efforts have included coupling the PFC phase field to a velocity field (Ramos et al., 2010),
or various methods of coarse graining it to develop a consistent hydrodynamical description (Tóth et al., 2013; Heinonen et al.,
2016). Such approaches are necessary for a proper description of processes where elastic interactions are important, such as crack
propagation and defect dynamics. Other efforts have been made to develop efficient modeling approaches in which the time scale
of elastic interactions is a priori set to zero 𝜏𝐸 = 0, i.e. when mechanical equilibrium is obeyed at all times. The latter approach
is justified when deformations are slow, including many of the applications mentioned such as creep and boundary driven grain
motion. This approach was first introduced in Ref. Heinonen et al. (2014) which involved relaxing elastic excitations separately
and instantaneously within the amplitude equation formulation of the PFC model (Goldenfeld et al., 2005). The same strategy was
later developed for the PFC model in two dimensional isotropic 2D lattices by adding to the phase-field a correction at each time
step that ensured instantaneous mechanical equilibrium (Skaugen et al., 2018b; Salvalaglio et al., 2020). In this paper, we present
a generalization of this approach to anisotropic crystals in three dimensions (PFC-MEq). Since a distorted phase field configuration
determines the corresponding configurational stresses (Skaugen et al., 2018a; Skogvoll et al., 2021a), the method yields regularized
stress profiles for dislocation lines in three dimensions down to the defect core. In the case of a point defect, it was shown in
Ref. Salvalaglio et al. (2020) that the stress field at the core agrees with the predictions of the non-singular theory of Ref. Cai et al.
(2006), and with gradient elasticity models (Lazar and Maugin, 2005; Lazar, 2017), indicating that the results obtained here can
serve as benchmarks for similar theories in three dimensions. The specific example of a dislocation loop in a bcc lattice is considered,
2

and the far-field stresses given by the 𝜓 field are shown to coincide with predictions by continuum elasticity.
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Fig. 1. (a) A dislocation line  consisting of points 𝐫′ characterized by the tangent vector 𝐭′ and the Burgers vector 𝐛 at that point. The difference 𝐫 − 𝐫′ from
a point 𝐫 to a point 𝐫′ on the line can be decomposed into a 2D in-plane vector 𝛥𝐫⟂, which is the projection of 𝐫 − 𝐫′ onto the plane  ′ normal to 𝐭′ and a
distance |𝛥𝐫∥| from this plane. In this figure, 𝛥𝐫∥ ⋅ 𝐭′ = −3.47𝑎0 and |𝛥𝐫⟂| = 3.42𝑎0. (b) The 𝑁 = 12 primary reciprocal lattice vectors {𝐪(𝑛)}12𝑛=1 of length 𝑞0 of a
bcc lattice (Eq. (20)). Higher modes (dots) correspond to higher harmonics {𝐩𝑛}𝑛>𝑁 in the expansion of the equilibrium phase-field configuration 𝜓𝑒𝑞 , Eq. (3).

The rest of the paper is structured as follows. In Section 2, we introduce the theoretical method used to define topological defects
from a periodic 𝜓-field. This allows us to define a dislocation density tensor in terms of the phase field (Eq. (12)), and obtain the
dislocation line velocity (Eq. (16)). These are key results, which are applied in several examples in Section 3. First, we use the PFC
model to numerically study the shrinkage of a dislocation loop in a bcc lattice. Then, we show analytically that Eq. (16) captures
the motion of dislocations driven by a Peach–Koehler type force, and hence by a local stress. Finally, we introduce the PFC-MEq
model, and compare the shrinkage of the dislocation loop under PFC and PFC-MEq dynamics. While the results are qualitatively
similar for the case of a shear dislocation loop, the constraint of mechanical equilibrium causes the shrinkage to happen much faster.
We finally confirm that the stress field derived from the 𝜓 field in the PFC-MEq model agrees with that which would follow from
continuum elasticity theory, with the same singular dislocation density as source, and with no adjustable parameters.

2. Kinematics of a dislocation line in three dimensions

Dislocations in 3D crystals are line defects, where each point 𝐫′ on the line  is characterized by the tangent vector 𝐭′ at that
point and a Burgers vector 𝐛, see Fig. 1(a). By introducing a local Cartesian plane  ′ normal to 𝐭′, the distance of an arbitrary point
𝐫 to a point 𝐫′ on  can be decomposed into an in-plane vector 𝛥𝐫⟂ ⟂ 𝐭′ and a vector 𝛥𝐫∥ ∥ 𝐭′, i.e. 𝐫 − 𝐫′ = 𝛥𝐫⟂ + 𝛥𝐫∥. A deformed
state can be described by a displacement field 𝐮 and, in the presence of a dislocation, 𝐮 is discontinuous across a surface (branch
cut) spanned by the dislocation, given by

∮𝛤 ′
𝑑𝐮 = 𝐮+ − 𝐮− = −𝐛, (1)

where 𝐮+ and 𝐮− are the values of the displacement field at each side of the branch cut, respectively. We use the negative sign
convention relating the contour integral with the Burgers vector. Here, 𝛤 ′ is a small circuit enclosing the dislocation line in the  ′-
plane, directed according to the right-hand rule with respect to 𝐭′. The dislocation density tensor associated with the line is (Lazar,
2014)

𝛼 = 𝜹(2)()⊗ 𝐛 =
(

∫
𝑑𝐥′𝛿(3)(𝐫 − 𝐫′)

)

⊗ 𝐛
(

𝛼𝑖𝑗 (𝐫) = 𝑏𝑗𝛿
(2)
𝑖 () = 𝑏𝑗 ∫

𝑑𝑙′𝑖𝛿
(3)(𝐫 − 𝐫′)

)

, (2)

where 𝑏𝑗 is the 𝑗 component of the Burgers vector of the line, and 𝑑𝑙′𝑖 = 𝑡′𝑖𝑑𝑙
′ is the line element in the direction of the line. 𝛿(2)𝑖 ()

is a short-hand notation for the delta function, with dimension of inverse area, locating the position of the dislocation line for each
component 𝑖 of the dislocation density tensor. It is defined by the line integral over the dislocation line of the full delta function
(which scales as inverse volume). The dislocation density tensor is defined so that ∫ ′ 𝑑2𝑟⟂𝛼𝑖𝑗 𝑡′𝑖 = 𝑏𝑗 , where we are using the Einstein
summation convention over repeated indices.

In the PFC models, a crystal state is represented by a periodic phase field 𝜓(𝐫) of a given crystal symmetry. A reference crystalline
lattice,

𝜓𝑒𝑞(𝐫) = 𝜓̄ +
𝑁
∑

𝜂𝑛𝑒
i𝐪(𝑛)⋅𝐫 +

∑

𝜂𝑛𝑒
i𝐩(𝑛)⋅𝐫 , (3)
3

𝑛=1 𝑛>𝑁
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Fig. 2. (a) Example of a discontinuous displacement field 𝐮 in the presence of a dislocation loop (black line) with Burgers vector 𝐛 (Eq. (1)). (b) Isosurfaces of
one of the phases 𝜃𝑛 possessing the same discontinuity as the displacement field (Eq. (5)).

is defined by a set of 𝑁 primary (smallest) reciprocal lattice vectors {𝐪(𝑛)}𝑁𝑛=1 of length 𝑞0, and higher harmonics {𝐩𝑛}𝑛>𝑁 , also on
the reciprocal lattice but with |𝐩𝑛| > 𝑞0 (see, e.g., {𝐪(𝑛)} with |𝐪(𝑛)| = 𝑞0 for a bcc lattice in Fig. 1(b)). The lattice constant of the
crystal is then given by 𝑎0 ∼ 2𝜋∕𝑞0. This represents a perfect crystal configuration in the absence of defects and distortion, where
the average value 𝜓̄ and the amplitudes 𝜂𝑛 are constants. In the phase-field crystal theory presented in Refs. Elder et al. (2002) and
Elder and Grant (2004), near the solid–liquid transition point, only the terms from the primary reciprocal lattice vectors contribute
to 𝜓𝑒𝑞 , while in general for more sharply peaked density profiles, there are also contributions from the higher order harmonics
{𝐩𝑛}𝑛>𝑁 . For a distorted crystal lattice, the mode amplitudes 𝜂𝑛 become complex scalar fields, henceforth named complex amplitudes
𝜂𝑛(𝐫), such that

𝜓(𝐫) ≈ 𝜓̄(𝐫) +
𝑁
∑

𝑛=1
𝜂𝑛(𝐫)𝑒i𝐪

(𝑛)⋅𝐫 +
∑

𝑛>𝑁
𝜂𝑛(𝐫)𝑒i𝐩

(𝑛)⋅𝐫 . (4)

In this section, we provide an accurate description of dislocation lines as topological defects in the phase of the complex amplitudes
𝜂𝑛(𝐫). We generalize the method of tracking topological defects as zeros of a complex order parameter as introduced in Refs. Halperin
(1981) and Mazenko (1997), and apply it to accurately derive the kinematics of dislocation lines.

Given a phase field configuration 𝜓(𝐫), the complex amplitudes can be found by a demodulation as described in Appendix A.1.
Decomposing each amplitude 𝜂𝑛(𝐫) = 𝜌𝑛(𝐫)𝑒𝑖𝜃𝑛(𝐫), into its modulus 𝜌𝑛(𝐫) and phase 𝜃𝑛(𝐫), we have that for a perfect lattice, 𝜃(0)𝑛 = 0
and 𝜌𝑛 is constant. Displacing a lattice plane by a slowly varying 𝐮 transforms the phase as 𝜃𝑛 → 𝜃(0)𝑛 − 𝐪(𝑛) ⋅ 𝐮. Thus, the phase
provides a direct measure of the displacement field 𝐮(𝐫) relative to the reference lattice, i.e.,

𝜃𝑛(𝐫) = −𝐪(𝑛) ⋅ 𝐮(𝐫)
(

𝜃𝑛(𝐫) = −𝑞(𝑛)𝑖 𝑢𝑖(𝐫)
)

, (5)

where 𝑞(𝑛)𝑖 denotes the 𝑖th Cartesian coordinate of 𝐪(𝑛). It is possible to invert Eq. (5), and solve for the displacement field 𝐮 as
function of the phases 𝜃𝑛 and reciprocal vectors. We use the following identity which is valid for lattices with cubic symmetry,
where all primary reciprocal lattice vectors have the same length 𝑞0 (see Appendix B)

𝑁
∑

𝑛=1
𝐪(𝑛) ⊗ 𝐪(𝑛) =

𝑁𝑞20
3
1

( 𝑁
∑

𝑛=1
𝑞(𝑛)𝑖 𝑞(𝑛)𝑗 =

𝑁𝑞20
3

𝛿𝑖𝑗

)

