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A B S T R A C T

In many processes for crystalline materials such as precipitation, heteroepitaxy, alloying, and phase trans-
formation, lattice expansion or compression of embedded domains occurs. This can significantly alter the
mechanical response of the material. Typically, these phenomena are studied macroscopically, thus neglecting
the underlying microscopic structure. Here we present the prototypical case of an elastic inclusion described
by a mesoscale model, namely a coarse-grained phase-field crystal model. A spatially-dependent parameter
is introduced into the free energy functional to control the local spacing of the lattice structure, effectively
prescribing an eigenstrain. The stress field obtained for an elastic inclusion in a 2D triangular lattice is shown
to match well with the analytic solution of the Eshelby inclusion problem.
. Introduction

The study of inclusions in crystalline materials is of great im-
ortance for many materials science and engineering applications.
or instance, this applies to processes such as precipitation, phase-
ransformation, heteroepitaxy [1–3], often with technological relevance
nd also involving additional aspects such as capillarity [4]. A promi-
ent example in this context consists of phase changes introducing
tructural transformation of the host lattice, which might even affect
he lattice symmetry. This occurs, for instance, in lithium-ion batteries,
here the flow of lithium into the electrode particle introduces lattice
xpansion of the host material. The size of these systems is typically
n the order of 1 μm. Therefore, continuum methods generally are
dopted. For instance, the numerical modeling of phase transformation
n lithium-ion batteries has been tackled by a classical phase-field ap-
roach coupled to elasticity to account for the mechanical equilibrium
f elastic deformation [5].

Continuum approaches are powerful in describing crystalline sys-
ems at the macroscale. However, they neglect details of the micro-
copic scales such as crystal symmetries, anisotropies, and orientation
f the grains in polycrystalline materials. Methods capable of tackling
he resulting effects of these microscopic details in a macroscopic
escription are highly demanded to obtain comprehensive descriptions.
n this paper, we present the modeling of an elastic inclusion by the
hase-field crystal (PFC) model [6–8], focusing in particular on its
mplitude expansion (APFC) formulation [9–12]. This approach allows
or describing elasticity on a microscopic scale [13–16] while bridging

∗ Corresponding author.
E-mail address: willy.doerfler@kit.edu (W. Dörfler).

the gap among micro- and macro-scale descriptions of crystal struc-
tures under some approximations [17–19]. We formulate the problem
incorporating a prescribed lattice expansion/compression in the free
energy through a spatial dependent parameter that controls the local
lattice spacing. We show that the model reproduces the stress field of
a spherical inclusion, thus encoding an eigenstrain formulation [20].
The approach retains details of the underlying lattice structure as
conveyed by the APFC model. An example for 2D crystals with tri-
angular symmetry is explicitly given, which can be compared to an-
alytic solutions for the elastic inclusion, i.e., with the Eshelby problem
[21–23]. This comparison serves as a proof of concept for more general
elastic inclusion problems.

2. Amplitude phase-field crystal modeling

The PFC model describes the crystal lattices by means of a contin-
uous, periodic order parameter 𝑛 ∶ 𝛺 → R, 𝐫 ↦ 𝑛(𝐫), representing an
atomic probability density [6–8]. The model is based on the free energy

𝐹 (𝑛) = ∫𝛺

[𝐵𝑥
0
2

(

(𝑞20 + ∇2)𝑛
)2 +

𝛥𝐵0
2

𝑛2 − 𝜏
3
𝑛3 + 𝑣

4
𝑛4

]

d𝐫, (1)

and an associated conserved gradient flow
𝜕𝑛
𝜕𝑡

= ∇2 𝛿𝐹
𝛿𝑛

, (2)

with 𝑡 the time parameter. The parameter 𝑞0 sets the periodicity of 𝑛(𝐫)
and it is generally inversely proportional to the lattice spacing 𝑎0. 𝐵𝑥
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𝛥𝐵0, 𝜏, 𝑣 are real parameters as in Refs. [13,24] controlling which phase
described by 𝑛 minimizes the energy and elastic properties. The order
parameter 𝑛 can be well described by a sum of plane waves

