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Abstract. In this paper we study parametric trace finite element (TraceFEM) and parametric
surface finite element (SFEM) discretizations of a surface Stokes problem. These methods are applied
both to the Stokes problem in velocity-pressure formulation and in stream function formulation. A
class of higher order methods is presented in a unified framework. Numerical efficiency aspects of
the two formulations are discussed and a systematic comparison of TraceFEM and SFEM is given.
A benchmark problem is introduced in which a scalar reference quantity is defined and numerically
determined.
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1. Introduction. Surface fluids arise in different applications such as emulsions,
foams, or biological membranes and can be modeled by surface (Navier--)Stokes equa-
tions (cf., e.g., [67, 68, 4, 18, 55, 54, 60]). These equations constrain the velocity and
pressure to a surface and, at least for stationary surfaces, enforce the velocity to be
tangential to the surface, which leads to a tide coupling with geometric properties of
the surface and new physical phenomena. Despite the apparent practical relevance,
there has been only recently a strongly growing mathematical interest in modeling
of surface fluids, e.g., [4, 45, 29, 31, 32, 38, 43, 59, 61, 72, 58] and their numerical
simulation, e.g., [45, 5, 59, 42, 57, 62, 19, 46, 10, 49, 7, 48, 72, 33, 58, 73]. Surface
(Navier--)Stokes equations are also studied as an interesting mathematical problem
on its own, e.g., [17, 71, 70, 3, 37, 2].

In the discretization of surface (Navier--)Stokes equations several issues occur,
which are not present for the (Navier--)Stokes equations in the standard Euclidean
space. For example, there are difficulties related to the approximation of the surface
\Gamma and of several quantities associated with the geometry such as covariant deriva-
tives and curvature terms. Another difficulty is to ensure tangency of the velocity
field. Most of the cited approaches enforce the tangential condition weakly: using a
Lagrange multiplier (cf. [19, 26]) or a penalty term (cf. [62, 49]). Such approaches
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A1808 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

are applied both in trace finite element methods (TraceFEMs) and in surface finite
element methods (SFEMs). In [33, 7] an alternative SFEM is considered, in which
a Piola transformation for the construction of divergence-free tangential finite ele-
ments is introduced. In this paper we restrict to the most popular technique for
handling the tangential condition, namely, the penalty method. Instead of treating
the (Navier--)Stokes equations in the velocity and pressure variables one can also use
a stream function formulation (cf. [45, 59, 61, 57, 25, 10, 72]). The approach has
the advantage that only scalar quantities have to be considered. The velocity can be
approximated from the computed stream function. In this setting there is no difficulty
concerning tangency of the velocity field.

In this paper we compare two discretization methods for the surface Stokes equa-
tions, namely, the parametric TraceFEM and the parametric SFEM. We consider
both a formulation in the velocity and pressure variables and a stream function for-
mulation. For TraceFEM the first formulation is treated in [30] and the second one is
based on [10]. For SFEM the first formulation extends the approach in [62, 19] and the
second formulation is based on [45]. We outline the key components of these methods
and discuss further related literature. For the formulation in velocity and pressure
variables we use generalized Taylor--Hood elements Pk  - Pk - 1, k \geq 2, defined on the
bulk mesh (TraceFEM) or the surface mesh (SFEM). A consistent penalty approach
is used for both methods to satisfy the tangential constraint weakly. Higher order
TraceFEM is obtained using the parametric finite element approach introduced for
scalar problems in [34]. For this TraceFEM a stability and discretization error analysis
including geometrical errors is presented in [30]. A P1  - P1 variant of the SFEM was
first introduced in [62] and numerical simulation results with the Pk  - Pk - 1, k \geq 2,
Taylor--Hood pairs are given in [19]. The higher order parametric SFEM that we pres-
ent extends the approaches used in [16, 39, 13]. Error analysis of the SFEM approach
for surface Stokes problems are not available in the literature. An error analysis of
this method for a surface vector-Laplace equation is presented in [27]. Related to the
stream function formulation we note the following. This approach requires the sur-
face to be simply connected. In the fields of applications mentioned above, one often
deals with smooth simply connected surfaces without boundary. In such a setting
there usually are no difficulties related to regularity or boundary conditions and the
stream function formulation may be an attractive alternative to the formulation in
velocity-pressure variables, as already indicated in [45]. In [57] fundamental properties
of the surface stream function formulation, e.g., with respect to well-posedness and
relations to a surface Helmholtz decomposition, are derived. In both papers [45, 57]
the resulting fourth order scalar surface partial differential equation for the stream
function is reformulated as a coupled system of two second order equations, which is
a straightforward generalization to surfaces of the classical Ciarlet--Raviart method
[12] in Euclidean space. As the equations are scalar-valued they can be discretized by
established finite element methods for scalar-valued surface partial differential equa-
tions, such as TraceFEM [47], SFEM [16], or diffuse interface approximations [56];
cf. also the overview paper [8]. In [10] an error analysis of the TraceFEM for the
stream function formulation of the surface Stokes equations is presented. The main
new contributions of the paper are the following:

\bullet We present a general methodology for optimal higher order TraceFEM and
SFEM. Several key ingredients are known from the literature, e.g., the higher
order surface approximation methods introduced in [13, 34]. These are com-
bined with suitable parametric finite element spaces and methods for com-
puting ``sufficiently accurate"" normal and Gauss curvature approximations.
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1809

\bullet We present a systematic comparison of the velocity-pressure and the stream
function formulations of surface Stokes. Both approaches are natural ones,
but so far they have not been compared for surface Stokes equations.

\bullet We present a systematic comparison of TraceFEM and SFEM. We compare
specific measures of complexity of the two methods and present numerical
simulation results that allow comparison of the two methods.

\bullet We introduce a benchmark problem for surface Stokes equations. We define a
scalar quantity (related to the distance between a vortex in the solution and
a maximal curvature location on the surface) that is determined with our
simulation codes. Since we have different formulations and different finite
element methods that are implemented in different codes, we can determine
with high reliability the accuracy of the computed reference quantity.

The remainder of the paper is organized as follows. In section 2 we introduce sur-
face differential operators and recall the well-posed weak formulations for the surface
Stokes equations of both formulations. Parametric approximations for surfaces are
explained in section 3 and TraceFEM and SFEM approaches for both formulations
are presented in section 4. Finally, in section 5 we compare the two problem formula-
tions and the two discretization methods numerically. The section also contains the
benchmark problem.

