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The persistent dynamics in systems out of equilibrium, particularly those characterized by annihi-
lation and creation of topological defects, is known to involve complicated spatiotemporal processes
and thus deemed difficult, if even possible, to control. Here the steering of defect dynamics in ac-
tive smectic layers exposed to extreme confinements is explored, through self-propulsion of active
particles and a variety of confining geometries with different topologies. We discover a wealth of
dynamical behaviors during the evolution of complex spatiotemporal defect patterns that can be
steered by the confining shape and topology, particularly a perpetual creation-annihilation dynam-
ical state with huge fluctuations of topological defects and a transition from oscillatory to damped
time correlation of defect number density via the mechanism governed by boundary cusps. Our re-
sults are obtained by using an active phase field crystal approach of self-propelled stripes. Possible
experimental realizations are also discussed.

Defects in ordered or pattern-forming systems are of
great interest both from a fundamental physics point of
view highlighting the role of topology in condensed mat-
ter [1–3] and for applications since they largely control
the material properties. For the example of liquid crys-
tals, most of the studies have focused on topological de-
fects in the orientational ordered nematic phase of ly-
otropic or thermotropic liquid crystals and by now it has
been well understood how to trigger them by external
influences [4–8] and confinements [9–14]. In the layered
smectic phase, defect characterization is more complex
due to the additional positional ordering [15–18] but can
be steered by confinement as well [19, 20].

In recent years, active particles that are self-propelled
intrinsically and relevant for biological swarms, motor
proteins and biofilaments have been of tremendous in-
terest [21–24]. These particles self-organize into fasci-
nating “active” liquid crystalline phases which are qual-
itatively different from their passive counterparts in or
near equilibrium and are governed by nonrelaxational
dynamical processes that are the characteristics of far-
from-equilibrium pattern-forming or chaotic systems [25].
Due to the internal driving, defect dynamics in active ne-
matics is intriguing with a plethora of new phenomena
[26–31]. Also an active smectic-like phase has been exam-
ined [32], as modeled by aligning [33] and non-reciprocal
[34] interactions or nonlinear feedback [35]. However, our
knowledge of defects in active smectics, including their
dynamics and controllability by external constraints, is
still sparse.

Here we fill this gap and explore defect dynamics of ac-
tive smectic systems by using an appropriate active phase
field crystal (PFC) model [36–43] in the domain where a
traveling stripe phase is stable. We expose this state of
self-propelled smectics to extreme confinements. A rich
variety of geometries with different topologies, including

cavities and open or closed channels that are of various
convex, concave, and cusped shapes, are considered. A
wealth of nonequilibrium defected states are found in the
evolution towards complex spatiotemporal patterns aris-
ing from a competition of activity and confinement. The
corresponding persistent defect dynamics, especially the
highly fluctuating creation-annihilation process, goes far
beyond the traditional classification familiar in passive
systems, and can be steered by the confining shape and
topology of the cavity or channel and the degree of par-
ticle self-propulsion. In particular, the presence of cus-
pated boundaries induces or annihilates defects, which
can be utilized to control the dynamics of defect creation
and the quantitative behavior (oscillatory vs damped) of
time correlation of defect density. Our predictions can be
verified for confined dense vibrated granular rods [44–46]
or self-propelled colloidal Janus particles [47, 48] exposed
to extreme confinements [19].

In our model we describe the evolution of active smec-
tics under external confinement based on a continuum
density-field theory, i.e., the active PFC model which
can be derived from dynamical density functional the-
ory [36, 37] and also from a particle-based microscopic
description [42]. It reads

∂ψ

∂t
= ∇2 δF

δψ
− v0∇ ·P, (1)