, (6)

so that the displacement 𝐮 is given by

𝐮(𝐫) = − 3
𝑁𝑞20

𝑁
∑

𝑛=1
𝐪(𝑛)𝜃𝑛(𝐫). (7)

Eq. (7) shows that a dislocation line, which introduces a discontinuity in the displacement field, leads to a discontinuity in the
phases 𝜃𝑛(𝐫). This is the first key insight, which we illustrate in Fig. 2. By using Eq. (5) and the fact that the Burgers vector 𝐛 is
constant along the dislocation line, we relate the Burgers vector to the phase 𝜃𝑛 as

∮𝛤 ′
𝑑𝜃𝑛 = −∮𝛤 ′

𝐪(𝑛) ⋅ 𝑑𝐮 = 𝐪(𝑛) ⋅ 𝐛 ≡ 2𝜋𝑠𝑛, (8)

where 𝑠𝑛 is the (integer) winding number of the phase 𝜃𝑛 around the dislocation line. That 𝑠𝑛 is an integer follows from the fact that
while 𝜃 (𝐫) may have a discontinuity across the branch cut, the complex amplitude 𝜂 (𝐫) is well-defined and continuous everywhere.
4

𝑛 𝑛
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Therefore the circulation of the phase must be an integer multiple of 2𝜋. By the same reasoning, for an amplitude for which 𝐪(𝑛)⋅𝐛 ≠ 0,
at the dislocation line, the phase 𝜃𝑛(𝐫) is undefined (singular), so the modulus 𝜌𝑛(𝐫) must go to zero for 𝜂𝑛(𝐫) to remain continuous.

his is the second key insight, which allows us to identify the location of the dislocation line with the zeros of the complex amplitudes
𝑛(𝐫).

The complex amplitude 𝜂𝑛(𝐫) is isomorphic to a 2-component vector field 𝚿(𝐫) ≡ (𝛹1(𝐫), 𝛹2(𝐫)) = (ℜ(𝜂𝑛(𝐫)),ℑ(𝜂𝑛(𝐫))). The study
f how to track zeros of any dimensional vector field in any dimensions was introduced in Ref. Halperin (1981). The orientation
ield 𝚿(𝐫)∕|𝚿(𝐫)| is continuous wherever |𝚿(𝐫)| ≠ 0 and supports 1D topological defects in 3 dimensions which are located precisely
here |𝚿(𝐫)| = 0. The topological line density 𝜌𝑖 of the line , which satisfies ∫ 𝑑2𝑟⟂𝜌𝑖 = 𝑠𝑛𝑡′𝑖 , is given by

𝝆 = 𝑠𝑛𝜹(2)()
(

𝜌𝑖 = 𝑠𝑛𝛿
(2)
𝑖 ()

)

. (9)

ike 𝛿(2)𝑖 (), the dimension of 𝜌𝑖 is that of a two-dimensional vector density. This topological charge density is expressed explicitly
n terms of the real-valued positions  = {𝐫′} of the topological defect line. Since these positions coincide with the zero-line of the
ector field 𝚿(𝐫), it is possible to relate the expression to the delta-function locating the zeros of 𝚿(𝐫), through the transformation
aw 𝑠𝑛𝛿(2)() = 𝐷𝑖(𝐫)𝛿(2)(𝚿(𝐫)), with the determinant vector field 𝐷𝑖(𝐫) = 𝜖𝑖𝑗𝑘(𝜕𝑗𝛹1(𝐫))(𝜕𝑘𝛹2(𝐫)). Comparing this to Eq. (2), using
q. (8) and re-expressing 𝐷(𝑛)

𝑖 (𝐫) (with the added superscript 𝑛) in terms of the complex amplitude 𝜂𝑛(𝐫), we end up with the central
quation for tracking the evolution of the dislocation density

1
2𝜋

𝐪(𝑛) ⋅ 𝛼(𝐫) = 𝛿(2)(𝜂𝑛(𝐫))𝐃(𝑛)(𝐫)
( 1
2𝜋
𝑞(𝑛)𝑘 𝛼𝑖𝑘(𝐫) = 𝛿(2)(𝜂𝑛(𝐫))𝐷

(𝑛)
𝑖 (𝐫)

)

, (10)

here 𝛿(2)(𝜂𝑛) = 𝛿(ℜ(𝜂𝑛))𝛿(ℑ(𝜂𝑛)) and

𝐃(𝑛)(𝐫) = ∇ℜ(𝜂𝑛(𝐫)) × ∇ℑ(𝜂𝑛(𝐫))
(

𝐷(𝑛)
𝑖 (𝐫) = 𝜖𝑖𝑗𝑘(𝜕𝑗ℜ(𝜂𝑛(𝐫)))(𝜕𝑘ℑ(𝜂𝑛(𝐫)))

)

. (11)

n the following, for ease of notation, we suppress the explicit positional dependence of 𝛼𝑖𝑗 , 𝐷
(𝑛)
𝑖 and 𝜂𝑛. The dislocation line is located

t 𝜂𝑛 = 0, which is the intersection of the surfaces ℜ(𝜂𝑛) = 0 and ℑ(𝜂𝑛) = 0. As we see from its definition, 𝐃(𝑛) is perpendicular to
oth these surfaces and is thus directed along the tangent to the line. We can reconstruct the dislocation density tensor from an
ppropriate summation over the modes with singular phases, namely by multiplying Eq. (10) by 𝑞(𝑛)𝑗 , summing over the reciprocal

modes and using Eq. (6) to arrive at

𝛼 = 6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝛿(2)(𝜂𝑛)𝐃(𝑛) ⊗ 𝐪(𝑛)

(

𝛼𝑖𝑗 =
6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝛿(2)(𝜂𝑛)𝐷

(𝑛)
𝑖 𝑞

(𝑛)
𝑗

)

. (12)

Having a closed form of the dislocation density in terms of the complex amplitudes 𝜂𝑛, we now turn to deriving a closed form
xpression for its kinematic in terms of the time evolution of 𝜂𝑛. Taking the time derivative of Eq. (2), we show in Appendix C.1
hat for a dislocation density tensor described by a single loop or string, we have 𝜕𝑡𝛼𝑖𝑗 = −𝜖𝑖𝑘𝑙𝜕𝑘

(𝛼)
𝑙𝑗 , where

 (𝛼) = 𝛼 × 𝐕
(

 (𝛼)
𝑙𝑗 = 𝜖𝑙𝑚𝑛𝛼𝑚𝑗𝑉𝑛

)

, (13)

nd 𝐕 is a vector field defined on the string by the velocity of the line segment perpendicular to the tangent vector. Taking the time
erivative of Eq. (12), we show in Appendix C.2 that we get 𝜕𝑡𝛼𝑖𝑗 = −𝜖𝑖𝑘𝑙𝜕𝑘𝑙𝑗 , where

 = 6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝛿(2)(𝜂𝑛)𝐉(𝑛) ⊗ 𝐪(𝑛)

(

𝑙𝑗 =
6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝛿(2)(𝜂𝑛)𝐽

(𝑛)
𝑙 𝑞(𝑛)𝑗

)

, (14)

and 𝐽 (𝑛)
𝑙 = (𝜕𝑙ℜ(𝜂𝑛))𝜕𝑡ℑ(𝜂𝑛) − (𝜕𝑙ℑ(𝜂𝑛))𝜕𝑡ℜ(𝜂𝑛) = ℑ(𝜕𝑡𝜂𝑛𝜕𝑙𝜂∗𝑛 ). Note that 𝑙𝑗 depends on 𝜕𝑡𝜂𝑛, and hence on the law governing the

emporal evolution of the phase field.  (𝛼)
𝑙𝑗 is the well-known expression in terms of the dislocation velocity and 𝑙𝑗 is what we

redict from the evolution of the phase field crystal density 𝜓 . Under the assumption that both currents are equal, we show in the
ollowing that we are able to determine the dislocation velocity directly from the evolution of the phase field 𝜓 at the dislocation
ore. We have checked numerically that the dislocation velocity predicted with this assumption is in excellent agreement with the
ne computed by tracking the position of the dislocation line at successive time steps.

By contracting Eq. (10) with 𝐷(𝑛)
𝑖 , we can express the delta-function in terms of the dislocation density tensor 𝛿(2)(𝜂𝑛) =

𝑖𝑘𝐷
(𝑛)
𝑖 𝑞

(𝑛)
𝑘 ∕(2𝜋|𝐃(𝑛)

|

2), which we can insert into Eq. (14). Then, by equating 𝑙𝑗 and  (𝛼)
𝑙𝑗 at a point 𝐫′ on the dislocation line, where

𝑖𝑘 = 𝑡′𝑖𝑏𝑘𝛿
(2)(𝛥𝐫⟂), we get after contracting with 𝐛 and integrating the delta-functions in  ′ (details in Appendix D)

12𝜋2

𝑁𝑞20 |𝐛|
2

𝑁
∑

𝑛=1
𝑠2𝑛

(

𝐭′ ⋅ 𝐃(𝑛)

|𝐃(𝑛)
|

2

)

𝐉(𝑛) = 𝐭′ × 𝐯′
(

12𝜋2

𝑁𝑞20 |𝐛|
2

𝑁
∑

𝑛=1
𝑠2𝑛
𝑡′𝑖𝐷

(𝑛)
𝑖

|𝐃(𝑛)
|

2
𝐽 (𝑛)
𝑙 = 𝜖𝑙𝑚𝑛𝑡

′
𝑚𝑣

′
𝑛

)

, (15)

where 𝐯′ is the velocity of the dislocation node at 𝐫′. Since 𝐭′ ⟂ 𝐯′, we can easily invert this relation to find 𝐯′, and using that 𝐃(𝑛) ∥ 𝐭′
gives

𝐯′ = 12𝜋2

𝑁𝑞20 |𝐛|
2

𝑁
∑

𝑛=1
𝑠2𝑛

𝐉(𝑛) × 𝐃(𝑛)

|𝐃(𝑛)
|

2

(

𝑣′𝑠 =
12𝜋2

𝑁𝑞20 |𝐛|
2

𝑁
∑

𝑛=1
𝑠2𝑛
𝜖𝑠𝑙𝑟𝐽

(𝑛)
𝑙 𝐷(𝑛)

𝑟

|𝐃(𝑛)
|

2

)

. (16)

Eqs. (12) and (16) are the key results of this paper. Eq. (12) defines the dislocation density tensor from the demodulated
amplitudes 𝜂𝑛 of the phase field, while Eq. (16) gives an explicit expression for the dislocation line velocity. Both equations bridge
he continuum description of the dislocation density and velocity with the microscopic scale of the phase field.
5
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Fig. 3. A bcc unit cell in the PFC model shown by isosurfaces of constant 𝜓 . Using the model parameters given in Appendix A, 𝜓(𝐫) varies between peaks of
𝜓 = 0.7447 and troughs of 𝜓 = −0.6148 with the isosurfaces drawn at 𝜓 = 0.0694.