2. Continuous problem. We consider a smooth hypersurface \Gamma without bound-
ary and a polygonal domain \Omega \subset \BbbR 3 with \Gamma \subset \Omega . Let d denote the signed distance
function to \Gamma which is negative in the interior of \Gamma . For \delta > 0 we define the neigh-
borhood U\delta :=

\bigl\{ 
\bfitx \in \BbbR 3 | | d(\bfitx )| < \delta 

\bigr\} 
of \Gamma . For \delta > 0 sufficiently small and \bfitx \in U\delta 

we define n(\bfitx ) = \nabla d(\bfitx ) (for \bfitx \in \Gamma this is the outward pointing unit normal), the
orthogonal projection P = P(\bfitx ) := I  - n(\bfitx )n(\bfitx )T , the closest point projection
\pi (\bfitx ) = \bfitx  - d(\bfitx )n(\bfitx ), and the Weingarten map H(\bfitx ) = \nabla 2d(\bfitx ). We assume that \delta 
is sufficiently small such that the decomposition \bfitx = \pi (\bfitx ) + d(\bfitx )n(\bfitx ) is unique for
all \bfitx \in U\delta . Let \psi e(\bfitx ) := \psi (\pi (\bfitx )) and ve(\bfitx ) := v(\pi (\bfitx )) for \bfitx \in U\delta be the constant
normal extension for scalar functions \psi : \Gamma \rightarrow \BbbR and vector functions v : \Gamma \rightarrow \BbbR 3,
respectively. The tangential surface derivatives for scalar functions \psi : \Gamma \rightarrow \BbbR and
vector functions v : \Gamma \rightarrow \BbbR 3 are defined by

\nabla \Gamma g(\bfitx ) = P(\bfitx )\nabla ge(\bfitx ), \bfitx \in \Gamma ,

\nabla \Gamma v(\bfitx ) = P(\bfitx )\nabla ve(\bfitx )P(\bfitx ), \bfitx \in \Gamma .
(2.1)

To simplify the notation we often drop the argument \bfitx . For a vector field u the
(infinitesimal) deformation tensor is given by

Es(u) :=
1

2

\bigl( 
\nabla \Gamma u+\nabla \Gamma u

T
\bigr) 
.

Let ei be the ith basis vector in \BbbR 3. We define the surface divergence operator for
vector-valued functions u : \Gamma \rightarrow \BbbR 3 and tensor-valued functions A : \Gamma \rightarrow \BbbR 3\times 3 by

div\Gamma u := tr(\nabla \Gamma u),

div\Gamma A :=
\bigl( 
div\Gamma (e

T
1 A), div\Gamma (e

T
2 A), div\Gamma (e

T
3 A)

\bigr) T
.

Note that in the literature there are other definitions of the surface divergence, in
which an additional surface-projection is included (cf. [62]). The surface curl opera-
tors are defined by
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A1810 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

curl\Gamma u := div\Gamma (u\times n), u \in C1(\Gamma )3,

curl\Gamma \phi := n\times \nabla \Gamma \phi , \phi \in C1(\Gamma ).

For a given force vector f \in L2(\Gamma )3 with f \cdot n = 0 we consider the following surface
Stokes problem: Determine u : \Gamma \rightarrow \BbbR 3 with u \cdot n = 0 and p : \Gamma \rightarrow \BbbR with

\int 
\Gamma 
p ds = 0

such that

 - Pdiv\Gamma (Es(u)) + u+\nabla \Gamma p = f on \Gamma ,

div\Gamma u = 0 on \Gamma .
(2.2)

The zero order term on the left-hand side is added to avoid technical details related
to the kernel of the tensor Es, also called the space of Killing vector fields. Below we
recall two variational formulations of the surface Stokes problem (2.2).

Remark 2.1. Alternative formulations for the surface Stokes problem (2.2) are
obtained by using the identities 2P div\Gamma (Es(u)) = \Delta B

\Gamma u + Ku =  - \Delta dR
\Gamma u + 2Ku,

where K denotes the Gaussian curvature of the surface \Gamma , \Delta B
\Gamma u = Pdiv\Gamma \nabla \Gamma u is the

Bochner Laplacian, and \Delta dR
\Gamma u =  - ( curl\Gamma curl\Gamma +\nabla \Gamma div\Gamma )u is the Laplace--deRham

operator (see [1]).

2.1. Variational formulation in u-p variables. We recall a standard weak
formulation of the surface Stokes problem in velocity--pressure variables. For this we
need the surface Sobolev space of weakly differentiable vector-valued functions, de-
noted by H1(\Gamma )3, with norm \| u\| 2H1(\Gamma )

:=
\int 
\Gamma 
\| u(s)\| 22+\| \nabla ue(s)\| 22 ds. The correspond-

ing subspace of tangential vector fields is denoted by H1
t (\Gamma ) := \{ u \in H1(\Gamma )3 | u \cdot n =

0 a.e. on \Gamma \} . A vector u \in H1(\Gamma )3 can be orthogonally decomposed into a tangen-
tial and a normal part. We use the notation

u = Pu+ (u \cdot n)n = uT + uNn .

For u,v \in H1(\Gamma )3 and p \in L2(\Gamma ) we introduce the bilinear forms

a(u,v) :=

\int 
\Gamma 

Es(u) : Es(v) ds+

\int 
\Gamma 

u \cdot v ds ,(2.3)

bT (u, p) :=  - 
\int 
\Gamma 

p div\Gamma uT ds .(2.4)

Note that in the definition of bT (u, p) only the tangential component of u is used,
i.e., bT (u, p) = bT (uT , p) for all u \in H1(\Gamma )3, p \in L2(\Gamma ). This property motivates the
notation bT (\cdot , \cdot ) instead of b(\cdot , \cdot ). If p is from H1(\Gamma ), then integration by parts yields

(2.5) bT (u, p) =

\int 
\Gamma 

uT \cdot \nabla \Gamma p ds =

\int 
\Gamma 

u \cdot \nabla \Gamma p ds .

We introduce the following variational formulation: Determine (uT , p) \in H1
t (\Gamma ) \times 

L2
0(\Gamma ) such that

(2.6)
a(uT ,vT ) + bT (vT , p) = (f ,vT )L2(\Gamma ) for all vT \in H1

t (\Gamma ),

bT (uT , q) = 0 for all q \in L2(\Gamma ) .

This is a well-posed variational formulation of the surface Stokes problem (2.2) (cf. [29]).
The unique solution is denoted by (u\ast 

T , p
\ast ). For the discretization, we need the bilinear

form aT (u,v) := a(Pu,Pv) = a(uT ,vT ). Using the identity Es(u) = Es(uT )+uNH
we get

(2.7) aT (u,v) =

\int 
\Gamma 

\bigl( 
Es(u) - uNH

\bigr) 
:
\bigl( 
Es(v) - vNH

\bigr) 
+ uT \cdot vT ds .
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1811

2.2. Variational formulation in stream function variable. We recall the
stream function formulation of the surface Stokes problem [57]. For its derivation we
need the following assumption.