∂P

∂t
=
(
∇2 −Dr

) δF
δP
− v0∇ψ, (2)

where ψ is the particle density variation field, the po-
larization P represents the local orientation vector field,
v0 measures the strength of particle self-propulsion, and
Dr is the rotational diffusion constant. The above dy-
namical equations have been rescaled, with a diffusive
timescale and a length scale set via the pattern period-
icity. Here F = FaPFC + Fanch, where FaPFC is the free
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FIG. 1. (a)–(c) Transitions between pinned, highly fluctuating (annihilation-nucleation), and self-rotating defect states with the
increase of self-propulsion strength v0, in (a) circular, (b) epicycloid, and (c) hypocycloid cavities. Each regime is represented
by sample simulation snapshots with system size of 256 × 256 grid points. In the mid panels the circled regions highlight the
time-evolving process of boundary-induced defect generation. The bulk defects inside each cavity are labeled by white symbols,
and boundary defects by black ones. (d) Sample time variation of number density of defects in the fluctuation regime at
v0 = 0.31, for different cavity geometries of 512× 512 system size. (e) The corresponding normalized time correlation Cn(τ) of
defect density, calculated over time range t = 105 − 106 and averaged over 80 simulations for each type of cavity. For a better
illustration only the error-bar band for epicycloid of n = 6 cusps is shown, while those for other cases are of similar range.

energy functional of active PFC [36, 37, 42]

FaPFC =

∫
dr

{
1

2
ψ
[
ε+

(
∇2 + q20

)2]
ψ − g

3
ψ3 +

1

4
ψ4

+
C1

2
|P|2 +

C4

4
|P|4

}
, (3)

with ε < 0 and small magnitude of average density ψ0

giving rise to the resting or traveling active smectic phase
[36], the characteristic wave number q0 = 1 after rescal-
ing, parameters g, C1, and C4 that can be expressed via
microscopic correlation functions, and C1 > 0 tending to
suppress any spontaneous ordering of orientational align-
ment. We represent the effect of boundary confinement
via an anchoring energy

Fanch =

∫
dr
Vb(r)

2

[
(ψ − ψb)

2 + |P−Pb|2 + (n̂ ·∇ψ)
2
]
,

(4)
to effectively satisfy both Dirichlet and Neumann bound-
ary conditions ψ = ψb, P = Pb, and n̂ ·∇ψ = 0 (with n̂
the local unit normal) at any implicitly defined domain

boundary, with

Vb(r) =
Vb0
2

[
1 + tanh

(
rs(r)

∆

)]
, (5)

where Vb0 gives the anchoring strength, rs(r) is the signed
distance function to the domain boundary (with rs < 0
inside the domain and > 0 outside), and ∆ sets the
thickness of boundary interface. This approach we de-
velop here combines an approximation of domain inter-
face energy for imposing the boundary conditions and
a setup of the diffuse domain method which controls
the confinement geometry implicitly through an auxil-
iary phase field function φ(r) [49], such that Vb(r) =
Vb0φ(r) here. For more details, including the specific
analytical forms for different geometries of the cavi-
ties or channels simulated, see Supplemental Material
[50]. Equation (4) produces the condition of planar
anchoring as found in experiments. Its last term is
analogous to the Rapini-Papoular form of surface po-
tential [3, 12]. In our simulations (starting from ran-
dom initial conditions), we set (ε, ψ0, g,Dr, C1, C4) =
(−0.98, 0, 0, 0.5, 0.2, 0) in the strong segregation regime
of stripe phase, and (Vb0,∆, ψb,Pb) = (1, 0.1, 0, 0).
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The emergence of topological defects, including discli-
nations, dislocations, and grain boundaries, is inevitable
in large-aspect-ratio systems that are driven out of equi-
librium. In the confined cavities of different geome-
tries, our simulation results presented in Fig. 1 show that
the evolution of these defects in active smectics is gov-
erned by three intrinsically different dynamical regimes
and the transitions between them. At weak enough
self-propulsion strength v0 [first column of Figs. 1(a)–
1(c)], the stripes (smectic layers) remain perpendicular
to the boundary, showing planar anchoring with tangen-
tial alignment of constituent particle orientations. The
defects emerging from the early stage of system evolu-
tion become mostly pinned, with extremely slow local
dynamics, similar to the glassy state observed in strongly
segregated passive stripe patterns showing no long range
orientational order as a result of defect pinning by the
pattern-periodicity induced potential barrier [53].

In the other limit of large enough v0, the particle self-
propulsion completely overcomes the defect pinning bar-
rier, facilitating the fast annihilation of defects as accel-
erated by the effect of self-driving on the smectic layer
alignment. As shown in the last column of Figs. 1(a)–
1(c), large particle activity also enables the overcoming of
boundary anchoring constraint, leading to the violation
of local planar anchoring, and depending on the bound-
ary geometry, even to (partially) homeotropic anchoring.
At late stage such a strong self-driving induces the ro-
tation of smectics inside the cavity, either clockwise or
counterclockwise, and hence the persistent self-rotation
of the remaining multi-core spiral defects trapped at the
cavity center.