3. Dislocation motion in a bcc lattice

We apply here the framework developed in Section 2 to a phase field crystal model of dislocation motion in a bcc lattice (Elder
et al., 2002; Elder and Grant, 2004; Emmerich et al., 2012). The free energy 𝐹𝜓 is a functional of the phase field 𝜓 over the domain

, given by

𝐹𝜓 = ∫𝛺

[

𝛥𝐵0
2
𝜓2 +

𝐵𝑥0
2
𝜓2𝜓 − 𝑇

3
𝜓3 + 𝑉

4
𝜓4

]

𝑑𝐫, (17)

where  = 𝑞20 + ∇2, and 𝛥𝐵0, 𝐵𝑥0 , 𝑉 , and 𝑇 are constant parameters (Elder et al., 2007). The dissipative relaxation of 𝜓 reads as

𝜕𝜓
𝜕𝑡

= 𝛤∇2 𝛿𝐹𝜓
𝛿𝜓

. (18)

with constant mobility 𝛤 . We will refer to Eq. (18) as the ‘‘classical’’ PFC dynamics. As a characteristic unit of time given these
odel parameters, we use 𝜏 = (𝛤𝐵𝑥0 𝑞

6
0 )

−1. For appropriate parameter values, the ground state of this energy is a bcc lattice which
s well described in the one mode approximation

𝜓(𝐫) = 𝜓0 +
12
∑

𝑛=1
𝜂0𝑒

i𝐪(𝑛)⋅𝐫 , (19)

here 𝜓0 is the average density, 𝜂0 is the equilibrium amplitude found by minimizing the free energy (Eq. (17)) with this ansatz
or 𝜓(𝐫), and {𝐪𝑛} are the 𝑁 = 12 smallest reciprocal lattice vectors

𝐪(1) = 𝑞0(0, 1, 1)∕
√

2, 𝐪(4) = 𝑞0(0,−1, 1)∕
√

2,
𝐪(2) = 𝑞0(1, 0, 1)∕

√

2, 𝐪(5) = 𝑞0(−1, 0, 1)∕
√

2,
𝐪(3) = 𝑞0(1, 1, 0)∕

√

2, 𝐪(6) = 𝑞0(−1, 1, 0)∕
√

2,
(20)

with 𝐪(𝑛) = −𝐪(𝑛−6) for 𝑛 = 7,… , 12, see Fig. 1(b). Fig. 3 shows one bcc unit cell of a phase-field initialized in the one-mode
approximation. Given the equilibrium configuration, the lattice constant 𝑎0 will be used as the characteristic unit of length and the
shear modulus 𝜇 calculated from the phase-field will serve as the characteristic unit of stress (Skogvoll et al., 2021a). As we see, the
functional form of the free energy determines the base vectors 𝐪(𝑛), and no further assumptions about slip systems or constitutive
laws for dislocation velocity (or plastic strain rates) need to be introduced.

The model parameters (𝛥𝐵0, 𝐵𝑥0 , 𝑇 , 𝑉 , and 𝛤 ) and variables (𝐹𝜓 , 𝜓, 𝐫, and 𝑡) can be rescaled to a dimensionless form in which
𝐵𝑥0 = 𝑉 = 𝑞0 = 𝛤 = 1, thus leaving only three tunable model parameters: the quenching depth 𝛥𝐵0, 𝑇 and the average density 𝜓0
(due to the conserved nature of Eq. (18)). All simulations are performed in these dimensionless units as described in Appendix A.3.

3.1. Numerical analysis: shrinkage of a dislocation loop

In order to have a lattice containing one dislocation loop as the initial condition, we consider first the demodulation of the
𝜓 field in the one mode approximation. A dislocation loop is introduced into the perfect lattice by multiplying the equilibrium
amplitudes by complex phases 𝜂0 → 𝜂𝑛(𝐫) with the appropriate charges 𝑠𝑛 (see Appendix A.4) and then reconstructing the phase
field 𝜓 through Eq. (19). We then integrate Eq. (18) forward in time as detailed in Appendix A.3. A fast relaxation follows from the
initial configuration with the loop. This relaxation leads to the regularization of the singularity at the dislocation line (𝜂 → 0 for
6

𝑛
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Fig. 4. (a) The initial dislocation loop in a 35 × 35 × 35 bcc PFC lattice with periodic boundary conditions. The dislocation loop is on the slip system given
by plane normal [−1, 0, 1] and slip direction (Burgers vector) 𝑎0

2
[1,−1, 1]. Inset: the dislocation viewed from the indicated angle. (b) Comparison of average point

velocity 𝑣̄ (Eq. (22)) to the average loop radius shrinkage velocity |𝜕𝑡𝑅| (Eq. (21)) as functions of the loop circumference. PFC and PFC-MEq refer, respectively,
to the classical PFC model, and the PFC model constrained to mechanical equilibrium as introduced in Section 3.3. (c) The circumference 𝑙 of the dislocation
loop. Superimposed on the right 𝑦-axis are the velocities of panel (b) as functions of time.

𝑠𝑛 ≠ 0) as achieved in PFC approaches (Skaugen et al., 2018a; Salvalaglio et al., 2019, 2020). From then onward, 𝜓 evolves in time
leading to the motion of the dislocation line which may be analyzed by the methods outlined in Section 2, using the amplitudes
{𝜂𝑛} extracted from 𝜓 extracted as detailed in Appendix A.1.

Numerically, we approximate the delta function in Eq. (12) as a sharply peaked 2D Gaussian distribution, i.e., 𝛿(2)(𝜂𝑛) ≃
exp(− |𝜂𝑛|2

2𝜔2 )∕(2𝜋𝜔
2) with a standard deviation of 𝜔 = 𝜂0∕10. Near the dislocation line, the dislocation density 𝛼𝑖𝑗 thus takes the

form of a sharply peaked function, which can be treated numerically. The decomposition of 𝛼𝑖𝑗 into its outer product factors 𝑡′𝑖 and
a Burgers vector density 𝐵𝑗 = 𝑏𝑗𝛿(2)(𝛥𝐫⟂) is done by singular value decomposition (see Appendix A.2), and the Burgers vector of
the point is extracted by performing a local surface integral in  ′. We prepare a 35 × 35 × 35 unit cell 3D PFC lattice on periodic
boundary conditions with a resolution of 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 𝑎0∕7. A dislocation loop is introduced as the initial condition in the
slip system given by a plane normal [−1, 0, 1] with slip direction (Burgers vector) 𝑎0

2 [1,−1, 1]. Fig. 4(a) shows the initial dislocation
density decomposed as described, where we also have calculated the velocity 𝐯′ at each point given by Eq (16).

In order to obtain the velocity of the dislocation loop segments, we identify 𝑀 nodes on the loop and evaluate Eq. (16) by using
numerical differentiation of the 𝜓 field to calculate the amplitude currents 𝐽 (𝑛)

𝑙 . To serve as a benchmark, we also calculate the
circumference 𝑙 of the dislocation loop  at each time (further details in Appendix A.5), so that we compare the rate of shrinkage
|𝜕𝑡𝑅|

|𝜕𝑡𝑅| =
1
2𝜋

|𝜕𝑡𝑙 |, (21)

(solid blue line in Fig. 4(b)) to the average velocity of the 𝑀 dislocation nodes

𝑣̄ = 1
𝑀
∑

|𝐯(𝑚)|, (22)
7

𝑀 𝑚=1
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(dashed blue line in Fig. 4(b)) where 𝐯(𝑚) is the velocity of the dislocation line at node 𝑚, calculated by the velocity formula Eq. (16).
|𝜕𝑡𝑅| and 𝑣̄ should agree in the case of the shrinking of a perfectly circular loop and the figure shows excellent agreement between
the two. Interestingly, we observe that both are sensitive to the Peierls like barriers during their motion, as shown by the oscillations
in Fig. 4(b). The maxima are separated by 2𝜋𝑎0, confirming that the oscillation is related to the motion of a loop segment over one
lattice spacing 𝑎0 (Boyer and Viñals, 2002). This observation confirms that even though Eqs. (12) and (16) are continuum level
descriptions of the system, they still exhibit behavior related to the underlying lattice configuration. The initial fast drop in velocity
is due to the fast relaxation of the initial condition. The evolution of the variables under the dynamics of Eq. (18) are shown together

ith the evolution given by the PFC-MEq model which will be introduced in Section 3.3.

.2. Theoretical analysis: Peach Koehler law

In this section, we show that the general expression Eq. (16) of the defect velocity agrees with the dissipative motion of a
islocation as given by the classical Peach–Koehler force (Pismen, 1999; Kosevich, 1979). To calculate an analytical expression for

the amplitude currents 𝐽𝑙, we employ the amplitude formulation of the PFC model, which directly expresses the free energy and
dynamical equations in terms of the complex amplitudes 𝜂𝑛 (Goldenfeld et al., 2005; Athreya et al., 2006; Salvalaglio and Elder,
022). For our lattice symmetry, real valuedness of 𝜓 requires that 𝜂𝑛+6 = 𝜂∗𝑛 , and the dynamical equations need only consider
he amplitudes {𝜂𝑛}6𝑛=1. By substituting Eq. (19) in 𝐹𝜓 and integrating over the unit cell, under the assumption of slowly-varying

amplitudes, one obtains the following free energy as a function of the complex amplitudes,

𝐹𝜂 = ∫𝛺

[

𝛥𝐵0
2
𝛷 + 3𝑉

4
𝛷2 +

6
∑

𝑛=1

(

𝐵𝑥0 |𝑛𝜂𝑛|
2 − 3𝑉

2
|𝜂𝑛|

4
)

+ 𝑓 s({𝜂𝑛}, {𝜂∗𝑛})
]

𝑑𝐫, (23)

here 𝑛 = ∇2 + 2i𝐪𝑛 ⋅ ∇ and 𝛷 = 2
∑6
𝑛=1 |𝜂𝑛|

2. 𝑓 s({𝜂𝑛}, {𝜂∗𝑛}) is a polynomial in 𝜂𝑛 and 𝜂∗𝑛 that depends in general on the specific
rystalline symmetry under consideration (Goldenfeld et al., 2005; Elder et al., 2010; Salvalaglio and Elder, 2022) (here bcc, see
ppendix E for its expression). Eq. (23) is obtained when considering a set of vectors 𝐪 of length 𝑞0, while similar forms may be

achieved when considering different length scales (Elder et al., 2010; Salvalaglio et al., 2021). The evolution of 𝜂𝑛, which follows
from Eq. (18) is (Goldenfeld et al., 2005; Salvalaglio and Elder, 2022),