Assumption 2.1. In the remainder we assume that \Gamma is simply connected and
sufficiently smooth, at least C3.

We introduce the spaces H1
t,div := \{ u \in H1

t (\Gamma ) | div\Gamma u = 0 \} , Hk
\ast (\Gamma ) := \{ \psi \in 

Hk(\Gamma ) | 
\int 
\Gamma 
\psi ds = 0 \} , and the bilinear form

a(\phi , \psi ) :=

\int 
\Gamma 

1
2 \Delta \Gamma \phi \Delta \Gamma \psi + (1 - K)\nabla \Gamma \phi \cdot \nabla \Gamma \psi ds

with K the Gaussian curvature of the surface \Gamma . The following result is derived in
[57] for the case without a zero order term in (2.2). Without any significant changes,
this derivation also applies to (2.2).

Theorem 2.1. Let u\ast 
T \in H1

t,div be the unique solution of (2.6) and \psi \ast \in H1
\ast (\Gamma )

its unique stream function, i.e., u\ast = curl\Gamma \psi 
\ast . This \psi \ast is the unique solution of the

following stream function problem: Determine \psi \in H2
\ast (\Gamma ) such that

(2.8) a(\psi , \phi ) = (f , curl\Gamma \phi )L2(\Gamma ) for all \phi \in H2
\ast (\Gamma ) .

In view of a finite element discretization it is convenient to reformulate the fourth
order surface equation (2.8) as a coupled system of two second order problems, in-
troducing the vorticity \phi , similar as for the classical two-dimensional (2D) Stokes
problem. We define the bilinear forms,

m(\xi , \eta ) :=

\int 
\Gamma 

\xi \eta ds , \ell (\xi , \eta ) :=

\int 
\Gamma 

\nabla \Gamma \xi \cdot \nabla \Gamma \eta ds , \ell K(\xi , \eta ) := 2

\int 
\Gamma 

(1 - K)\nabla \Gamma \xi \cdot \nabla \Gamma \eta ds ,

and the linear functional g(\xi ) :=  - 2
\int 
\Gamma 
f \cdot curl\Gamma \xi ds . The coupled second order system

is as follows: Determine \psi \in H1
\ast (\Gamma ), \phi \in H1(\Gamma ) such that

(2.9)
m(\phi , \eta ) + \ell (\psi , \eta ) = 0 for all \eta \in H1(\Gamma ) ,

\ell (\phi , \xi ) - \ell K(\psi , \xi ) = g(\xi ) for all \xi \in H1(\Gamma ) .

In [57] it is shown that this problem has a unique solution \psi = \psi \ast , \phi = \phi \ast = \Delta \Gamma \psi 
\ast ,

with \psi \ast being the unique solution of (2.8). In the remainder we denote by \psi \ast and \phi \ast 

the unique solution of (2.9). Below we introduce finite element discretization methods
that are based on (2.9).

We briefly address natural variational formulations that can be used to determine
the velocity solution u\ast 

T and the pressure solution p\ast , given the stream function solu-
tion \psi \ast . Based on the relation u\ast 

T = curl\Gamma \psi 
\ast = n\times \nabla \Gamma \psi 

\ast we introduce a well-posed
variational formulation for the velocity reconstruction: Determine u \in L2(\Gamma )3 such
that \int 

\Gamma 

u \cdot v ds =
\int 
\Gamma 

(n\times \nabla \Gamma \psi 
\ast ) \cdot v ds for all v \in L2(\Gamma )3 .(2.10)

The unique solution of this problem coincides with u\ast 
T . For the pressure reconstruction

we introduce the variational problem: Determine p \in H1
\ast (\Gamma ) such that

(2.11)

\int 
\Gamma 

\nabla \Gamma p \cdot \nabla \Gamma \xi ds =

\int 
\Gamma 

(K curl\Gamma \psi 
\ast + f) \cdot \nabla \Gamma \xi ds for all \xi \in H1(\Gamma ) .
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A1812 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

In [10] it is shown that the pressure solution p\ast coincides with the unique solution
of the Laplace--Beltrami problem (2.11). The variational problems (2.10) and (2.11)
can be used in finite element reconstruction methods for the velocity and pressure
solutions, respectively.

3. Parametric finite elements for surface approximation. For higher order
finite element discretizations of the surface Stokes problem we need a more accurate
than piecewise linear surface approximation. Different techniques for constructing
higher order surface approximations are available in the literature, e.g., [13, 8, 34, 24,
21, 22, 20, 53], for both TraceFEM and SFEM. In the subsections 3.1 and 3.2 below
we briefly recall two known techniques.

3.1. Surface approximation for the TraceFEM. We outline the technique
introduced in [34], for which it is essential that \Gamma is characterized as the zero level
of a smooth level set function \varphi : U\delta \rightarrow \BbbR , i.e., \Gamma = \{ \bfitx \in \Omega | \varphi (\bfitx ) = 0\} . We
do not assume the level-set function to be close to a distance function but to have
the usual properties of a level-set function: \| \nabla \varphi (\bfitx )\| \sim 1, \| \nabla 2\varphi (\bfitx )\| \leq C for all
\bfitx \in U\delta . Let \{ \scrT h\} h>0 be a family of shape regular tetrahedral triangulations of \Omega . By
V kh we denote the standard finite element space of continuous piecewise polynomials
of degree k. The nodal interpolation operator in V kh is denoted by Ik. As input
for a parametric mapping we need an approximation of \varphi . The construction of the
geometry approximation will be based on a level set function approximation \varphi h \in V kh .
We assume that for this approximation the error estimate

(3.1) max
T\in \scrT h

| \varphi h  - \varphi | W l,\infty (T\cap U\delta ) \leq C hk+1 - l, 0 \leq l \leq k + 1 ,

is satisfied. Here, | \cdot | W l,\infty (T\cap U\delta ) denotes the usual seminorm in the Sobolev space

W l,\infty (T \cap U\delta ) and the constant c depends on \varphi but is independent of h. The zero-
level set of the finite element function \varphi h implicitly defines an approximation of the
interface, on which, however, numerical integration is hard to realize for k \geq 2.
With the piecewise linear nodal interpolation of \varphi h, which is denoted by \^\varphi h = I1\varphi h,
we define the low order geometry approximation \Gamma lin := \{ \bfitx \in \Omega | \^\varphi h(\bfitx ) = 0\} .
This piecewise planar surface approximation in general is very shape irregular. The
tetrahedra T \in \scrT h that have a nonzero intersection with \Gamma lin are collected in the set
denoted by \scrT \Gamma 

h . The domain formed by all tetrahedra in \scrT \Gamma 
h is denoted by \Omega \Gamma 

h := \{ x \in 
T | T \in \scrT \Gamma 

h \} . Let \Theta h \in 
\bigl( 
V kh | \Omega \Gamma 

h

\bigr) 3
be the mesh transformation of order k as defined in

[34, 24]. An approximation of \Gamma is defined by

(3.2) \Gamma h := \Theta h(\Gamma 
lin) =

\bigl\{ 
\bfitx | \^\varphi h(\Theta  - 1

h (\bfitx )) = 0
\bigr\} 
.