Defect dynamics in these two regimes reveal the com-
petition between rigid boundary confinement restricting
the local smectic orientation and the tendency of bulk
alignment of stripes [54, 55]. An interesting type of dy-
namics occurs when such two incompatible boundary and
bulk effects are of comparable strength, giving rise to a
highly fluctuating state within an intermediate narrow
range of active drive v0 as demonstrated in the mid pan-
els of Figs. 1(a)–1(c). Although the planar boundary an-
choring is maintained at very early stage, the deviation
occurs at later times as caused by self-propulsion, leading
to local distortion of stripes inside the cavity as a result
of confinement-alignment competition. Importantly, in
addition to the annihilation of defects (including dislo-
cations and disclinations, majorities of which occur at
cavity boundaries), new defects can nucleate from the
boundary, propagating into the bulk, evolving and gen-
erating a subsequence of more new defects like a chain
effect, as seen in the circled regions of Fig. 1 and videos
of Supplemental Material [50]. This results in the re-
peated succession of tranquil and active time stages in
terms of defect density and dynamics, with some exam-
ples for circular and 6-cusp epicycloid and hypocycloid
cavities given in Fig. 1(d). In contrast to the fully bulk

FIG. 2. Autocorrelation function Cn(τ) of defect number den-
sity for various epicycloid and hypocycloid closed cavities at
v0 = 0.31. Also shown are two sample snapshots.

state without any boundary confinement (thus with the
absence of defect generation) which shows a monotonic
time decay of defect number, the cavity confinement in-
duces an intermittency-type behavior with seemingly ir-
regular bursts of number of defects. The boundary cusps
appear to enhance the creation of new defects, yielding
higher defect density peaks, as compared to the smooth
boundary of circular cavity.

The property of this transition zone with dynamical
fluctuations of defects can be further quantified through
the normalized time autocorrelation function of the de-
fect number density nd, i.e.,

Cn(τ) =
〈(nd(t+ τ)− 〈nd〉) (nd(t)− 〈nd〉)〉

〈(nd(t)− 〈nd〉)2〉
, (6)

where the averages are conducted over a long time series
in the steady state (e.g., t = 105−106 in our calculations)
for each simulation run, assuming ergodicity of the corre-
sponding probability measure [25]. Some results of Cn(τ)
are presented in Fig. 1(e), showing a decay behavior for
circular and 6-cusp hypocycloid cavities. Interestingly,
for epicycloid cavity with n = 6 cusps a weak oscilla-
tion around a negative minimum correlation (near time
scale τm ∼ 5000) appears, implying a correlated behav-
ior between the burst (active) and low-number (tranquil)
regimes of defect density and dynamics.

For a given geometric type of confinement, the behav-
ior of defect autocorrelation can be qualitatively changed
through different number of boundary cusps. As shown
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FIG. 3. (a) Time evolution of defect number density in two
types of open channels at v0 = 0.31. (b)–(e) Snapshots at
different times for (b) S-shaped and (c)–(e) cycloid channels.

in Fig. 2, for epicycloid cavities decreasing the cusp num-
ber n from n = 6 to 3 leads to the variation of Cn(τ) min-
imum from negative to positive correlation. A more dra-
matic change occurs when lowering the cusp number of
hypocycloid cavities. When n = 5 and 6 a damped time
correlation of defect density is observed, while the n = 4
(i.e., astroid) cavity is featured by an oscillatory behavior
(within the statistical error) of time correlation, indicat-
ing a cyclic state of defect density variation with periodic
creation and annihilation of defects over a characteristic
time period τT ∼ 4300. In this cyclic defect dynamics,
although generally the spatial locations of boundary de-
fect nucleation and annihilation seem uncorrelated, sta-
tistically the periodicity in autocorrelation Cn(τ) can be
attributed to the propagation of defects between different
sides of boundary within the defect creation-annihilation
time interval (see Video S5 of Supplemental Material).