(𝐫) = 𝑛0 +
𝑁
∑

𝑗
𝜂𝑗𝑒

i𝐪𝑗 ⋅𝐫 + c.c., (3)

ith c.c. denoting the complex conjugate, accounting for the contribu-
ion of −𝐪𝑗 for which 𝜂−𝐪𝑗 = 𝜂∗𝐪𝑗 being 𝑛(𝐫) ∈ R, 𝑛0 the average density,
𝑗 amplitudes, i the imaginary unit, and {𝐪𝑗} a set of reciprocal lattice

vectors encoding the symmetry of the crystal.
An eigenstrain [20] encoding a lattice deformation from a lattice

parameter 𝑎0 to a lattice parameter 𝑎d may be defined as 𝜀∗ = (𝑎d −
𝑎0)∕𝑎0 = 𝑞0∕𝑞d − 1. Therefore, one may express the change encoded by
𝜀∗ as

𝑞𝑑 =
𝑞0

1 + 𝜀∗
= 𝛽𝑞0, (4)

with 𝛽 = 1∕(1 + 𝜀∗). Notice that 𝛽 = 1 corresponds to 𝜀∗ = 0, while
𝛽 < 1 and 𝛽 > 1 correspond to positive or negative eigenstrains,
respectively. Moreover, 𝛽 diverges only in the unphysical limit 𝑎d → 0.

o restrictions exist to consider this parameter spatially dependent,
amely 𝛽(𝐫) = 1∕(1 + 𝜀∗(𝐫)). To encode an eigenstrain 𝜀∗ in the PFC
odel we consider then a modified energy functional featuring a slowly

arying quantity 𝛽(𝐫),

𝛽 (𝑛) = ∫𝛺

[𝐵𝑥
0
2

(

(𝛽(𝐫)2𝑞20 + ∇2)𝑛
)2 +

𝛥𝐵0
2

𝑛2 − 𝜏
3
𝑛3 + 𝑣

4
𝑛4

]

d𝐫. (5)

The PFC model naturally accounts for elasticity [6,7]. Elastic effects
can be characterized by focusing on a small perturbation of the density
in Eq. (3) due to a displacement field 𝐮. As a result, elasticity effects
may be fully described by complex amplitudes 𝜂𝑗 = 𝜙𝑗𝑒

i𝐪𝑗 ⋅𝐮 with 𝜙𝑗
the (real) amplitudes for a relaxed crystal [13,15,16]. In the amplitudes
expansion of the PFC model, the APFC model, 𝜼 = [𝜂𝑗 ]𝑗=1,…,𝑁 are the
variable to solve for [9–12]. They are associated to a minimal set of
𝑁 reciprocal lattice vectors that describes a targeted lattice symmetry
entering Eq. (3). This approach allows for coarse-grained description of
the lattice that approaches macroscopic lengthscales but still retaining
microscopic details [17,18]. The corresponding equation may be de-
rived by substituting the ansatz in Eq. (3) in Eq. (5) and integrating over
the unit cell. This procedure may be rigorously justified by multiple
scales expansions or renormalization group calculations [9,10]. The
APFC free energy obtained by this procedure, with 𝑛0 = 0 without loss
of generality, reads

𝐹𝛽 (𝜼) = ∫𝛺

[ 𝑁
∑

𝑗=1

(

𝐵𝑥
0
|

|

|

𝑗𝜂𝑗
|

|

|

2
− 3𝑣

2
|

|

|

𝜂𝑗
|

|

|

4
)

+ 𝛥𝐵
2

𝛷+ 3𝑣
4
𝛷2+𝑓 s(𝜼, 𝜼∗)

]

d𝐫,

(6)

where 𝛷 ≡ 2
∑𝑁

𝑗=1
|

|

|

𝜂𝑗
|

|

|

2
and

𝑗 (𝐫) ≡ ∇2 + 2i𝐪𝑗 ⋅ ∇ + 𝛽(𝐫)2 − 1. (7)