In [35] it is shown that (under certain reasonable smoothness assumptions) the esti-
mate dist(\Gamma h,\Gamma ) \lesssim hk+1 holds. Hence, the parametric mapping \Theta h indeed yields a
higher order surface approximation. Here and further in the paper we write x \lesssim y to
state that there exists a constant C > 0, which is independent of the mesh parameter
h and the position of \Gamma in the background mesh, such that the inequality x \leq C y
holds. We denote the transformed cut mesh domain by \Omega \Gamma 

\Theta := \Theta h(\Omega 
\Gamma 
h) and apply to

V kh the transformation \Theta h resulting in the isoparametric spaces (defined on \Omega \Gamma 
\Theta )

(3.3) V kh,\Theta :=
\Bigl\{ 
vh \circ \Theta  - 1

h | vh \in V kh | \Omega \Gamma 
h

\Bigr\} 
, Vk

h,\Theta := (V kh,\Theta )
3 .

The following lemma, taken from [24], gives an approximation error for the easy
to compute normal approximation nh, which is used in the methods introduced below.
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Lemma 3.1. For \bfitx \in T \in \scrT \Gamma 
h define

nlin = nlin(T ) :=
\nabla \^\varphi h(\bfitx )

\| \nabla \^\varphi h(\bfitx )\| 2
=

\nabla \^\varphi h| T

\| \nabla \^\varphi h| T \| 2
, nh(\Theta h(\bfitx )) :=

D\Theta h(\bfitx )
 - Tnlin

\| D\Theta h(\bfitx ) - Tnlin\| 2
.

Restricted to the surface the approximations nlin and nh are normals on \Gamma lin and \Gamma h,
respectively. Furthermore, the following holds:

\| nh  - n\| L\infty (\Omega \Gamma 
\Theta ) \lesssim hk.

3.2. Surface approximation for the SFEM. The method that we outline
in this section is based on [13]. We assume that \Gamma is given as the zero level of a
level set function. This assumption is not essential. For constructing a higher order
surface approximation we start from a piecewise planar surface approximation \Gamma lin.
However, different from the approach discussed in section 3.1, it is essential that this
initial approximation is shape-regular. In our implementation we use quasi-uniform
triangulations \Gamma lin. Such an approximate surface triangulation can be generated by an
approach based on optimizing the local element quality using vertex-motion and edge
flipping (see, e.g., [51, 50]) or using a mesh coarsening approach that optimizes the
edge lengths and angles during mesh simplification and decimation (see, e.g., [75, 69]).

The construction of higher order surface triangulations then follows the approach
described in [13], which is implemented in [53] for the Dune discretization framework.
Let \scrS lin

h be the shape-regular (surface) triangulation of \Gamma lin = \cup \^S\in \scrS lin
h

\^S with each

element \^S parametrized over a reference domain \Lambda \subset \BbbR 2 by F \^S(\Lambda ) =
\^S. A surface-

mesh transformation is based on a piecewise Lagrange polynomial interpolation of
the closest point projection \pi : U\delta \rightarrow \Gamma using local Lagrange basis functions \{ \vargamma i\} 1...nk

of order k defined on the reference domain \Lambda . Let such an interpolation function be
denoted by \pi h

\bigm| \bigm| 
\^S
= Ik(\pi \circ F \^S) with I

k the kth order Lagrange interpolation operator
on \Lambda , i.e.,

\=\pi \^S,h(\lambda ) := \pi h(F \^S(\lambda )) =

nk\sum 
i=1

\pi (F \^S(\lambda i))\vargamma 
i(\lambda ) for \lambda \in \Lambda 

with \lambda i \in \Lambda the local Lagrange nodes on \Lambda corresponding to the local Lagrange basis
function \vargamma i. Mapping the nodes of all elements of \scrS lin

h yields the piecewise polynomial
surface of order k,

\Gamma h := \pi h(\Gamma 
lin) =

\bigcup 
\^S\in \scrS lin

h

\{ \pi h(\^\bfitx ) | \^\bfitx \in \^S\} =
\bigcup 

\^S\in \scrS lin
h

\pi h( \^S) =:
\bigcup 
S\in \scrS h

S .

Note that this construction of the discrete surface \Gamma h is different from (3.2) but also
leads to a piecewise polynomial approximation of \Gamma . In the discussion of the methods
and numerical results below, the corresponding form of the discrete surface has to be
taken into account.

The Lagrange finite element space of order m on the piecewise flat triangulated
surface \Gamma lin, defined by \^V mh (\Gamma lin) = \{ \^v \in C0(\Gamma lin) | \^v| \^S \in \BbbP m for all \^S \in \scrS lin

h \} , induces
a corresponding Lagrange finite element space on the polynomial surface \Gamma h, by lifting
the functions to the curved elements. In this paper we restrict to the isoparametric
case m = k and thus we get the spaces

\~V kh,\pi h
(\Gamma h) :=

\bigl\{ 
\^v \circ \pi  - 1

h | \^v \in \^V kh
\bigr\} 
, \~Vk

h,\pi h
:=

\bigl( 
\~V kh,\pi h

\bigr) 3
,

which can be compared to the spaces defined in (3.3).

D
ow

nl
oa

de
d 

07
/0

6/
22

 to
 1

34
.6

1.
97

.1
27

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1814 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

In the SFEM for the surface Stokes equations, surface normals and the Weingarten
map for the parametric surface \Gamma h are required. These can be obtained from the
derivatives of the polynomial projection function \pi h (see also [53]). We denote by
\=J i := \nabla \lambda \vargamma 

i the local basis function Jacobians. The Jacobian of \pi h and the normal
vectors on \Gamma h are then given by

\=JS(\lambda ) :=

nk\sum 
i=1

\pi (F \^S(\lambda i))\otimes \=J i(\lambda ), \=nS(\lambda ) =
\=NS(\lambda )

\| \=NS(\lambda )\| 
for \lambda \in \Lambda 

with \=NS(\lambda ) := \=JS(\lambda )\cdot ,1 \times \=JS(\lambda )\cdot ,2 the cross product of the columns of \=JS(\lambda ). We
identify nh(\bfitx ) = nh(\=\pi \^S,h(\lambda )) \equiv \=nS(\lambda ) for \bfitx = \=\pi \^S,h(\lambda ) \in S and Nh \circ \=\pi \^S,h \equiv \=NS ,

analogously. The approximate Weingarten map Hh(\bfitx ) = \nabla Snh(\bfitx ) for \bfitx \in S then
follows by chain rule using the surface derivatives (2.1) of Nh,

Hh :=
\nabla SNh

\| Nh\| 
,

locally, inside each element S \in \scrS h. In [13] the following estimates for errors in the
normal vector and Weingarten map are proven:

(3.4) \| nh  - n \circ \pi \| L\infty (\Gamma h) \lesssim hk , \| Hh  - H \circ \pi \| L\infty (\Gamma h) \lesssim hk - 1 .