𝜕𝜂𝑛
𝜕𝑡

= −𝛤𝑞20
𝛿𝐹
𝛿𝜂∗𝑛

, (24)

with
𝛿𝐹
𝛿𝜂∗𝑛

=
[

𝛥𝐵0 + 𝐵𝑥0
2
𝑛 + 3𝑉

(

𝛷 − |𝜂𝑛|
2)] 𝜂𝑛 +

𝜕𝑓 𝑠

𝜕𝜂𝑛

∗
, (25)

here the last term comes from the nonlinear contributions 𝜓3 and 𝜓4 in the local free energy density, and depend on the other
mplitudes {𝜂𝑚}𝑚≠𝑛. However, for the amplitudes that go to zero at the defect, it can be shown that 𝜕𝑓 𝑠

𝜕𝜂∗𝑛
= 0 at the defect (for more

details, see Appendix E). Thus, the evolution of 𝜂𝑛 near the defect core is dictated solely by the non-local gradient term, namely

𝜕𝑡𝜂𝑛 ≈ −𝛤𝐵𝑥0 𝑞
2
0

2
𝑛𝜂𝑛. (26)

Furthermore, this implies that the complex amplitude 𝜂𝑛 of a stationary defect satisfy 2𝑛𝜂
(0)
𝑛 = 0 at the core. We now add an imposed,

smooth displacement 𝐮̃ to the amplitudes as 𝜂𝑛 = 𝜂(0)𝑛 𝑒−𝑖𝐪𝑛⋅𝐮̃ to represent the far-field displacement induced by a different line segment,
defect, or externally applied loads (Skaugen et al., 2018a). This displacement is in addition to the discontinuous displacement field
𝐮, described in Section 2, which is captured by stationary solution 𝜂(0)𝑛 and defines the Burgers vector of the dislocation line (Fig. 2).
Inserting this ansatz of the complex amplitudes into Eq. (11), and in the approximation of small distortions, |∇𝐮̃|≪ 1, we find

𝐃(𝑛) = 𝐃(𝑛),0 + 1
2
∇(𝐪(𝑛) ⋅ 𝐮̃) × ∇(|𝜂(0)𝑛 |

2),
(

𝐷(𝑛)
𝑖 (𝐫) = 𝐷(𝑛),0

𝑖 + 1
2
𝜖𝑖𝑟𝑠𝑞

(𝑛)
𝑚 (𝜕𝑟𝑢̃𝑚)𝜕𝑠|𝜂(0)𝑛 |

2) , (27)

where 𝐷(𝑛),0
𝑖 is the determinant vector field calculated from 𝜂(0)𝑛 . The corresponding defect density current is

𝐉(𝑛) = 4𝛤𝐵𝑥0 𝑞
2
0ℑ

(

i(∇𝜂(0)∗𝑛 )⊗ (∇ + i𝐪(𝑛))𝑛𝜂(0)𝑛
)

⋅ ∇(𝐪(𝑛) ⋅ 𝐮̃)
(

𝐽 (𝑛)
𝑙 = 4𝛤𝐵𝑥0 𝑞

2
0𝑞

(𝑛)
𝑖 (𝜕𝑘𝑢̃𝑖)ℑ

(

i(𝜕𝑙𝜂(0)∗𝑛 )(𝜕𝑘 + i𝑞
(𝑛)
𝑘 )𝑛𝜂(0)𝑛

))

. (28)

Arguably, the simplest solution of Eq. (26) is the isotropic, simple vortex 𝜂(0
′)

𝑛 which is linear with the distance from the core and
𝑛 = ±1. At a node 𝐫′ on the dislocation line, 𝜂(0′) can be written in terms of the Cartesian coordinates 𝑥⟂, 𝑦⟂ in the plane  ′

Section 2), where it takes the form 𝜂(0
′)

𝑛 = 𝜅(𝑥⟂ + i𝑠𝑛𝑦⟂), with 𝜅 a proportionality constant. The gradients of 𝜂(0
′)

𝑛 can be evaluated
n these coordinates and gives at 𝐫′, ℑ

(

i(𝜕𝑙𝜂
(0′)∗
𝑛 )(𝜕𝑚𝜂

(0′)
𝑛 )

)

= 𝜅2(𝛿𝑙𝑚 − 𝑡′𝑙𝑡
′
𝑚), from which we get the current

𝐉(𝑛) = −8𝜅2𝛤𝐵𝑥0 𝑞
2
0 (𝐪

(𝑛) ⋅ ∇(𝐪 ⋅ 𝐮̃𝑖))(1 − 𝐭′ ⊗ 𝐭′) ⋅ 𝐪(𝑛)
(

𝐽 (𝑛)
𝑙 = −8𝜅2𝛤𝐵𝑥0 𝑞

2
0𝑞

(𝑛)
𝑖 𝑞(𝑛)𝑘 𝑞(𝑛)𝑚 (𝜕𝑘𝑢̃𝑖)(𝛿𝑙𝑚 − 𝑡′𝑙𝑡

′
𝑚)
)

(29)

n terms of the local tangent vector 𝐭′. At 𝐫′, we also get 𝐷(𝑛)
𝑖 = 𝜅2𝑠𝑛𝑡′𝑖 , which leads to an expression of the dislocation velocity

where the proportionality constant 𝜅 cancels out), given by

𝑣′𝑠 = −𝜖𝑠𝑙𝑟
𝛤𝜋

2
𝑏𝑗 𝑡

′
𝑟4𝐵

𝑥
0

12
∑

𝑞(𝑛)𝑖 𝑞(𝑛)𝑗 𝑞(𝑛)𝑘 𝑞(𝑛)𝑙 (𝜕𝑘𝑢̃𝑖) =
𝛤𝜋
2 2

𝜖𝑠𝑟𝑙𝑡
′
𝑟𝜎̃𝑙𝑗𝑏𝑗 , (30)
8
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where 𝜎̃𝑙𝑗 is the stress tensor for a bcc PFC that has been deformed by 𝐮̃ (Skogvoll et al., 2021a),

𝜎̃𝑙𝑗 = 4𝐵𝑥0 𝜂
2
0

12
∑

𝑛=1
𝑞(𝑛)𝑖 𝑞(𝑛)𝑗 𝑞(𝑛)𝑘 𝑞(𝑛)𝑙 𝜕𝑘𝑢̃𝑗 . (31)

hus, the velocity of the dislocation line is proportional to the stress on the line. In vectorial form, this equation reads

𝐯 =𝑀𝐭 × (𝜎̃ ⋅ 𝐛). (32)

ith isotropic mobility 𝑀 = 𝛤𝜋∕(|𝐛|2𝜂20 ).
A stationary dislocation induces a stress field 𝜎(0)𝑖𝑗 , but only the imposed stress 𝜎̃𝑖𝑗 appears in the equation above. This is analogous

o how the stress field of the dislocation itself is not included when the Peach–Koehler force as calculated (Kosevich, 1979). Thus,
f 𝜎𝜓𝑖𝑗 is the configurational stress of the phase field at any given time, the part responsible for dislocation motion is the imposed
tress

𝜎̃𝑖𝑗 = 𝜎𝜓𝑖𝑗 − 𝜎
(0)
𝑖𝑗 . (33)

ote that the stationary solution necessarily satisfies mechanical equilibrium, 𝜕𝑗𝜎
(0)
𝑖𝑗 , so that if the configurational PFC stress 𝜎𝜓𝑖𝑗

is in mechanical equilibrium, so is the imposed stress 𝜎̃𝑖𝑗 on the dislocation segment. The imposed stress used can be attributed
to external load, other dislocations, or other parts of the dislocation loop. The framework predicts a defect mobility which is
isotropic and does not discriminate between dislocation climb and glide motion. Numerically however, we have seen that at deeper
quenches 𝛥𝐵0, climb motion is prohibited in the PFC model. The result in this section should therefore be interpreted as a first-order
approximation, valid at shallow quenches. This apparent equal mobility for glide and climb may result from the employment of the
amplitude phase-field model (which is only exact for |𝛥𝐵0| → 0) or the assumption of an isotropic defect core in the calculation.

3.3. PFC dynamics constrained to mechanical equilibrium (PFC-MEq)

In the previous section, we found that the motion of a dislocation is governed by a configurational stress 𝜎𝜓𝑖𝑗 which derives from
the PFC free energy. Since this stress is a functional only of the phase field configuration, it does not satisfy, in general, the condition
of mechanical equilibrium. Refs. Skaugen et al. (2018a) and Skogvoll et al. (2021a) give an explicit expression for this stress defined
s the variation of the free energy with respect to distortion,

𝜎𝜓𝑖𝑗 = −2𝐵𝑥0
⟨

𝜓𝜕𝑖𝑗𝜓
⟩

, (34)

here ⟨⋅⟩ is a spatial average over 1∕𝑞0 in order to eliminate the base periodicity of the phase field (see Appendix A.1).
In this section, we discuss a modification of the PFC in three dimensions and in an anisotropic lattice so as to maintain elastic

quilibrium in the medium while 𝜓 evolves according to Eq. (18). Let 𝜓 (𝑈 ) be the field that results from the evolution defined by
q. (18) alone. At each time, we define

𝜓(𝐫) = 𝜓 (𝑈 )(𝐫 − 𝐮𝛿), (35)

here 𝐮𝛿 is a small continuous displacement computed so that the configurational stress associated with 𝜓(𝐫) is divergence free.
e now show a method to determine 𝐮𝛿 . Suppose that at some time 𝑡 the PFC configuration 𝜓 has an associated configurational

tress 𝜎𝜓,𝑈𝑖𝑗 (from Eq. (34), where 𝜕𝑗𝜎
𝜓,𝑈
𝑖𝑗 ≠ 0). Within linear elasticity, the stress 𝜎𝜓𝑖𝑗 after displacement of the current configuration

y 𝐮𝛿 is given by

𝜎𝜓𝑖𝑗 = 𝜎𝜓,𝑈𝑖𝑗 + 𝐶𝑖𝑗𝑘𝑙𝑒𝛿𝑘𝑙 , (36)

here 𝐶𝑖𝑗𝑘𝑙 is the elastic constant tensor, and 𝑒𝛿𝑖𝑗 =
1
2 (𝜕𝑖𝑢

𝛿
𝑗 + 𝜕𝑗𝑢

𝛿
𝑖 ). 𝐮

𝛿 is determined by requiring that

𝜕𝑗𝜎
𝜓
𝑖𝑗 = 𝜕𝑗 (𝜎

𝜓,𝑈
𝑖𝑗 + 𝐶𝑖𝑗𝑘𝑙𝑒𝛿𝑘𝑙) = 0. (37)

By using the symmetry 𝑖 ↔ 𝑗 of the elastic constant tensor, we can rewrite this equation explicitly in terms of 𝐮𝛿 ,