𝑓 s is a polynomial which takes different forms according to the con-
sidered symmetry [12,13,25]. Here we consider 2D crystals with tri-
angular symmetry described in a one-mode approximation (consider-
ing the shortest reciprocal lattice vectors only), i.e. 𝑁 = 3: 𝐪1 =
𝑞0

(

−
√

3∕2,−1∕2
)

, 𝐪2 = 𝑞0(0, 1), 𝐪3 = 𝑞0
(
√

3∕2,−1∕2
)

with 𝑞0 = 1 and

tri = −2𝜏(𝜂1𝜂2𝜂3 + 𝜂∗1𝜂
∗
2𝜂

∗
3 ). (8)

ith these choices, 𝑎0 = 4𝜋∕
√

3. The dynamics of 𝜂𝑗 obtained from the
dynamics of 𝑛, Eq. (2) with a procedure similar to the derivation of the
energy 𝐹𝛽 [12] reads

𝜕𝜂𝑗
𝜕𝑡

= − |𝐪𝑗 |
𝛿𝐹𝛽

𝛿𝜂∗𝑗

= −
(

𝛥𝐵0 + 𝐵𝑥
0

2
𝑗 + 3𝑣(𝛷 − |

|

|

𝜂𝑗
|

|

|

2
)
)

𝜂𝑗 −
𝜕𝑓 s

∗ .
(9)
𝜕𝜂𝑗

2

Minimizers of 𝐹𝛽 denote equilibrium configurations. A relaxed crys-
tal, corresponding to the lattice represented by {𝐪𝑗} is described by real,
constant amplitudes, which take some values depending on the length
of the corresponding 𝐪𝑗 vectors [13,25]. If we assume 𝜂𝑗 = 𝜙 for some
eal 𝜙 we obtain

̃𝛽 (𝜙) = ∫𝛺

[

3(𝛥𝐵0 + (𝛽2 − 1)2)𝜙2 + 45𝑣
2

𝑣𝜙4 − 4𝜏𝜙3
]

d𝐫.

This energy is minimized by

𝜙± =
𝜏 ±

√

𝜏2 − 15𝑣(𝛥𝐵0 + (𝛽2 − 1)2)
15𝑣

. (10)

Here we will look at 𝜙+ by restricting our analysis to 𝜏 > 0 without
loss of generality. Real solutions thus exist if 𝛥𝐵0 < (𝜏2∕15𝑣)− (𝛽2 −1)2,
while the solid phase is favored if 𝛥𝐵0 < 8𝜏2∕135𝑣−(𝛽2−1)2 and 𝛥𝐵0 =
8𝜏2∕135𝑣−(𝛽2−1)2 is the solid/liquid or ordered/disordered coexistence
ondition. For 𝛽 = 1 we recover the conditions given in [25].

From the energy in Eq. (5) one can also derive the stress field 𝝈𝑛

18,26–28]. In our case, considering a slowly varying inhomogeneous
, we obtain

𝑛 = 2Sym
(

∇
(

[∇2 + 𝛽(𝐫)2]𝑛
)

⊗ ∇𝑛
)

, (11)

here we have omitted the isotropic pressure term due to negligible
ontribution. Inserting now the amplitude ansatz from Eq. (3), leads to
n amplitude depending deformation gradient 𝝈𝜼, given by

𝜼
𝑙𝑚 =

𝑁
∑

𝑗=1

(

(𝜕𝑙+ i𝑞𝑗𝑙 )𝑗𝜂𝑗 (𝜕𝑚− i𝑞𝑗𝑚)𝜂
∗
𝑗 +(𝜕𝑚+ i𝑞𝑗𝑚)𝑗𝜂𝑗 (𝜕𝑙− i𝑞𝑗𝑙 )𝜂

∗
𝑗

)

, (12)

or 𝑙, 𝑚 ∈ {1, 2}, where 𝑗 is defined in Eq. (7), recovering the expres-
ions in [18] for 𝛽 = 1. Eq. (12) is expected to deliver stress fields
ccounting for non-linearities and strain-gradient terms [16,18].