All these surface approximations are based on an initial linear approximation
\Gamma lin of \Gamma and an interpolation of the exact closest point projection \pi , which is not
always available directly. Thus, it needs to be computed numerically. In [50, 14,
41] some iterative schemes are discussed to evaluate the closest point projection in
the neighborhood of \Gamma . We follow the iterative approach introduced in [14] in our
numerical experiments (see also [53]).

4. Discretization methods for the surface Stokes equations. In this sec-
tion we outline the two discretization methods TraceFEM and SFEM for the dis-
cretization of the surface Stokes variational problems (2.6) and (2.9), and the varia-
tional formulations for the reconstruction of the velocity and pressure (2.10), (2.11).

4.1. Trace finite element method. Since the TraceFEM is a geometrically
unfitted finite element method, we need a stabilization that eliminates instabilities
caused by the small cuts. We use the so-called normal derivative volume stabilization
[11, 24]:

sh(u,v) := \rho u

\int 
\Omega \Gamma 

\Theta 

(\nabla unh) \cdot (\nabla vnh) dx , sh(p, q) := \rho p

\int 
\Omega \Gamma 

\Theta 

(nh \cdot \nabla p)(nh \cdot \nabla q) dx

with parameters \rho u and \rho p specified below (cf. Table 4.2).

4.1.1. Discretization of variational formulation in u-p variables. Based
on the parametric finite element spaces Vk

h,\Theta and V kh,\Theta we introduce the Pk-Pk - 1 pair
of parametric trace Taylor--Hood elements:

(4.1) Uh := Vk
h,\Theta , Qh := V k - 1

h,\Theta \cap L2
0(\Gamma h), k \geq 2 .

Note that the polynomial degrees, k and k  - 1, for the velocity and pressure approx-
imation are different, but both spaces Uh and Qh use the same parametric mapping
based on polynomials of degree k. Since the pressure approximation uses H1 finite
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1815

element functions we can use the integration by parts (2.5) (with \Gamma replaced by \Gamma h).
We introduce discrete variants of the bilinear forms aT (\cdot , \cdot ) (cf. (2.7)), and bT (\cdot , \cdot ).
We define, with Ph = Ph(\bfitx ) := I - nh(\bfitx )nh(\bfitx )

T , \bfitx \in \Omega \Gamma 
\Theta , u,v \in Uh, q \in Qh:

\nabla \Gamma h
q := Ph\nabla q , \nabla \Gamma h

u := Ph\nabla uPh ,

Eh(u) :=
1
2

\bigl( 
\nabla \Gamma h

u+\nabla \Gamma h
uT

\bigr) 
, ET,h(u) := Eh(u) - (u \cdot nh)Hh ,

aT,h(u,v) :=

\int 
\Gamma h

ET,h(u) : ET,h(v) dsh +

\int 
\Gamma h

Phu \cdot Phv dsh ,

bh(u, q) :=

\int 
\Gamma h

u \cdot \nabla \Gamma h
q dsh , kh(u,v) := \eta 

\int 
\Gamma h

(u \cdot \~nh)(v \cdot \~nh) dsh .

The bilinear form kh(\cdot , \cdot ) is used in a penalty approach in order to (approximately)
satisfy the condition u\cdot n = 0. The normal vector \~nh, used in the penalty term kh(\cdot , \cdot ),
and the curvature tensor Hh are approximations of the exact normal and the exact
Weingarten mapping, respectively. There are several possibilities for constructing
suitable approximations, e.g.,

\~nh =
\nabla (Ik+1

\Theta (\varphi ))

\| \nabla (Ik+1
\Theta (\varphi ))\| 2

, Hh = \nabla (Ik - 1
\Theta (nh)) ,(4.2)

where Ik\Theta : L2(\Omega \Gamma 
\Theta ) \rightarrow V kh,\Theta is the parametric Oswald-type interpolation operator as

defined in [34]. For these approximations we have the following error bounds:

(4.3) \| \~nh  - n\| L\infty (\Omega \Gamma 
\Theta ) \lesssim hk+1 , \| Hh  - H\| L\infty (\Omega \Gamma 

\Theta ) \lesssim hk - 1 .

The reason that we introduce yet another normal approximation \~nh comes from error
analyses for a surface vector-Laplace equation [27, 26], which show that for obtaining
optimal order estimates the normal approximation \~nh used in the penalty term has
to be at least one order more accurate than the normal approximation nh.

For the discretization on the surface approximation \Gamma h we need a suitable (suffi-
ciently accurate) extension of the data f , which is denoted by fh. For fh we can choose
any smooth extension to the neighborhood U\delta . For example, if f is defined on U\delta we
can choose fh = f .

Remark 4.1. In the numerical experiments below we use the following data ex-
tension. In the setting of these experiments we prescribe an exact solution pair (u, p)
on \Omega and a corresponding right-hand side fh is constructed as follows. The surface
differential operators used in the Stokes problem (2.2), defined on \Gamma , have canonical
extensions to a small neighborhood of \Gamma . We use these extended ones and apply the
Stokes operator (defined in the neighborhood) to the prescribed u and p. The result-
ing f , which is defined in the neighborhood and not necessarily constant in the normal
direction, is used in the numerical experiments.

We now introduce a discrete version of the formulation (2.6):
Determine (uh, ph) \in Uh \times Qh such that

(4.4)
AT,h(uh,vh) + bh(vh, ph) = (fh,vh)L2(\Gamma h) for all vh \in Uh,

bh(uh, qh) - sh(ph, qh) = 0 for all qh \in Qh

with AT,h(u,v) := aT,h(u,v) + sh(u,v) + kh(u,v). Based on error analyses [26, 48]
the stabilization parameters are chosen as \eta = h - 2, \rho u = h - 1, \rho p = h. Concerning
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A1816 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

the latter two parameters that determine the size of the velocity and pressure normal
derivative stabilizations we note the following (cf. [48]): The stabilization for velocity
is not essential for stability of the finite element discretization method but needed
(only) to control the condition number of the stiffness matrix. The pressure stabiliza-
tion term, however, with scaling \rho p \geq cph, cp > 0, turns out to be crucial for good
(discrete inf-sup) stability properties of the finite element discretization method.