To further understand the mechanism of defect cre-
ation and correlation and hence the accessibility for steer-
ing defect dynamics, we examine the process of defect
flow in two types of open channels, the S-shaped chan-
nel with smooth boundary and the cycloid channel with a
single cusp (see Fig. 3, noting the periodic boundary con-
dition along the vertical open ends). No new defects are
nucleated from the smooth boundary of S-shaped chan-
nel and the defect number decreases with time, with few
left at late stage, as seen in Figs. 3(a) and 3(b). In con-
trast, during the flow of stripes in the cycloid channel
[Figs. 3(c)–3(e)], the cusp singularity enhances the local
distortion of the smectic layers, thus enabling the forma-

FIG. 4. (a) Time evolution of defect density for three types
of closed channels: annulus, n = 4 and n = 6 hypocycloid
rings. (b) Autocorrelation Cn(τ) (each averaged over 80 runs
for t = 105–106) for hypocycloid rings.

tion of defects at boundary (not necessarily at the cusp
location). Further distortion during flow can facilitate
the defect motion into the bulk and induce a chain of
new defects [see Fig. 3(e)]. This burst of defects will be
diminished due to their annihilation when traveling to
the channel boundary, with few or none remained. After
then the similar nucleation-propagation-annihilation pro-
cess repeats, resulting in the periodic variation of defect
number density as shown in Fig. 3(a).

In the confined cavities studied above, the enclosure
constraint (without open ends), competing with self-
propelled alignment and domain flow in the bulk of large
enough aspect ratio, leads to a higher degree of local
pattern distortion which enables the defect nucleation at
boundary even for no-cusp, circular cavity (see Fig. 1).
The mechanism originated from cusp singularity of con-
finement would play a key role on enhancing defect gener-
ation, and importantly, on controlling the time-correlated
property of defect variations, including the oscillatory be-
havior of defect correlation for cavities of small number of
cusps as observed in simulations. The oscillation of time
correlation function would be damped, and thus the de-
gree of defect periodic variation be reduced, when the
cusp number increases as a result of the interference be-
tween the effects induced by different individual cusps.
This interference effect can account for the transition
from oscillatory to non-oscillatory decay of the correla-
tion shown in Fig. 2. In the other limit of zero cusp
without the oscillatory mechanism, such as the circular
cavity, faster decay of correlation is found [Fig. 1(e)].
Thus, the mechanism generated by cusp singularity pro-
vides an effective route for controlling the behavior of
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defect dynamics and correlation.

Applying this mechanism, one can expect that further
confining via both inner and outer boundaries with same
type of topology, i.e., a closed channel with a void, would
result in the damping of correlation due to greater con-
straint with more cusps interference, as verified in Fig. 4
for the n = 4 hypocycloid ring. On the other hand, the
confinement of closed channel leads to the increase of the
correlation time as compared to the closed cavity, as seen
from the Cn(τ) plots for n = 6 hypocycloid cavity vs ring
in Figs. 2 and 4. In comparison, for annulus with smooth
boundary, no new defects can be created, analogous to
the case of smooth S-shaped channel.

In summary, we have examined the dynamics of topo-
logical defects in active smectic systems subjected to
three types of boundary confinements, i.e., closed cav-
ities, open and closed channels with various geometries.
Our simulations based on active PFC modeling indicate
a viable way to effectively control or steer the complex
defect dynamics through both particle self-driving and
the topology of extreme confinement. These confined
nonequilibrium systems are featured by transitions be-
tween three distinct regimes of active and persistent de-
fect dynamics, including defect pinning in a glassy state
with ultraslow evolution, the fast self-rotating of central-
ized spiral defects, and interestingly, a dynamical state
governed by far-from-equilibrium, nonrelaxational pro-
cesses with huge defect fluctuations. For the latter, a
key factor is the intermittent but perpetual creation of
new defects as enabled by the confinement boundary
and enhanced by cuspate boundary topology. A tran-
sition from random to time-periodic process of defects
creation and annihilation can be made possible through
the control of boundary cusp singularity as the mech-
anism of confinement-induced defect generation. These
predictions can be examined and achieved in experiments
on dense self-propelled rods [56] which form an active
smectic phase. Examples range from vibrated granular
rods which can be exposed to circular [44], epicycloid-like
flower-shaped [45] or annular [46] confinements, to active
colloidal rods [47, 48] in channels and cavities.
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I. CONFINEMENT GEOMETRIES