. The elastic inclusion problem

The calculation of the stress/strain field in the presence of an
lastic inclusion, namely a portion of a material with an eigenstrain
∗ surrounded by a relaxed medium, is known as Eshelby’s inclusion
roblem [21–23]. The original formulations focused on the elastic field
n the inclusion and involved the assumption of an infinite matrix sur-
ounding it. Following works focused on the derivation of the solution
ddressing finite systems with specific boundary conditions [23,29–
1]. For the example delivered in this work, we consider explicitly the
nalytic solutions obtained in an infinite medium and will comment on
he comparisons with simulations in the following.

The stress tensor in the presence of an inclusion with eigenstrain
atrix 𝜀∗𝑘𝑙 can be expressed as

e
𝑖𝑗 = 𝑖𝑗𝑘𝑙𝜀e𝑘𝑙 = 𝑖𝑗𝑘𝑙

(

𝑘𝑙𝑝𝑞𝜀
∗
𝑝𝑞 − 𝜒(𝐫)𝜀∗𝑘𝑙

)

, (13)

ith 𝑖𝑗𝑘𝑙 the rank-four elasticity tensor, 𝑘𝑙𝑝𝑞 the Eshelby tensor, 𝜀e𝑝𝑞
he elastic strain tensor and 𝜒(𝐫) an indicator/characteristic function
hich is 1 in the inclusion and 0 outside. The deformation leading to
change in the lattice parameter translates to a diagonal eigenstrain
atrix 𝜀∗𝑘𝑙 = 𝜀∗𝛿𝑘𝑙. The elasticity tensor for an isotropic medium is

xpressed as

𝑖𝑗𝑚𝑛 = 𝜆𝛿𝑖𝑗𝛿𝑚𝑛 + 𝜇
(

𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑚
)

, (14)

here 𝜆 and 𝜇 are material parameters (the Lamé constants). For the
PFC description considered in Section 2, using Eq. (10), they read
= 𝜇 = 3𝜙2

+ [15,26].
The analytical solutions for the Eshelby tensor ∞ of an inclusion

mbedded in an infinite medium at the interior (I) and exterior (E) to
he inclusion reads [23,29,30], ∞

𝑖𝑗𝑚𝑛 = 𝜒(𝐫) I,∞
𝑖𝑗𝑚𝑛 + (1 − 𝜒(𝐫))E,∞

𝑖𝑗𝑚𝑛 with

I,∞ = 3 − 4𝜈 (𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑖𝑗𝛿𝑚𝑛) +
(4𝜈 − 1)

𝛿𝑖𝑚𝛿𝑗𝑛,
𝑖𝑗𝑚𝑛 8(1 − 𝜈) 8(1 − 𝜈)
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Fig. 1. Stress field components from APFC simulations (Eq. (12), left column) and
analytic solution for an inclusion in an infinite domain (Eq. (13), right column). Black
contour lines are set to representative values for each stress component, and kept the
same for both APFC and analytical stress field. 𝑅 = 10𝑎0, 𝑤 = 𝑎0, 𝜀 = 0.01 (other
arameters are reported in the text).

nd

E,∞
𝑖𝑗𝑚𝑛 =

𝜌2

8(1 − 𝜈)

[

(𝜌2 + 4𝜈 − 2)𝛿𝑖𝑗𝛿𝑚𝑛 + 4(1 − 𝜌2)𝛿𝑖𝑗𝑟𝑚𝑟𝑛

+ (𝜌2 − 4𝜈 + 2)(𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑚) + 4(1 − 2𝜈−

𝜌2)𝛿𝑚𝑛𝑟𝑖𝑟𝑗 + 4(𝜈 − 𝜌2)(𝛿𝑚𝑛𝑒𝑗𝑒𝑛 + 𝛿𝑗𝑚𝑒𝑖𝑒𝑛+

𝛿𝑖𝑛𝑒𝑗𝑒𝑚 + 𝛿𝑗𝑛𝑒𝑖𝑒𝑚) + 8(3𝜌2 − 2)𝑒𝑖𝑒𝑗𝑒𝑚𝑒𝑛

]