4.1.2. Discretization of variational formulation in stream function vari-
able. For the discretization of the problems (2.9), (2.10), and (2.11) we use the Trace-
FEM (cf. [10]). We choose the same parametric trace finite element space for the
velocity approximation as in the previous section, i.e., uh \in Vk

h,\Theta . In the surface
Taylor--Hood case (4.1) we need k \geq 2. Here, however, we allow k \geq 1. For the
stream function approximation we also use a parametric trace finite element space,
but with polynomials of one degree higher, i.e., \psi h \in V k+1

h,\Theta . We use the same stabi-
lizations sh(\cdot , \cdot ), sh(\cdot , \cdot ) and notation as in the previous section 4.1.1. Note that in the
geometry approximation (the parametric mapping \Theta h) we use the same polynomial
degree k as for the velocity approximation.

For a discrete version of (2.9) we define for \xi , \eta \in V k+1
h,\Theta the bilinear and linear

forms

mh(\xi , \eta ) :=

\int 
\Gamma h

\xi \eta dsh , \ell h(\xi , \eta ) :=

\int 
\Gamma h

\nabla \Gamma h
\xi \cdot \nabla \Gamma h

\eta dsh ,

\ell h,K(\xi , \eta ) := 2

\int 
\Gamma h

\Bigl( 
1 - \~Kh

\Bigr) 
\nabla \Gamma h

\xi \cdot \nabla \Gamma h
\eta dsh , g(\xi ) :=  - 2

\int 
\Gamma h

fh \cdot curl\Gamma h
\xi dsh.

For the approximations of the Weingarten mapping and of the Gaussian curvature we
take

(4.5) \~Hh := Ph\nabla (Ik\Theta (\~nh))Ph, \~Kh :=
1

2

\biggl( 
tr
\Bigl( 
\~Hh

\Bigr) 2

 - tr
\Bigl( 
\~H2
h

\Bigr) \biggr) 
with Ik\Theta the Oswald-type interpolation also used in (4.2). The approximation of the
Gaussian curvature is based on the identity KP = tr(H)H  - H2 (cf. [29]). The
following estimates hold:

\| \~Hh  - H\| L\infty (\Omega \Gamma 
\Theta ) \lesssim hk, \| \~Kh  - K\| L\infty (\Omega \Gamma 

\Theta ) \lesssim hk.

The discretization of (2.9) is as follows:
Determine (\phi h, \psi h) \in V k+1

h,\Theta \times V k+1
h,\Theta with

\int 
\Gamma h
\psi h dsh = 0, such that

(4.6)
mh(\phi h, \eta h) + \ell h(\psi h, \eta h) + sh(\psi h, \eta h) = 0 for all \eta h \in V k+1

h,\Theta ,

\ell h(\phi h, \xi h) - \ell h,K(\psi h, \xi h) + sh(\phi h, \xi h) = gh(\xi h) for all \xi h \in V k+1
h,\Theta .

Based on the analysis in [10], the parameters in both stabilizations sh(\cdot , \cdot ) in (4.6) are
set to \rho p = h. For the discretization of the velocity reconstruction we introduce the
bilinear form mh(u,v) :=

\int 
\Gamma h

u \cdot v dsh and define the discrete problem: Determine

uh \in Vk
h,\Theta such that

(4.7) mh(uh,vh) + sh(uh,vh) =

\int 
\Gamma h

(\~nh \times \nabla \Gamma h
\psi h) \cdot vh dsh for all vh \in Vk

h,\Theta ,

with the given discrete solution \psi h of (4.6) and the normal approximation \~nh as in
(4.2). In the stabilization bilinear form sh(\cdot , \cdot ) we use the parameter \rho u = h, based
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1817

on the analysis in [10]. Concerning the reconstruction of the pressure we consider
the following discrete variational formulation of (2.11): Determine ph \in V kh,\Theta with\int 
\Gamma h
ph dsh = 0, such that

\ell h(ph, \xi h)+sh(ph, \xi h)=

\int 
\Gamma h

\Bigl( 
\~Kh curl\Gamma h

\psi h+fh

\Bigr) 
\cdot \nabla \Gamma h

\xi h dsh for all \xi h\in V kh,\Theta .(4.8)

We use the parameter choice \rho p = h in the stabilization sh(\cdot , \cdot ) (cf. Table 4.2).

4.2. Surface finite element method. The surface finite element discretization
combines the general piecewise flat surface discretization for vector-valued surface par-
tial differential equations [39] with the higher order surface approximations considered
for scalar-valued surface partial differential equations [13], which requires some addi-
tional handling of the tangential constraint. The stream function formulation, on the
other hand, is a straightforward extension of the piecewise flat surface discretization
[45] to curved geometries.

4.2.1. Discretization of variational formulation in u-p variables. Similar
to the TraceFEM discretization, we introduce the Pk-Pk - 1 pair of surface Taylor--
Hood elements based on the function spaces \~Vk

h,\pi h
and \~V kh,\pi h

:

(4.9) \~Uh := \~Vk
h,\pi h

, \~Qh := \~V k - 1
h,\pi h

\cap L2
0(\Gamma h), k \geq 2 .

Using the same discrete bilinear forms aT,h(\cdot , \cdot ), bh(\cdot , \cdot ), and kh(\cdot , \cdot ) as for the Trace-

FEM discretization, but applied to functions from \~Uh and \~Qh, we can directly
formulate the discrete problem. For the approximation \~nh of n in the penalty
term kh(\cdot , \cdot ), we use a local Lagrange interpolation of the exact surface normal
n(\bfitx ) = \nabla \varphi (\bfitx )/\| \nabla \varphi (\bfitx )\| for \bfitx \in \Gamma , i.e.,

(4.10) \~nh =
\~Nh

\| \~Nh\| 
with \~Nh \circ \=\pi \^S,h = Ik(n \circ \pi \circ \=\pi \^S,h) ,

resulting in an approximation with \| \~nh  - n \circ \pi \| L\infty (\Gamma h) \lesssim hk+1 that follows from
standard interpolation error estimates.

We now introduce a discrete version of the formulation (2.6): Determine (uh, ph) \in 
\~Uh \times \~Qh such that

(4.11)
AT,h(uh,vh) + bh(vh, ph) = (fh,vh)L2(\Gamma h) for all vh \in \~Uh,

bh(uh, qh) = 0 for all qh \in \~Qh

with AT,h(u,v) := aT,h(u,v) + kh(u,v). Based on error analysis in [27] the penal-
ization parameter is chosen as \eta = h - 2. We use the same data extension fh = f on
\Gamma h as explained in Remark 4.1. Note that compared to the TraceFEM discretization
no additional stabilization terms, such as sh(\cdot , \cdot ), are needed.