As described in Eqs. (4) and (5) of the main text, to implement the planar anchoring condition of boundary
confinement we develop an approach by combining a formulation of surface/interface free energy for imposing the
rigid boundary conditions (i.e., ψ = ψb, n̂ ·∇ψ = 0, and P = Pb, with ψb and Pb the boundary values of density
field ψ and orientation field P), with the control of confinement geometry via the spatially dependent interface energy
amplitude Vb(r) = Vb0φ(r), where Vb0 is the anchoring strength. Here φ(r) is an auxiliary phase field function and in
the diffuse domain method [S1] is approximated as

φ(r) =
1

2

[
1 + tanh

(
rs(r)

∆

)]
, (S1)

where ∆ is the interface width of the boundary and rs(r) is the signed distance function from any location r to the
domain boundary ∂Ω. rs(r) = −d(r) < 0 inside the domain Ω and rs(r) = d(r) > 0 outside Ω, with d(r) the distance
function to ∂Ω. Various methods or algorithms for calculating signed distance functions have been available. For 2D
domain boundaries studied here, we can directly obtain analytic forms of rs for some simple geometries (see below).
In the cases of complex boundary geometries, a straightforward way of approximation, as used in our simulations, is
to numerically compute the distances di = |r − rbi| to the points rbi ∈ ∂Ω (i = 1, 2, ...) discretized on the boundary
curve and find the shortest distance among them, i.e.,

d(r) = min(di(r)) = min
rbi∈∂Ω

(|r− rbi|), (S2)

which also determines the boundary point rb corresponding to each r. The local unit normal to the boundary is then

n̂ = (r− rb)/d(r). (S3)

The following types of confinement geometries have been examined in our simulations:
(i) Circular cavity and annulus: For a 2D circular cavity of radius r0, with cavity center located at rc = (xc, yc),

we have |r| = r = [(x− xc)2 + (y − yc)2]1/2, n̂ = r̂, rs = r − r0, and

φ(r) =
1

2

[
1 + tanh

(
r − r0

∆

)]
. (S4)

For an annulus with inner and outer radius of rin and rout respectively, n̂ = r̂ and

φ(r) =
1

2

{
1 + tanh

[ |r − (rin + rout)/2| − (rout − rin)/2

∆

]}
. (S5)

(ii) S-shaped open channel : Assume the channel is aligned vertically, with its center at rc = (xc, yc) and the average
locations of right and left boundaries at x− xc = ±x0. The boundary curves are of the form

xb = xc ± x0 − S0 sin[qs(y − yc)], (S6)

where S0 is the amplitude and 2π/qs is the periodicity of the S-shaped modulation. The boundary normal is given by

n̂ =
(−1, dx/dy)√
1 + (dx/dy)

2
=

(−1,−qsS0 cos[qs(y − yc)])√
1 + q2

sS
2
0 cos2[qs(y − yc)]

. (S7)
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The area of this open channel in a system of vertical length ly is equal to 2x0ly (when ly is set as an integer number
of modulation periodicity), which is used in the calculation of defect number density. The corresponding phase field
function is approximated by

φ(r) ' 1

2

[
1 + tanh

( |x− xc| − |xb|
∆

)]
. (S8)

Note that although rs 6= |x − xc| − |xb| for this S-shaped channel, the above equation is still a good approximation
for φ(r) when ∆ is small enough (i.e., for sharp boundary interface).

(iii) Epicycloid cavities with n cusps: The corresponding parametric equations are given by

x = (a+ b) cos θ − b cos

(
a+ b

b
θ

)
,

y = (a+ b) sin θ − b sin

(
a+ b

b
θ

)
, (S9)

where the parameter θ (not the polar angle) ranges from 0 to 2π, and b = a/n for a n-cusped epicycloid. The area of
the enclosed cavity is (n+ 1)(n+ 2)πb2 for integer n. The related phase field function φ(r) is calculated via Eq. (S1)
with rs(r) and the unit normal n̂ identified numerically as described above. Some sample results obtained from our
simulations are presented in the main text and supplemental Videos S1–S4 for different cusp number n, including
n = 3 (of shape similar to trefoil), 4 (similar to quatrefoil), 5 (ranunculoid), and 6.