𝑔𝜓,𝑈𝑖 + 𝐶𝑖𝑗𝑘𝑙𝜕𝑗𝑘𝑢𝛿𝑙 = 0, (38)

where

𝑔𝜓𝑖 = 𝜕𝑗𝜎
𝜓
𝑖𝑗 =

⟨ 𝛿𝐹𝜓
𝛿𝜓

𝜕𝑖𝜓 − 𝜕𝑖𝑓
⟩

(39)

s the body force from the stress (Skogvoll et al., 2021a). The quantity 𝑓 is the free energy density from Eq. (17).
Given the periodic boundary conditions used, the system of Eqs. (38) is solved by using a Fourier decomposition with the Green’s

function for elastic displacement in cubic anisotropic materials (Dederichs and Leibfried, 1969). Once 𝐮𝛿 is obtained, 𝜓 is updated
ccording to Eq. (35), and evolved according to Eq. (18) from its current state 𝜓(𝑡) to 𝜓 (𝑈 )(𝑡+𝛥𝑡). Note that Eqs. (38) can, in general,
e solved for any elastic constant tensor, so that the method introduced is not limited to cubic anisotropy. Since the state 𝜓 (𝑈 ) can
nly be updated according to Eq. (35) every 𝛥𝑡, this effectively sets a time scale of elastic relaxation in the model. We found that
9
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Fig. 5. In-plane sections (𝑦 = 17.5𝑎0) of the configurational stress 𝜎𝜓𝑥𝑧∕𝜇 for the dislocation loop after shrinking to 90% of its initial circumference under (a) PFC
dynamics and (b) PFC-MEq dynamics. Because the latter evolves faster, the snapshots are taken at different times, namely 𝑡 = 389.0𝜏 and 𝑡 = 34.4𝜏, respectively.
A lot of residual (unrelaxed) stress is visible in the configurational stress for the classical PFC model.

the numerical discretization scheme for imposing mechanical equilibrium at every 𝛥𝑡 has a slow convergence with decreasing time
resolution. Thus, the rate of loop shrinkage also depends slightly on 𝛥𝑡. This is further discussed in Appendix A.

Fig. 4 contrasts numerical results for the evolution of an initial dislocation loop with and without using the method just described.
The computed line velocities are very different as they are highly sensitive to the local stress experienced by the dislocation loop
segments. This stems from the fact that under classical PFC dynamics, the stress is always given by 𝜎𝜓,𝑈𝑖𝑗 , and a consequence of
the results from Section 3.2 is that the velocity of an element of the defect line will be quite different depending on whether the
stress acting on it is 𝜎𝜓,𝑈𝑖𝑗 or 𝜎𝜓𝑖𝑗 . Fig. 5 shows the dislocation loop after its circumference has shrunk to 90% of its initial value, and
the resulting 𝑥𝑧 component of the stress for both models. As expected, the correction provided by the PFC-MEq model is necessary
to relax the stress originating from the initial loop. The figure shows a large residual stress far from the dislocation loop that can
only decay diffusively in the standard phase field model. Indeed, we have verified numerically that the configurational stress is
only divergence-less for the PFC-MEq model. We note that in our set the loop is seeded in a glide plane, thus its shape remains
approximately circular for both models, while the shrinkage rate is different. Note that with the addition of this advection step, the
model is no longer guaranteed to be fully dissipative.

The problem addressed in this section involves finding the elastic distortion 𝑢𝑘𝑙 (which away from defects it can be written as
𝑢𝑘𝑙 = 𝜕𝑘𝑢𝑙 for a displacement field 𝐮) given the dislocation density tensor 𝛼𝑖𝑗 as a state variable (Acharya et al., 2019). The first part
is the incompatibility of the elastic distortion

𝜖𝑖𝑙𝑚𝜕𝑙𝑢𝑚𝑘 = −𝛼𝑖𝑘, (40)

and the second is the mechanical equilibrium condition on 𝑢𝑘𝑙

𝜕𝑗𝐶𝑖𝑗𝑘𝑙(𝑢𝑘𝑙)𝑆 = 0, (41)

where 𝐶𝑖𝑗𝑘𝑙 is the tensor of elastic constants, and (𝑆) denotes the symmetric part of the tensor. Eq. (40) has a non trivial kernel
consisting of gradients of vector fields ∇𝐮𝛿 . This vector field is determined by Eq. (41) given appropriate boundary conditions that
guarantee uniqueness. A computational method for solving for 𝑢𝑘𝑙 and 𝐮𝛿 , using the dislocation density as a state variable, was first
given in Ref. Roy and Acharya (2005). The main difference between this reference and the method outlined in this section is that,
since the incompatibility of the distortion is captured by the state of the phase field, we only need to solve for the compatible part
of the distortion using the force density 𝐠𝜓 from the phase field as a source.

While the stress profile shown in Fig. 5(b), can be shown numerically to have vanishing divergence, we would like to see a
direct comparison of the stress with the prediction from continuum elasticity. As the model purports to evolve the phase-field at
mechanical equilibrium, and we are able to extract the dislocation density from the phase-field at any time through Eq. (12), this
amounts to the problem of finding the stress tensor for a given dislocation density, under the constraint of mechanical equilibrium
and with periodic boundary conditions (zero surface traction). This problem was addressed in Ref. Brenner et al. (2014), and in
Appendix A.6, we show how we solve Eqs. (40)–(41) to derive the equilibrium stress field from 𝛼𝑖𝑗 using spectral methods. Fig. 6
shows all the stress components after the dislocation loop has shrunk to 90% of its initial diameter for both dynamical models, as
well as the stress 𝜎(𝛼) computed directly from the dislocation density tensor.1 Note that the mean value of the components of 𝜎(𝛼)𝑖𝑗 ,
is not determined by Eqs. (40)–(41), and is set to zero. In this comparison, we have also subtracted from 𝜎𝜓𝑖𝑗 its mean value. As

1 Due to the geometric similarity in how the loop annihilates in the different models, there is no observable difference in the continuum elastic stress field
predictions between using 𝛼 from either model as a source.
10
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Fig. 6. In-plane sections (𝑦 = 17.5𝑎0) of the stresses for the dislocation loop after it has shrunk to 90% of its initial circumference in (top row) the PFC model
𝜎𝜓,𝑈𝑖𝑗 , (middle row) the PFC-MEq model 𝜎𝜓𝑖𝑗 and (bottom row) the prediction from continuum elasticity 𝜎(𝛼)𝑖𝑗 using the dislocation density extracted from the PFC
as a source. The stresses predicted from continuum elasticity are singular, so the colorbar for each column is saturated at ±max(|𝜎𝜓,𝑈𝑖𝑗 |) and contour lines are
drawn at ±15%,±40% of this value. For the comparison, we have subtracted from 𝜎𝜓,𝑈𝑖𝑗 and 𝜎𝜓𝑖𝑗 their mean values (see text). The stresses are given in units of
the shear modulus 𝜇.

expected, the stresses obtained from the PFC-MEq model agree well with 𝜎(𝛼)𝑖𝑗 . The small differences observed are due to the fact
that the configurational stress determined by 𝜓 is naturally regularized by the lattice spacing and the finite defect core, whereas
the stress 𝜎(𝛼)𝑖𝑗 is for a continuum elastic medium with a singular dislocation source (numerically, the 𝛿-functions in Eq. (12) is
regularized by an arbitrary width of the Gaussian approximation). Investigating exactly which length scale of core regularization
derives from the PFC model is an open and interesting question that we will address in the future.

4. Conclusions

We have introduced a theoretical method, and the associated numerical implementation, to study topological defect motion
in a three dimensional, anisotropic, crystalline PFC lattice. The dislocation density tensor and velocity are directly defined by the
spatially periodic phase field, where dislocations are identified with the zeros of its complex amplitudes.

To illustrate the method, we have studied the motion of a shear dislocation loop, and found that it accurately tracks the loop
position, circumference, and velocity. As an application, we have shown that under certain simplifying assumptions, the overdamped
dislocation velocity follows from the Peach–Koehler force, with the defect mobility determined by equilibrium lattice properties. We
have introduced the PFC-MEq model for three dimensional anisotropic media which constrains the classical PFC model evolution to
remain in mechanical equilibrium, and shown that loop motion is much faster with this modification. The PFC-MEq model produces
stress profiles that are in agreement, especially far from the defect core, to stress fields directly computed from the instantaneous
dislocation density tensor.

In summary, we have presented a comprehensive framework, based on the phase field crystal model for the analysis of dislocation
motion in crystalline phases in three spatial dimensions. Starting from a free energy that has a ground state of the proper symmetry,
the model naturally incorporates defects, the associated topological densities, and the resulting defect line kinematic laws that are
compatible with topological density conservation. Configurational stresses induced by defects are defined and analyzed, and shown
to lead to a Peach–Koehler type force on defects, with an explicit expression for the line segment mobility given.
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ppendix A. Numerical methods

.1. Amplitude demodulation

Given a phase-field configuration described by slowly varying amplitudes 𝜂𝑛(𝐫)

𝜓(𝐫) = 𝜓̄(𝐫) +
∑

𝑛′
𝜂𝑛′ (𝐫)𝑒𝑖𝐪

(𝑛′)⋅𝐫 , (A.1)

e can find the amplitudes using the principle of resonance under coarse graining. Coarse graining 𝑋̃ with respect to a length scale
0 is introduced as a convolution with a Gaussian filter function

⟨𝑋̃⟩(𝐫) = ∫ 𝑑𝐫′ 𝑋̃(𝐫′)
(2𝜋𝑎20)

𝑑∕2
exp

(

−
(𝐫 − 𝐫′)2

2𝑎20

)

. (A.2)

Given the PFC configuration of Eq. (A.1), to find 𝜂𝑛(𝐫), we multiply by 𝑒−𝐪(𝑛)⋅𝐫 and coarse grain to get
⟨

𝜓(𝐫)𝑒−𝐪(𝑛)⋅𝐫
⟩

= 𝜓̄(𝐫)
⟨

𝑒−𝐪
(𝑛)⋅𝐫

⟩

+
∑

𝑛′
𝜂𝑛′ (𝐫)

⟨

𝑒𝑖(𝐪
(𝑛′)−𝐪(𝑛))⋅𝐫

⟩

= 𝜂𝑛(𝐫), (A.3)

where we have used the slowly varying nature of the complex amplitudes to pull them out of the coarse graining operation and
used the resonance condition ⟨𝑒𝑖(𝐪(𝑛

′)−𝐪(𝑛))⋅𝐫
⟩ = 𝛿𝑛𝑛′ (Skogvoll et al., 2021a).