,

with 𝐫 = (𝑥1, 𝑥2), 𝑒𝑖(𝐫) ∶= 𝑥𝑖∕|𝐫|, 𝜌 ∶= 𝑎∕|𝐫|, |𝐫| =
√

𝑥21 + 𝑥22, 𝑎 is
he radius of the inclusion and 𝜈 is the Poisson ratio (equal to 0.25
n the plane-strain settings [26]). Equivalent formulations in terms of
he stress field and elastic constants 𝜈 and 𝐸 = 𝜇(3𝜆 + 2𝜇)∕(𝜆 + 𝜇) can
e found in Ref. [32].

. Numerical APFC simulations

In this section, we address the numerical simulation of the elastic
nclusion problem within the APFC model illustrated in Section 2
nd discuss the results together with the analytic solution reported in
ection 3.

To deal with the continuous fields entering the (A)PFC models,1 the
nclusion is described by a smooth approximation of the characteristic
unction 𝜒 considered in Section 3. Defining a signed distance 𝑑(𝐫) from
he boundary of the inclusion with negative sign in the inclusion and
ositive sign in the surrounding matrix, for a spherical inclusion with
adius 𝑅 one obtains 𝑑(𝐫) = |𝐫| − 𝑅. The characteristic function 𝜒 may
hen be approximated by 𝜒𝑤 ∶ 𝛺 → [0, 1] with

𝑤(𝐫) ∶=
1
2

[

1 − tanh
(

𝑑(𝐫)
𝑤

)]

, (15)

1 With (A)PFC we refer to both PFC and APFC.
3

Fig. 2. 𝜎𝑦𝑦(𝑥, 0) for different values of 𝑤 ∈ [0.25𝑎0; 8𝑎0] entering Eq. (15) (other
parameters as in Fig. 1). The stress field from the Eshelby solution for an infinite
domain (∞) from Eq. (13) and for a finite (circular) domain with Dirichlet boundary
condition from Ref. [30] (𝐿) with domain size 𝐿 = 100𝑎0.

hich varies smoothly from 0 in the matrix to 1 inside the inclusion
ith 𝑤 a parameter controlling the extension of the smoothing region.
𝑤(𝐫) is used to set the lattice spacing in the inclusion and thus the
igenstrain therein. Using Eq. (4) this is achieved by setting a spatial
ependent 𝛽(𝐫) in Eq. (6) as

(𝐫) = 1 −
(

1 +
𝑞𝑑
𝑞0

)

𝜒𝑤(𝐫), (16)

which delivers 𝛽𝑞0 = 𝑞0 in the matrix, 𝛽𝑞0 = 𝑞d in the inclusion and
provides an interpolation among these two values in between.

The APFC evolution equations (9) are solved exploiting the adaptive
finite element toolbox AMDiS [33,34] with integration schemes as in
Refs. [25,35] and minor adaptation to account for the 𝛽(𝐫) function.
Further details concerning adaptive refinement, problem-tailored pre-
conditioners and parallelization strategies can be found therein. As
initial condition we consider a spherical inclusion with radius 𝑅 = 10𝑎0
in a squared domain 100𝑎0 × 100𝑎0. The model parameters are set
to 𝜏 = 1∕2, 𝑣 = 1∕3, 𝐵𝑥

0 = 1, 𝛥𝐵0 = 0.04, the latter setting the
system relatively close to the solid–liquid coexistence without loss of
generality. Amplitudes are initialized to 𝜙+ and the system in Eq. (9)
is allowed to relax until a steady state is reached. Periodic boundary
conditions are used for all the amplitudes to consider the case usually
adopted for APFC simulations.

In Fig. 1 the stress field obtained by evaluating Eq. (12) with 𝜼
computed from APFC and 𝑤 = 𝑎0, is compared with the analytic so-
lution given in Section 3. The diffuse nature of the inclusion boundary
encoded in Eq. (15) leads to a smooth field, still entailing the main
features of the analytic solution.