4.2.2. Discretization of variational formulation in stream function vari-
able. The SFEM discretization of (2.9), (2.10), and (2.11) is analogous to the Trace-
FEM discretization but without the stabilization terms.

We use the scalar finite element approximation \psi h \in \~V k+1
h,\pi h

for the stream function

and \phi h \in \~V k+1
h,\pi h

for the vorticity function of one order higher than the corresponding

velocity function uh \in \~Vk
h,\pi h

, but on the surface approximation \Gamma h that is constructed
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A1818 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

using polynomials of degree k. The bilinear forms mh(\cdot , \cdot ) and \ell h(\cdot , \cdot ) are defined as in
the TraceFEM discretization. The bilinear form \ell h,H(\cdot , \cdot ) for the SFEM discretization

requires a higher order accurate curvature tensor \~Hh = \nabla S \~nh, given by

\~Hh = \nabla S
\~Nh

(I  - \~nh\~n
T
h )

\| \~Nh\| 
,

locally, inside each element S \in \scrS h, with \~nh and \~Nh from (4.10). This leads to
the following discrete version of (2.9): Determine (\phi h, \psi h) \in \~V k+1

h,\pi h
\times \~V k+1

h,\pi h
with\int 

\Gamma h
\psi h dsh = 0, such that

(4.12)
mh(\phi h, \eta h) + \ell h(\psi h, \eta h) = 0 for all \eta h \in \~V k+1

h,\pi h
,

\ell h(\phi h, \xi h) - \ell h,K(\psi h, \xi h) = gh(\xi h) for all \xi h \in \~V k+1
h,\pi h

.

With mh(\cdot , \cdot ) defined as for the TraceFEM discretization, we obtain for the dis-
cretization of the velocity reconstruction the discrete problem: Determine uh \in \~Vk

h,\pi h

such that

(4.13) mh(uh,vh) =

\int 
\Gamma h

(\~nh \times \nabla \Gamma h
\psi h) \cdot vh dsh for all vh \in \~Vk

h,\pi h

with the given discrete solution \psi h of (4.12) and the normal approximation \~nh as be-
fore. Concerning the reconstruction of the pressure we consider the following discrete
variational formulation of (2.11): Determine ph \in \~V kh,\pi h

with
\int 
\Gamma h
ph dsh = 0, such

that

(4.14) \ell h(ph, \xi h) =

\int 
\Gamma h

\Bigl( 
\~Kh curl\Gamma h

\psi h + fh

\Bigr) 
\cdot \nabla \Gamma h

\xi h dsh for all \xi h \in \~V kh,\pi h
,

using \~Kh given by 1
2

\bigl( 
tr( \~Hh)

2 - tr( \~H2
h)
\bigr) 
. Again, no additional stabilization terms are

needed.

4.3. Comparison of formulations and methods.

4.3.1. Comparison of velocity-pressure and stream function formula-
tions. Relations between the velocity-pressure formulation and the stream function
formulation for the Stokes equations in Euclidean space are treated in, e.g., [23]. In
sections 4.1.1 and 4.1.2 additional properties associated with the surface Stokes equa-
tions are discussed. While in the Taylor--Hood formulation a penalty approach is used
to (weakly) enforce the tangential condition u \cdot n = 0 we do not need an additional
Lagrange multiplier or penalty approach to enforce the tangential condition in the
stream function formulation. If the velocity is reconstructed based on the relation
u\ast 
T = n \times \nabla \Gamma \psi 

\ast , tangency is automatically fulfilled. In both formulations one needs
curvature information. In the Taylor--Hood method (both for TraceFEM and SFEM)
an approximation Hh of the exact Weingarten mapping is needed in the bilinear form
aT,h(\cdot , \cdot ). This approximation should have accuracy (at least) hk - 1 (cf. (3.4), (4.3)).
In the stream function approach we need an approximation of the Gaussian curvature
K, which is determined based on an approximation of the Weingarten mapping as in
(4.5). This Gaussian curvature approximation should have accuracy (at least) hk. In
both formulations a one order more accurate normal approximation (denoted by \~nh
above) is used: in the Taylor--Hood formulation in the penalty bilinear form kh(\cdot , \cdot )
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1819

and in the stream function formulation in the reconstruction of the velocity (cf. (4.7),
(4.13)).

The assumption that \Gamma is simply connected is crucial for the stream function for-
mulation. Note that the Helmholtz--Hodge decomposition, which provides the math-
ematical basis for the stream function formulation, not only splits uT into curl-free
and divergence-free components, but might also contain nontrivial harmonic vector
fields---vector fields which are curl- and divergence-free. As these vector fields cannot
be described by the stream function formulation, the approach is only applicable for
surfaces, where harmonic vector fields are trivial, which are only simply connected
surfaces (see also [42, 44] for numerical comparisons). Such a restriction does not
exist for the Taylor--Hood formulation.

4.3.2. Comparison of TraceFEM and SFEM. We compare the complexity
of both discretization methods for the two formulations (mixed and stream function)
in terms of the number of degrees of freedom (DOFs) for representing the discrete
solution. Clearly, the number of unknowns depends on the underlying mesh. As a
theoretical model case we consider a flat surface with a structured (uniform) trian-
gulation and derive formulas for the number of unknowns for that case. We then
perform a numerical experiment to test how well these formulas predict the number
of unknowns for the Stokes problem on a sphere discretized using quasi-uniform outer-
(TraceFEM) or surface-triangulations (SFEM).

For TraceFEM we consider the following structured case. Let \Omega = [ - 1, 1]3 and
\Gamma = \{ \bfitx = (x, y, z) \in \BbbR 3 | z = 1

3\} . We assume periodic boundary conditions on the
faces of the cube. The initial triangulation consists of 43 equal sized subcubes, where
each of these is subdivided into 6 equal sized tetrahedra. For refinement, each subcube
is repeatedly divided into 8 subcubes. For SFEM the procedure for the construction
is similar, but we just consider the 2D level-set domain \Gamma . The initial triangulation
consists of 42 equal sized quads, where each of these is subdivided into 2 triangles.
For refinement, each subquad is repeatedly divided into 4 subquads.