A.2. Dislocation density tensor decomposition

A singular value decomposition of 𝛼 is introduced as 𝛼 = 𝑈𝛴𝑉 𝑇 , where 𝛴 is a diagonal matrix containing the singular values
of 𝛼, and 𝑈 and 𝑉 are unitary matrices containing the normalized eigenvectors of (𝛼𝛼𝑇 ) and (𝛼𝑇 𝛼), respectively. We assume that
the dislocation density tensor can be written as the outer product of the unitary tangent vector 𝐭 and a local spatial Burgers vector
density 𝐁(𝐫), i.e., 𝛼𝑖𝑗 = 𝑡𝑖𝐵𝑗 . Under this assumption, one finds 𝛴 with only one non zero singular value, |𝐁|, and the columns of 𝑈
and 𝑉 that correspond to this singular value will be 𝐭 and 𝐁∕|𝐁|, respectively.

A.3. Evolution of the phase field

The dimensionless parameters for the bcc ground state are set to: 𝛥𝐵0 = −0.3, 𝑇 = 0 and 𝜓0 = −0.325. Lengths have been made
dimensionless by choosing |𝐪(𝑛)| = 𝑞0 = 1, yielding a bcc lattice constant 𝑎0 = 2𝜋

√

2. In all simulations, the computational domain
is given by 35 × 35 × 35 base periods of the undistorted bcc lattice, with grid spacing 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 𝑎0∕7. Periodic boundary
conditions are used throughout. Eq. (18) is integrated forward in time with an explicit method (Cox and Matthews, 2002), and
𝛥𝑡 = 0.1. A Fourier decomposition of the spatial fields is introduced to compute the spatial derivatives of the fields, while nonlinear
terms are computed in real space.

A.3.1. Mechanical equilibrium
We implement the correction scheme of Eq. (35) between every time step 𝛥𝑡. If 𝑢max = max𝐫∈Domain(𝐮𝛿(𝐫)) > 0.1𝑎0, we rescale 𝐮𝛿

so that 𝑢max = 0.1𝑎0, and repeat the process again until elastic equilibrium is achieved. Typically, when initializing the PFC field
with a dislocation, around 5 such iterations are needed, after which, 𝑢max is on the order of 0.01𝑎0 at each correction step.

The dislocation loop shrink velocity is sensitive to the time interval 𝛥𝑡 between each equilibration correction. As shown in Fig. 4,
the effect of imposing this correction at every time interval 𝛥𝑡 = 0.1 accelerates the annihilation process by approximately a factor
of |𝐯PFCMEq,𝛥𝑡=0.1|∕|𝐯PFC| ≈ 7.5. A slow convergence in the limit 𝛥𝑡 → 0 is observed, where we have estimated that the shrink velocity
increases up to |𝐯PFCMEq,𝛥𝑡→0|∕|𝐯PFC| ≈ 9.8. However, to reach this numerical convergence is computationally demanding. Indeed,
this slow convergence suggests that the time scale of the elastic field relaxation is important for the process of shear dislocation
loop shrinkage. For static problems however, such as obtaining regularized stress profiles for dislocation loops, or defect nucleation
under quasi-static loading, this slow convergence is not an issue.
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Fig. A.7. Geometry of the circular dislocation loop in a slip plane given by the normal vector 𝐧.  ′ is the plane normal to the tangent vector 𝐭′ upon which
we impose a Cartesian coordinate system to determine the angles 𝜃1, 𝜃2 that are used to construct the (inset) initial amplitude phase configuration. For more
details, see Appendix A.4.

Table A.1
Dislocation charges 𝑠𝑛 =

1
2𝜋
𝐛 ⋅ 𝐪(𝑛) for different Burgers vectors 𝐛 in the bcc lattice. 𝐪(𝑛) is defined in Eq. (20).

𝐛 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6
𝑎0
2
(−1, 1, 1) 1 0 0 0 1 1

𝑎0
2
(1,−1, 1) 0 1 0 1 0 −1

𝑎0
2
(1, 1,−1) 0 0 1 −1 −1 0

𝑎0
2
(1, 1, 1) 1 1 1 0 0 0

𝑎0(1, 0, 0) 0 1 1 0 −1 −1
𝑎0(0, 1, 0) 1 0 1 −1 0 1
𝑎0(0, 0, 1) 1 1 0 1 1 0

A.4. Initializing a dislocation loop in the PFC model

In this section, we show how to multiply the initial amplitudes 𝜂0 with complex phases, to produce a dislocation loop with
Burgers vector 𝐛 in a slip plane given by normal vector 𝐧 (see Section 3.1). Given a point 𝐫, it belongs to a plane  ′ perpendicular
to 𝐭′ for some point 𝐫′ on the dislocation loop (see Fig. A.7). This plane also intersects the diametrically opposed point 𝐫′′ of the
dislocation loop. If 𝐫0 is the center of the loop, the distance vector 𝐫 − 𝐫0 lies in  ′. Let (𝑚1, 𝑚2) be the first and second coordinate
in the Cartesian coordinate system defined by the right-handed orthonormal system {(𝐧 × 𝐭′),𝐧, 𝐭′} centered at 𝐫0. If 𝑚1 > 0, we get
from geometrical considerations

𝑚2 = (𝐫 − 𝐫0) ⋅ 𝐧, (A.4)

𝑚1 = |(𝐫 − 𝐫0) − 𝑚2𝐧|. (A.5)

Both 𝑚1 and 𝑚2 are thus determined by 𝐫, 𝐫0 and the normal vector to the loop plane 𝐧. 𝜃1 (𝜃2) is the angle between 𝐫 − 𝐫′ (𝐫 − 𝐫′′)
and 𝐧 × 𝐭′ in the plane  ′ and are found numerically by using the four-quadrant inverse tangent atan2(𝑦, 𝑥), so that

𝜃1 = atan2
(

𝑚2, 𝑚1 + 𝑅
)

(A.6)

𝜃2 = atan2
(

𝑚2, 𝑚1 − 𝑅
)

, (A.7)

where 𝑅 is the radius of the loop. For each point 𝐫, we determine 𝜃1(𝐫) and 𝜃2(𝐫) according to the equations above and initiate the
PFC with the phases

𝜂𝑛 = 𝜂0𝑒
i𝑠𝑛(𝜃1(𝐫)−𝜃2(𝐫)), (A.8)

where 𝑠𝑛 = 1
2𝜋 𝐪

(𝑛) ⋅ 𝐛 is given in Table A.1. This ensures that the complex phases have the right topological charge (Eq. (8)).
The inset in Fig. A.7 shows the phase of 𝑒i(𝜃1−𝜃2) in  ′ for 𝐧 = 1

√ [−1, 0, 1], which is the slip plane chosen in the simulation in
13
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Section 3.1. Note that points 𝐫 for which 𝑚1 < 0 are computed by the same equation for the tangent vector at 𝐫′′, with the same
formula, thus validating the Eqs. (A.6)–(A.7) for all values in  ′. Since the expressions are independent of the particular plane  ′

nd each point 𝐫 belongs to one such plane, they are also valid for all points in the simulation domain.

.5. Calculating the perimeter of a dislocation loop

To calculate numerically the perimeter of a dislocation loop, recall that

𝛼𝑖𝑗 = 𝑏𝑗 ∫
𝑑𝑙′𝑖𝛿

(3)(𝐫 − 𝐫′(𝑙)), (A.9)

where we have added a subscript (𝑙) onto 𝐫′ to emphasize that it is the point on the loop as indexed by the line element 𝑑𝐥. Taking
the double dot product with itself, we find

𝛼𝑖𝑗𝛼𝑖𝑗 = |𝐛|2 ∫ ∫
𝑑𝑙′𝑖𝑑𝑚

′
𝑖𝛿

(3)(𝐫 − 𝐫′(𝑙))𝛿
(3)(𝐫 − 𝐫′(𝑚)). (A.10)

The contributions to this integral will only come from points on the loop  and only when 𝐫′(𝑙) = 𝐫′(𝑚), where 𝑑𝑙′𝑖 = 𝑑𝑚′
𝑖 , so

𝑙𝑖𝑑𝑚𝑖 = (𝑑𝐥)2 = |𝑑𝑙𝑖|
2 = |𝑑𝑙𝑖||𝑑𝑚𝑖|. Thus

𝛼𝑖𝑗𝛼𝑖𝑗 = |𝐛|2 ∫
|𝑑𝑙′𝑖 |𝛿

(3)(𝐫 − 𝐫′(𝑙))∫
|𝑑𝑚′

𝑖|𝛿
(3)(𝐫 − 𝐫′(𝑚)) = |𝐛|2

(

∫
|𝑑𝑙′𝑖 |𝛿

(3)(𝐫 − 𝐫′(𝑙))
)2

. (A.11)

aking the square root and integrating over all space, we find

∫ 𝑑3𝑟
√

𝛼𝑖𝑗𝛼𝑖𝑗 = |𝐛|∫𝐶
|𝑑𝑙𝑖|∫ 𝑑3𝑟𝛿(3)(𝐫 − 𝐫′(𝑙)) = |𝐛|𝐿, (A.12)

where 𝐿 is the perimeter of the dislocation loop. Thus,

𝐿 = 1
|𝐛| ∫

𝑑3𝑟
√

𝛼𝑖𝑗𝛼𝑖𝑗 . (A.13)

A.6. Direct computation of stress fields

The dislocation density tensor is calculated directly from the phase field 𝜓 through Eq. (12). The general method of solving
Eqs. (40)–(41) on a periodic medium is given in Ref. Brenner et al. (2014) given 𝛼𝑖𝑗 , where also the uniqueness of the elastic fields
s proven given appropriate conditions on the dislocation density 𝛼𝑖𝑗 . In the present case, the conditions on 𝛼𝑖𝑗 are automatically
atisfied as it is calculated from the phase-field. In this section, we thus show for our computational setup, how we compute the
reen’s function in the relating the distortion 𝑢𝑖𝑗 to the dislocation density tensor 𝛼𝑖𝑗 as a source. Since (40)–(41) given the periodic
oundary conditions can be solved uniquely, we Fourier transform both sets of equations and add the condition of mechanical
quilibrium (Eq. (41)) to the diagonal equations (𝑖 = 𝑘) in Eq. (40), which gives in Fourier space

𝛿(𝑖)𝑘
i𝐶(𝑖)𝑗𝑚𝑙

𝜇
𝑞𝑗 𝑢̃𝑚𝑙 − i𝜖𝑖𝑙𝑚𝑞𝑙 𝑢̃𝑚𝑘 = 𝛼̃𝑖𝑘, (A.14)

here there is no summation over (𝑖), and we have multiplied the elastic constant tensor by i∕𝜇 where 𝜇 is the shear modulus of
the cubic lattice, and 𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝛾𝛿𝑖𝑗𝑘𝑙. By defining the 1D vectors 𝐔̃ and 𝛼̃ as