Deeper insights on this comparison and the role played by 𝑤 are
shown in Fig. 2 in terms of the 𝜎𝑦𝑦 component extracted along the
𝑥−direction crossing the inclusion in its center. A progressively sharper
stress field transition across the inclusion boundary is obtained by
decreasing this parameter, approaching the continuum solution. From
a quantitative point of view, minor deviations are observed for the
decay far away from the inclusion and for the exact stress value
in the inclusion, which may be ascribed to different contributions.
First, periodic boundary conditions adopted in the simulations are
not considered in the analytical solution. A good convergence to a
numerical solution with increasing the domain size is obtained for the
considered ratio of 0.1 among the radius of the inclusion and the side
of the square simulation domain. However, boundary conditions may
still affect the solution everywhere. Indeed, if considering a different
analytical solution accounting for Dirichlet boundary conditions for a
circular domain as in Ref. [30], a (small) difference is obtained in the
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Fig. 3. Deviation from linear elasticity. (a) Normalized stress field 𝜎𝑦𝑦(𝑥, 0) for different
𝜀∗. (b) Deviation of the minimum of 𝜎𝑦𝑦 as function of 𝜀∗ from the reference value (𝜎ref

𝑦𝑦 )
obtained with 𝜀∗ = 10−5.

inclusion (see 𝐿 values in Fig. 2) once setting the radius of the circular
domain to 𝐿 = 50𝑎0. Notice, however, that this solution accounts for
a different domain shape. Second, the (A)PFC model naturally encodes
elasticity contributions beyond classical linear elasticity, namely non-
linearities, strain gradient terms, and anisotropies [16]. The latter
should be considered generally, but for the example reported here
it does not play a role as the triangular lattice has isotropic elastic
constants. However, other deviations from linear elasticity are still ex-
pected. This is further illustrated in Fig. 3. The stress field obtained with
different 𝜀∗ is normalized w.r.t to the minimum value of a reference
case with 𝜀 = 10−5. The deviation from the normalized curve increases
with increasing eigenstrain (up to ∼ 15% for maximum and minimum
values of the considered stress component). Notice that due to the linear
elasticity underlying Eq. (13), the corresponding normalized curves
would coincide as 𝜀∗ enters as a factor only. Numerical convergence
to a limiting normalized curve is achieved for 𝜀∗ → 0. Fig. 3(b) shows
such a behavior for what concerns the minima of 𝜎𝑦𝑦. A very similar
convergence behavior is obtained for the maxima of 𝜎𝑦𝑦.

5. Conclusion

In this work, we presented an (A)PFC formulation encoding an
eigenstrain. This is achieved by acting on the quantity entering the free
energy, which controls the equilibrium lattice parameter. The model
has been benchmarked against the prototypical case of a mismatched
inclusion, and it is found to match well with the solution of the
Eshelby problem. Deviation from the classical analytical solutions may
be ascribed to the considered simulation setup and the more detailed
elasticity description conveyed by the APFC model.

The model formulation and the example of an elastic inclusion
set the ground for the coarse-grained modeling of crystalline material
involving mechanical deformation not caused by external mechanical
stress (namely eigenstrains [20]). Examples of potential applications
are heterostructures undergoing thermal treatment and experiencing
thermal expansion [5], heteroepitaxial systems [3], prestretched crys-
talline domains [36] and the lithiumization in lithium-ion batteries [5]
already mentioned in the introduction. The approach provides a pos-
sibility to consider the effect of eigenstrain in (A)PFC models. Future
work will focus on exploiting the capabilities of the model in describing
different lattice symmetries and three-dimensional systems as well
as specific, technologically relevant applications. Various possibilities
to enforce different lattice symmetries in PFC have been compared
in [37]. Our approach can be adapted to all of them. Also, the consid-
ered setting, including the approximation of the characteristic function
of the inclusion in Eq. (15), already provides the grounds for dynamic
couplings with classical phase-field models, as e.g. considered in [38]
using a Cahn–Hilliard-PFC model for diffusion-induced grain boundary

migration.
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