(iv) Hypocycloid cavities and rings: For a hypocycloid cavity with n cusps, the parametric equations are written as

x = (a− b) cos θ + b cos

(
a− b
b

θ

)
,

y = (a− b) sin θ − b sin

(
a− b
b

θ

)
, (S10)

where b = a/n. The cavity area is equal to (n − 1)(n− 2)πb2. At each position inside or outside of cavity, values of
phase field function φ, rs, and n̂ are computed numerically by following the above procedure. Some sample simulation
results for n = 4 (astroid), 5, and 6 hypocycloid cavities are given in the main text and Videos S5–S7. Similar setup
can be used for hypocycloid rings, with inner and outer boundary curves each determined by the above parametric
equations with two sets of a and b parameters (see some sample simulation snapshots given in Fig. 4 of the main text
and Video S8).

(v) Cycloid open channel : For a vertically aligned channel, the left boundary is a straight line located at x = −x1

(so that rs = ±|x+ x1| and n̂ = (1, 0)), while the right boundary curve is of a cycloid or trochoid form described by

x = a− b cos θ + x0,

y = aθ − b sin θ. (S11)

It is a curtate cycloid if a > b, a prolate cycloid if a < b, and a cycloid when a = b which is used in our simulations.
We choose −π ≤ θ ≤ π and set 2πa = ly to satisfy the periodic boundary condition along the y direction with open
ends of the channel. The corresponding channel area is equal to π(2a2 +b2)+2πa(x0 +x1). This channel configuration
is implemented in our simulations through numerical calculations of φ, rs, and n̂, with examples given in Fig. 3 of
the main text.

In principle any other types of boundary geometries, as long as the corresponding analytic or numerical expressions
of boundary curves are available, can be described via similar procedure and thus implemented in our modeling and
simulations. This approach that we introduce here, based on Eqs. (4) and (5) of the main text and the above implicit
representation of domain boundary, allows us to apply the pseudospectral method with periodic boundary conditions
in the whole system to numerically solve the active PFC equations subjected to the confinement of various types of
cavity or channel geometry.

II. ALGORITHM FOR DEFECT DETECTION

To identify the topological defects (dislocations, disclinations, and grain boundaries) in the simulated smectic
pattern, we use an algorithm based on the combination of two methods given in Refs. [S2, S3], with some modifications
and extension. The implementation steps are described below.
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Given the local stripe orientation n̂s = ∇ψ/|∇ψ| = (cos θs, sin θs) with θs the local orientation angle of the smectic
layer, we can calculate at each spatial location r = (x, y)

|∇ψ|2 sin 2θs = 2(∂xψ)(∂yψ), |∇ψ|2 cos 2θs = (∂xψ)2 − (∂yψ)2. (S12)

Then a Gaussian smoothing of each of |∇ψ|2 sin 2θs and |∇ψ|2 cos 2θs is conducted over a neighboring square range
of grid points for each position r [S3], and the local director orientation is identified by

θs =
1

2
arctan

[(
|∇ψ|2 sin 2θs

)
smoothed

(|∇ψ|2 cos 2θs)smoothed

]
. (S13)

To detect the locations of defect cores, at each grid point the local orientation gradient is calculated [S2], i.e.,

As = |∇θs|2. (S14)

If As exceeds a threshold value A0s (e.g., A0s = 0.2/(∆x)2, with ∆x = π/4 the numerical grid spacing), the cor-
responding grid point is considered to be in a defect core region. To obtain the specific location of each individual
defect core, first the individual cluster of sites for each defect core region is identified by using the Hoshen-Kopelman
(Union-Find) algorithm with raster scan to connect neighboring grid points of each cluster tree with large enough
local orientation variation (As > A0s). The cluster’s center of mass then gives the position rCM of the corresponding
defect core, with

rCM =

∑
j rjAs(rj)∑
j As(rj)

, (S15)

where rj is the spatial coordinate of site j within the cluster.
To reduce the artifacts or ambiguities caused by the choice of threshold A0s, if the size of a cluster is larger than

a limit (e.g., 20 grid sites) this part is then re-clustered through the Union-Find algorithm to divide it into smaller
sub-clusters by increasing its threshold value A0s by a percentage (e.g., 1/8) of max(As)−min(As) of that cluster. In
addition, if the distance between the centers of mass rCM of any two clusters is less than another threshold value (e.g.,
5.5∆x), they will be merged if the merged/connected cluster size would not exceed an upper limit (e.g., 18 sites).
This reclustering-merging process is conducted only once, and the corresponding defect core locations (i.e., cluster
centers of mass) will be recalculated.