𝐔̃𝑇 =
(

𝑢11, 𝑢12, 𝑢13, 𝑢21, 𝑢22, 𝑢23, 𝑢31, 𝑢32, 𝑢33
)

,

𝛼̃𝑇 =
(

𝛼11, 𝛼12, 𝛼13, 𝛼21, 𝛼22, 𝛼23, 𝛼31, 𝛼32, 𝛼33
)

,

we rewrite Eq. (A.14) more compactly as

𝑀(𝐪)𝐔̃ = 𝛼̃, (A.15)

here the explicit form of 𝑀(𝐪) in the case of cubic anisotropy is given by

𝑀(𝐪) = i

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝜆+2𝜇+𝛾
𝜇 𝑞1 𝑞2 𝑞3 𝑞2 + 𝑞3

𝜆
𝜇 𝑞1 0 −𝑞2 + 𝑞3 0 𝜆

𝜇 𝑞1

0 0 0 0 𝑞3 0 0 −𝑞2 0

0 0 0 0 0 𝑞3 0 0 −𝑞2
−𝑞3 0 0 0 0 0 𝑞1 0 0
𝜆
𝜇 𝑞2 𝑞1 − 𝑞3 0 𝑞1

𝜆+2𝜇+𝛾
𝜇 𝑞2 𝑞3 0 𝑞1 + 𝑞3

𝜆
𝜇 𝑞2

0 0 −𝑞3 0 0 0 0 0 𝑞1
𝑞2 0 0 −𝑞1 0 0 0 0 0

0 𝑞2 0 0 −𝑞1 0 0 0 0
𝜆 𝜆 𝜆+2𝜇+𝛾

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

. (A.16)
14

⎝ 𝜇 𝑞3 0 𝑞1 + 𝑞2 0 𝜇 𝑞3 −𝑞1 + 𝑞2 𝑞1 𝑞2 𝜇 𝑞3⎠
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𝑀(𝐪) can be inverted to yield the Fourier transform of the distortion 𝐔,

𝐔̃ =𝑀−1(𝐪)𝛼̃. (A.17)

Once 𝐔̃ (denoted by 𝑢̃𝑘𝑙 in components) is known, we compute the stress field in mechanical equilibrium

𝜎̃𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝑢̃𝑘𝑙 . (A.18)

The dislocation density 𝛼𝑖𝑘 as obtained from the phase field as in Eq. (12) has a very small divergence due to numerical round-off
errors. We impose 𝜕𝑖𝛼𝑖𝑘 = 0 explicitly before evaluating 𝜎̃, which improves numerical stability.

Appendix B. Inversion formula for highly symmetric lattice vector sets

In inverting Eq. (5) to obtain the displacement field 𝐮 in terms of the phases 𝜃𝑛, we used the result of Eq. (6). This follows from
the properties of moment tensors constructed from lattice vector sets  = {𝐪(𝑛)}𝑁𝑛=1. The 𝑝th order moment tensor constructed from
 is given by

𝑄𝑖1 ...𝑖𝑝 =
𝑁
∑

𝑛=1
𝑞(𝑛)𝑖1 ...𝑞

(𝑛)
𝑖𝑝
. (B.1)

In two dimensions, for a parity-invariant lattice vector set that has a B-fold symmetry, Ref. Chen and Orszag (2011) showed that
all 𝑝th order moments vanish for odd 𝑝 and are isotropic for 𝑝 < 𝐵. Every isotropic rank 2 tensor is proportional to the identity
tensor 𝛿𝑖𝑗 , so for a 2D lattice vector set having four-fold symmetry, such as the set of shortest reciprocal lattice vectors {𝐪(𝑛)}4𝑛=1 of
he square lattice, we have ∑4

𝑛=1 𝑞
(𝑛)
𝑖 𝑞(𝑛)𝑗 ∝ 𝛿𝑖𝑗 (Figs. 3 and 5 in Ref. Skogvoll et al. (2021a) show the reciprocal lattice vector sets

iscussed in this appendix). Taking the trace and using that the vectors have the same length |𝐪(𝑛)| = 𝑞0, we get ∑4
𝑛=1 𝑞

(𝑛)
𝑖 𝑞(𝑛)𝑗 = 4𝑞20𝛿𝑖𝑗 .

In general, for any 2D parity invariant lattice vector set {𝐪(𝑛)}𝑁𝑛=1 with a 𝐵-fold symmetry where 𝐵 > 2, we have

2D:
𝑁
∑

𝑛=1
𝑞(𝑛)𝑖 𝑞(𝑛)𝑗 =

𝑁𝑞20
2

𝛿𝑖𝑗 . (B.2)

s mentioned, this holds for the 2D square lattice, but it also holds for the 2D hexagonal lattice. In fact, the six-fold symmetry of
he hexagonal lattice ensures that also every fourth-order moment tensor is isotropic, which results in elastic properties of the 2D
exagonal PFC model being isotropic (Skogvoll et al., 2021a).

To show this identity for a 3D parity invariant vector set with cubic symmetry, we generalize the proof in Ref. Chen and Orszag
2011) to a particular case of a 3D vector set that is symmetric with respect to 90◦ rotations around each coordinate axis, such
s the set of shortest reciprocal lattice vectors {𝐪(𝑛)}𝑁𝑛=1 of bcc, fcc or simple cubic structures. Let 𝐯 be an eigenvector of 𝑄𝑖𝑗 with
igenvalue 𝜆, i.e., 𝑄𝑖𝑗𝑣𝑗 = 𝜆𝑣𝑖. Since 𝑄𝑖𝑗 is invariant under a 90◦ rotation 𝑅(𝑥)

𝑖𝑗 around the 𝑥-axis (i.e., 𝑅(𝑥)
𝑖𝑘 𝑄𝑘𝑙(𝑅

(𝑥)𝑇 )𝑘𝑗 = 𝑄𝑖𝑗), we get
𝑄𝑖𝑗𝑅

(𝑥)
𝑗𝑙 𝑣𝑙 = 𝜆𝑅(𝑥)

𝑖𝑙 𝑣𝑙, showing that 𝑅(𝑥)𝐯 is also an eigenvector of 𝑄𝑖𝑗 with the same eigenvalue 𝜆. Repeating for a rotation around
he 𝑦-axis demonstrates that 𝑄𝑖𝑗 has only one eigenvalue 𝜆, so that it must be proportional to the rank 2 identity tensor 𝑄𝑖𝑗 ∝ 𝛿𝑖𝑗 .
aking the trace and using that the vectors have the same length |𝐪(𝑛)| = 𝑞0, we find

3D:
𝑁
∑

𝑛=1
𝑞(𝑛)𝑖 𝑞(𝑛)𝑗 =

𝑁𝑞20
3

𝛿𝑖𝑗 . (B.3)

ppendix C. Time derivatives of the dislocation density tensor

.1. Delta-function form

Consider a moving dislocation line  = {𝐫′(𝜆, 𝑡)} of points 𝐫(𝜆, 𝑡) parametrized by the time 𝑡 and a dimensionless 𝜆 which can be
aken to go from 0 to 1 without loss of generality. Keeping the labeling fixed through its time evolution, we get

𝛼𝑖𝑗 (𝐫, 𝑡) = 𝑏𝑗 ∫

1

𝜆=0
𝛿(3)(𝐫 − 𝐫′(𝜆, 𝑡))(𝜕𝜆𝑟′𝑖(𝜆, 𝑡))𝑑𝜆. (C.1)

uppressing the dependence of 𝐫′ on 𝜆 and 𝑡, we get taking the time derivative of Eq. (2),

𝜕𝑡𝛼𝑖𝑗 = 𝑏𝑗 ∫

1

𝜆=0
(𝜕𝑡𝛿(3)(𝐫 − 𝐫′))(𝜕𝜆𝑟′𝑖)𝑑𝜆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(1)

+ 𝑏𝑗 ∫

1

𝜆=0
𝛿(3)(𝐫 − 𝐫′)(𝜕𝑡𝜕𝜆𝑟′𝑖)𝑑𝜆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(2)

. (C.2)

tarting with the first term using the chain rule, we have

(1) = 𝑏𝑗
1
(𝜕𝑘′𝛿(3)(𝐫 − 𝐫′))𝑉𝑘(𝐫′)(𝜕𝜆𝑟′)𝑑𝜆, (C.3)
15

∫𝜆=0 𝑖
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where 𝜕𝑘′ = 𝜕∕𝜕𝑟′𝑘 and 𝑉𝑘 is a field at time 𝑡 which is defined on 𝐫′ ∈  as 𝐕(𝐫′) = 𝜕𝑡𝐫′, the velocity of the line segment perpendicular
o the tangent vector. We can rewrite 𝜕𝑘′𝛿(3)(𝐫 − 𝐫′) = −𝜕𝑘𝛿(3)(𝐫 − 𝐫′) and pull it outside the integral. Additionally, since 𝑉𝑘(𝐫′) is

multiplied by a delta function, we can replace it by 𝑉𝑘(𝐫), so we get

(1) = −𝜕𝑘

(

(𝑏𝑗 ∫

1

𝜆=0
𝛿(3)(𝐫 − 𝐫′)(𝜕𝜆𝑟′𝑖)𝑑𝜆)(𝑉𝑘(𝐫))

)

= −𝜕𝑘(𝛼𝑖𝑗𝑉𝑘). (C.4)

Turning to the second term, we get

(2) = 𝑏𝑗 ∫

1

𝜆=0
𝛿(3)(𝐫 − 𝐫′)(𝜕𝜆𝑉𝑖(𝐫′))𝑑𝜆 = 𝑏𝑗 ∫

1

𝜆=0
𝛿(3)(𝐫 − 𝐫′)(𝜕𝑘′𝑉𝑖(𝐫′))(𝜕𝜆𝑟′𝑘)𝑑𝜆. (C.5)

Since 𝜕𝑘′𝑉𝑖(𝐫′) is multiplied with a delta-function inside the integral, we can replace it by 𝜕𝑘𝑉𝑖(𝐫). We thus get

(2) =

(

𝑏𝑗 ∫

1

𝜆=0
𝛿(3)(𝐫 − 𝐫′)(𝜕𝜆𝑟′𝑘)𝑑𝜆

)

(𝜕𝑘𝑉𝑖) = 𝛼𝑘𝑗𝜕𝑘𝑉𝑖 = 𝜕𝑘(𝛼𝑘𝑗𝑉𝑖), (C.6)

since 𝜕𝑘𝛼𝑘𝑗 = 𝜕𝑘(𝑏𝑗 ∫ 𝛿
(3)(𝐫 − 𝐫′)𝑑𝑟′𝑘) = −𝑏𝑗 ∫ (𝜕𝑘′𝛿

(3)(𝐫 − 𝐫′))𝑑𝑟′𝑘 = −𝑏𝑗 [𝛿(𝐫 − 𝐫′)]𝐫
′(𝜆=1)

𝐫′(𝜆=0) = 0, either because  is a loop such that

𝐫′(𝜆 = 0) = 𝐫′(𝜆 = 1) or else 𝐫′(𝜆 = 0) ≠ 𝐫 ≠ 𝐫′(𝜆 = 1) since the dislocation cannot end inside the crystal. This gives

𝜕𝑡𝛼𝑖𝑗 = −𝜕𝑘(𝛼𝑖𝑗𝑉𝑘) + 𝜕𝑘(𝛼𝑘𝑗𝑉𝑖) = −𝜖𝑖𝑘𝑙𝜕𝑘(𝜖𝑙𝑚𝑛𝛼𝑚𝑗𝑉𝑛). (C.7)

.2. Amplitude form

Taking the time derivative of Eq. (12), we have

𝜕𝑡𝛼𝑖𝑗 =
6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝑞(𝑛)𝑗 (𝜕𝑡𝐷

(𝑛)
𝑖 )𝛿(2)(𝜂𝑛)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(1)

+ 6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝑞(𝑛)𝑗 𝐷(𝑛)

𝑖 𝜕𝑡𝛿
(2)(𝜂𝑛)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(2)

. (C.8)

The vector field 𝐷(𝑛)
𝑖 satisfies a conservation law which can be obtained by differentiating Eq. (11) with respect to time (Angheluta

et al., 2012; Mazenko, 1999). This gives 𝜕𝑡𝐷
(𝑛)
𝑖 = −𝜖𝑖𝑘𝑙𝜕𝑘𝐽

(𝑛)
𝑙 , with the associated current given by 𝐽 (𝑛)

𝑙 = ℑ(𝜕𝑡𝜂𝑛𝜕𝑙𝜂∗𝑛 ). Thus

(1) = −𝜖𝑖𝑘𝑙
6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝑞(𝑛)𝑗 (𝜕𝑘𝐽

(𝑛)
𝑙 )𝛿(2)(𝜂𝑛). (C.9)

Differentiating through the delta-function in the second term (2), we get

𝐷(𝑛)
𝑖 𝜕𝑡𝛿

(2)(𝜂𝑛) = 𝜖𝑖𝑘𝑙(𝜕𝑘𝜂𝑛,1)(𝜕𝑙𝜂𝑛,2)
2
∑

𝑟=1

(

𝜕
𝜕𝜂𝑛,𝑟

𝛿(2)(𝜂𝑛)
)

𝜕𝑡𝜂𝑛,𝑟, (C.10)

where 𝜂𝑛,1 and 𝜂𝑛,2 denotes the real and imaginary part of 𝜂𝑛, respectively. Straight forward, but tedious algebra, shows that this is
equal to

−𝜖𝑖𝑘𝑙𝐽
(𝑛)
𝑙 𝜕𝑘𝛿

(2)(𝜂𝑛) = −𝜖𝑖𝑘𝑙ℑ(𝜕𝑡𝜂𝑛𝜕𝑙𝜂∗𝑛 )
2
∑

𝑟=1

(

𝜕
𝜕𝜂𝑛,𝑟

𝛿(2)(𝜂𝑛)
)

𝜕𝑘𝜂𝑛,𝑟, (C.11)

after inserting 𝜂𝑛 = 𝜂𝑛,1 + i𝜂𝑛,2. Thus

(2) = −𝜖𝑖𝑘𝑙
6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝑞(𝑛)𝑗 𝐽 (𝑛)

𝑙 𝜕𝑘𝛿
(2)(𝜂𝑛). (C.12)

Taken together, this gives

𝜕𝑡𝛼𝑖𝑗 = −𝜖𝑖𝑘𝑙𝜕𝑘

(

6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝑞(𝑛)𝑗 𝐽 (𝑛)

𝑙 𝛿(2)(𝜂𝑛)

)

, (C.13)

s desired.

ppendix D. Calculation details of dislocation velocity

Inserting the expression for the delta-function in terms of the dislocation density tensor 𝛿(2)(𝜂𝑛) = 𝛼𝑖𝑘𝐷
(𝑛)
𝑖 𝑞

(𝑛)
𝑘 ∕(2𝜋|𝐃(𝑛)

|

2) into
q. (14), we get

𝑙𝑗 =
6𝜋

2

𝑁
∑

𝛼𝑖𝑘𝐽
(𝑛)
𝑙 𝑞(𝑛)𝑗

𝐷(𝑛)
𝑖 𝑞

(𝑛)
𝑘

2
. (D.1)
16

𝑁𝑞0 𝑛=1 2𝜋|𝐃(𝑛)
|
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Equating  (𝛼)
𝑙𝑗 and 𝑙𝑗 at a point 𝐫′ on the dislocation line, where 𝛼𝑖𝑗 = 𝑡′𝑖𝑏𝑗𝛿

(2)(𝛥𝐫⟂) using 𝐛 ⋅ 𝐪(𝑛) = 2𝜋𝑠𝑛,

𝜖𝑙𝑚𝑛𝑡
′
𝑚𝑏𝑗𝑣

′
𝑛𝛿

(2)(𝛥𝐫⟂) =
6𝜋
𝑁𝑞20

𝑁
∑

𝑛=1
𝑠𝑛𝑡

′
𝑖𝛿

(2)(𝛥𝐫⟂)𝐽
(𝑛)
𝑙 𝑞(𝑛)𝑗

𝐷(𝑛)
𝑖

|𝐃(𝑛)
|

2
. (D.2)

We now integrate out the delta-function in the  ′-plane and contract both sides of the equation with 𝑏𝑗 to get

𝜖𝑙𝑚𝑛𝑡
′
𝑚𝑣

′
𝑛 =

12𝜋2

𝑁𝑞20 |𝐛|
2

𝑁
∑

𝑛=1
𝑠2𝑛
𝑡′𝑖𝐷

(𝑛)
𝑖

|𝐃(𝑛)
|

2
𝐽 (𝑛)
𝑙 , (D.3)

as desired.

Appendix E. Amplitude decoupling

The (complex) polynomial 𝑓 s (see Eq. (23)) results from the amplitude expansion of the 𝜓3 and 𝜓4 terms in Eq. (17). It may
be computed by substituting Eq. (19) into Eq. (17) and integrating over the unit cell, under the assumption of constant amplitudes
Goldenfeld et al., 2005; Athreya et al., 2006; Salvalaglio and Elder, 2022). It features terms reading ∏𝐿

𝓁=1 𝜂𝑛𝓁 , with 𝐿 = 3, 4 and 𝑛𝓁
or which the condition ∑𝐿

𝓁=1 𝐪(𝑛𝓁 ) = 0 is satisfied. By multiplying this condition by 𝐛 and using Eq. (8) it then follows that
𝐿
∑

𝓁=1
𝑠𝑛𝓁 = 0. (E.1)

n the equation for the dislocation velocity, Eq. (16), the only contributing amplitudes are those for which 𝑠𝑛 ≠ 0. The condition (E.1)
mplies that at least one of the other amplitudes, {𝜂𝑚}𝑚≠𝑛, appearing in terms of 𝑓 𝑠 containing 𝜂𝑛, also has 𝑠𝑚 ≠ 0 and then vanishes
t the corresponding defect. Thus, for a given amplitude 𝜂𝑛 with 𝑠𝑛 ≠ 0, the terms in 𝜕𝑓 𝑠

𝜕𝜂∗𝑛
always contain at least one vanishing

amplitude. Eq. (25) then reduces to Eq. (26) at the defect as 𝜂𝑛 = 0 and 𝜕𝑓 𝑠

𝜕𝜂∗𝑛
= 0 there. Importantly, a full decoupling of the

volution equation for amplitudes which vanish at the defect is obtained.
This can be straightforwardly verified for specific lattice symmetries and dislocations. When accounting for the bcc lattice

ymmetry through 𝐪(𝑛) as in Eq. (20), the (complex) polynomial 𝑓 s entering the coarse-grained energy 𝐹𝜂 defined in Eq. (23) is

𝑓 s = −2𝑇 (𝜂∗1𝜂2𝜂6 + 𝜂
∗
1𝜂3𝜂5 + 𝜂

∗
2𝜂3𝜂4 + 𝜂4𝜂

∗
5𝜂6) + 6𝑉 (𝜂∗1𝜂2𝜂

∗
4𝜂5 + 𝜂

∗
1𝜂3𝜂4𝜂6 + 𝜂

∗
2𝜂3𝜂5𝜂

∗
6 ) + c.c. (E.2)

hich gives
𝜕𝑓 s

𝜕𝜂∗1
= −2𝑇 (𝜂2𝜂6 + 𝜂3𝜂5) + 6𝑣(𝜂2𝜂∗4𝜂5 + 𝜂3𝜂4𝜂6),

𝜕𝑓 s

𝜕𝜂∗2
= −2𝑇 (𝜂1𝜂∗6 + 𝜂3𝜂4) + 6𝑉 (𝜂1𝜂4𝜂∗5 + 𝜂3𝜂5𝜂

∗
6 ),

𝜕𝑓 s

𝜕𝜂∗3
= −2𝑇 (𝜂1𝜂∗5 + 𝜂2𝜂

∗
4 ) + 6𝑉 (𝜂1𝜂∗4𝜂

∗
6 + 𝜂2𝜂

∗
5𝜂6),

𝜕𝑓 s

𝜕𝜂∗4
= −2𝑇 (𝜂2𝜂∗3 + 𝜂5𝜂

∗
6 ) + 6𝑉 (𝜂∗1𝜂2𝜂5 + 𝜂1𝜂

∗
3𝜂

∗
6 ),

𝜕𝑓 s

𝜕𝜂∗5
= −2𝑇 (𝜂1𝜂∗3 + 𝜂4𝜂6) + 6𝑉 (𝜂1𝜂∗2𝜂4 + 𝜂2𝜂

∗
3𝜂6),

𝜕𝑓 s

𝜕𝜂∗6
= −2𝑇 (𝜂1𝜂∗2 + 𝜂

∗
4𝜂5) + 6𝑉 (𝜂1𝜂∗3𝜂

∗
4 + 𝜂

∗
2𝜂3𝜂5).

(E.3)

By comparing Eqs. (E.3) with the dislocation charges for the possible Burgers vector in the bcc lattice, Table A.1, and noting that,
at the dislocation core, 𝜂𝑛 = 0 for 𝑠𝑛 ≠ 0, we find

𝑠𝑛 ≠ 0 ∶
𝜕𝑓 s

𝜕𝜂𝑛
= 0, (E.4)

llowing for a decoupled system of evolution relations for 𝜂1,… , 𝜂6, as described by Eq. (26).
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