To identify the specific type of each individual defect, we follow the standard procedure of calculating the topological
charge (winding number) of each defect core by performing a closed-path integral of θs over a counterclockwise square
loop around the position of defect core [S2, S3]. The defect type (charge-0 dislocation vs ±1/2 disclination) is
determined via the calculated value of topological charge. It is noted that all the above calculations are for the
orientation of stripes (determined by the apolar density field ψ) and the corresponding topological charges, but not
for the polar vector field P which would yield different topological charges via a similar procedure of calculation. A
boundary defect is labeled if the location of its defect core is within a certain distance (e.g., 8 grid points) to the
cavity or channel boundary. We can also identify the defect cores (clusters) belonging to a grain boundary (cluster
chain), via the Union-Find algorithm again (but not merging them), if the distance between the centers of mass (rCM)
of any two clusters (defect cores) is less than or equal to a value (e.g., 25∆x) and if there are at least NGB (e.g., = 4)
of such clusters (cores).

There would still be some ambiguities/uncertainties of defect identification, which are unavoidable for any detection
algorithm particularly for the cases of close or crowded defect cores. We have checked the results by varying different
parameters of the algorithm and comparing with some manual spot checks to identify the (close-to) optimal or
compromised choices of parameters, and to ensure the results are consistent statistically.

III. SUPPLEMENTAL VIDEOS

• Video S1: Simulation video of defect dynamics (including defect traveling, generation, and annihilation) for
n = 3 epicycloid closed cavity at v0 = 0.31, during a time range from t = 198000 to t = 200000 with 512× 512
system size.

• Video S2: Simulation video of defect dynamics (including defect traveling, generation, and annihilation) for
n = 4 epicycloid closed cavity at v0 = 0.31, during a time range from t = 198000 to t = 200000 with 512× 512
system size.
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• Video S3: Simulation video of defect dynamics (including defect traveling, generation, and annihilation) for
n = 5 epicycloid (ranunculoid) closed cavity at v0 = 0.31, during a time range from t = 198000 to t = 200000
with 512× 512 system size.

• Video S4: Simulation video of defect dynamics (including defect traveling, generation, and annihilation) for
n = 6 epicycloid closed cavity at v0 = 0.31, during a time range from t = 198000 to t = 200000 with 512× 512
system size.

• Video S5: Simulation video of defect dynamics (including defect traveling, generation, and annihilation) for
n = 4 hypocycloid (astroid) closed cavity at v0 = 0.31, during a time range from t = 195000 to t = 198250 with
512× 512 system size.

• Video S6: Simulation video of defect dynamics (including defect traveling, generation, and annihilation) for
n = 5 hypocycloid closed cavity at v0 = 0.31, during a time range from t = 198000 to t = 200000 with 512×512
system size.

• Video S7: Simulation video of defect dynamics (including defect traveling, generation, and annihilation) for
n = 6 hypocycloid closed cavity at v0 = 0.31, during a time range from t = 198000 to t = 200000 with 512×512
system size.

• Video S8: Simulation video of defect dynamics (including defect traveling, generation, and annihilation) for
n = 6 hypocycloid ring (closed channel) at v0 = 0.31, during a time range from t = 198000 to t = 200000 with
512× 512 system size.

[S1] X. Li, J. Lowengrub, A. Ratz, and A. Voigt, Solving PDEs in complex geometries: A diffuse domain approach, Commun.
Math. Sci. 7, 81 (2009).

[S2] H. Qian and G. F. Mazenko, Defect structures in the growth kinetics of the Swift-Hohenberg model, Phys. Rev. E 67,
036102 (2003).

[S3] C. Harrison, Block copolymer microdomains in thin films, Ph.D. thesis, Princeton University (1999).