On these structured meshes we compare the number of unknowns for both for-
mulations (4.4) and (4.6) as a function of the number of tetrahedra cut by the surface
\Gamma (TraceFEM) and triangular surface-grid elements (SFEM), which we denote by n,
and the degree k of the finite elements. We start with the Taylor--Hood formulations
(4.4) and (4.11). For the number of unknowns for the Pk  - Pk - 1 pair of parametric
Taylor--Hood elements one can derive the formulas

THTraceFEM(n, k) = 3
\Bigl\lceil n
6

\Bigr\rceil 
(k + 1)k2 +

\Bigl\lceil n
6

\Bigr\rceil 
k(k  - 1)2 ,

THSFEM(n, k) = 3
\Bigl\lceil n
2

\Bigr\rceil 
k2 +

\Bigl\lceil n
2

\Bigr\rceil 
(k  - 1)2 .

(4.15)

The first summand is the number of unknowns corresponding to Pk (velocity) and
the second summand is the number of unknowns corresponding to Pk - 1 (pressure).
For the stream function formulations (4.6) and (4.12) the number of unknowns for the
coupled stream function/vorticity system discretized with Pk+1 finite elements both
for the stream function and the vorticity is given by

SFTraceFEM(n, k) = 2
\Bigl\lceil n
6

\Bigr\rceil 
(k + 2)(k + 1)2 ,

SF SFEM(n, k) = 2
\Bigl\lceil n
2

\Bigr\rceil 
(k + 1)2 .

(4.16)

Adding the number of unknowns for reconstructing the velocity in (4.7) and (4.13)
and the pressure in (4.8) and (4.14), using finite elements of degree k, we get
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A1820 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

SFTraceFEM
total (n, k) = 2

\Bigl\lceil n
6

\Bigr\rceil 
(k + 2)(k + 1)2 + (3 + 1)

\Bigl\lceil n
6

\Bigr\rceil 
(k + 1)k2 ,

SF SFEM
total (n, k) = 2

\Bigl\lceil n
2

\Bigr\rceil 
(k + 1)2 + (3 + 1)

\Bigl\lceil n
2

\Bigr\rceil 
k2 .

(4.17)

Differences between TraceFEM and SFEM are the constant factor \lceil n6 \rceil vs. \lceil 
n
2 \rceil , which

relates to the number of simplices in the corresponding cube/quad elements, and the
missing third dimension for the SFEM discretization. The latter yields one polynomial
degree lower dependency on k in SFEM discretizations compared to the TraceFEM
discretizations.

In Figure 4.1 we illustrate these formulas. On the left-hand side of Figure 4.1
we plotted the formulas (4.15), (4.16), and (4.17) with a fixed n extracted from the
surface grid experiments that are plotted on the right-hand side. We use solid lines
for the TraceFEM discretizations and dashed lines for the SFEM discretizations. On
the right-hand side of that figure we plotted as a comparison the number of unknowns
for the case that \Gamma is the unit sphere and the computational grids are unstructured,
consisting of n = 100474 tetrahedra (TraceFEM) and n = 131072 triangles (SFEM).
We observe that the corresponding curves in the two figures are very close.

From these formulas it follows that TH(n, k) < SF (n, k) for k \leq 4 (TraceFEM)
or k \leq 3 (SFEM) and TH(n, k) > SF (n, k) for k \geq 5 (TraceFEM) or k \geq 4 (SFEM).
Thus, for low polynomial degree in the finite elements, the Taylor--Hood formula-
tion has an advantage in terms of the number of DOFs over the stream function
formulation. The difference, however, between the number of unknowns in these two
formulations is relatively small. If we include the number of unknowns for recon-
structing the velocity and pressure we obtain TH(n, k) < SFtotal(n, k) for k \geq 2.
This is due to the fact that the reconstruction of the velocity in the second formula-
tion is performed in the same finite element space as the one used for velocity in the
first formulation. This choice is necessary to obtain the same convergence order of
convergence (see below).

Note that we only measure the number of unknowns and not the computational
costs of an iterative (or sparse direct) method for solving the resulting linear systems.

Fig. 4.1. Plot of formulas (4.15), (4.16), and (4.17) for the number of unknowns on a struc-
tured grid (left) and number of unknowns for the unit sphere and an unstructured triangulation
consisting of n = 100474 tetrahedra cut by the surface for TraceFEM and n = 131072 triangles for
SFEM, respectively (right). Solid lines correspond to TraceFEM discretizations whereas dashed lines
correspond to SFEM discretizations (color coding available online).
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1821

Table 4.1
Complexity of TraceFEM (top) and SFEM (bottom) grids: (surface) grid size, number of ele-

ments in the computational grid, nnz, and number of DOFs in the two formulations for k = 3 on
the ``biconcave shape"" grid.

Ref. Grid Grid TH SF
Level Size Elements nnz DOFs nnz DOFs
TraceFEM h\Gamma 

0 0.288439 334 5.03 \cdot 105 6843 5.99 \cdot 105 9054
2 0.078671 6250 9.62 \cdot 106 126724 1.14 \cdot 107 168300
4 0.019486 102640 1.58 \cdot 108 2077692 1.87 \cdot 108 2760602
SFEM h
0 0.282815 516 4.88 \cdot 105 8006 5.46 \cdot 105 8260
2 0.075342 8256 7.81 \cdot 106 127976 8.73 \cdot 106 132100
4 0.019885 132096 1.25 \cdot 108 2047496 1.40 \cdot 108 2113540

Table 4.2
Choices for the normal derivative volume stabilization parameters \rho \bfu , \rho p, \rho \psi and the penalty

parameter \eta in the different methods.

\rho u \rho p \rho \psi \eta 
TraceFEM TH h - 1 h h - 2

SFEM TH h - 2

TraceFEM SF h h h

System complexity. As already indicated by the formal analysis of the number
of unknowns in the discretizations on a plane or sphere, the TraceFEM and SFEM
have different complexities. This is due to the fact that the TraceFEM is based on
finite element spaces on a strip of 3D tetrahedral elements whereas the SFEM is based
on spaces on 2D triangular elements. This difference does not only imply a higher
number of unknowns for the TraceFEM compared to SFEM, but also increases the
number of nonzeros (nnz) in the resulting linear systems. For a computational grid
used in section 5, we have listed complexity data for TraceFEM and SFEM, for the
case k = 3, in Table 4.1.

We note that the two methods have a different mesh size parameter h. In Trace-
FEM it is natural to use a mesh size parameter h corresponding to the bulk tetrahedral
mesh. In SFEM the mesh size h is as usual the longest edge length in the surface tri-
angulation. For reasons of comparison, for TraceFEM we also determined the surface
grid size, denoted by h\Gamma , defined as the average over the longest edges in the triangular
faces of the surface cut through the tetrahedral computational grid elements.

4.3.3. Comparison of numerical parameters. We summarize the parameter
settings used in the TraceFEM of section 4.1.1 (TraceFEM TH), the TraceFEM of
section 4.1.2 (TraceFEM SF), and the surface FEM of section 4.2.1 (SFEM TH) in
Table 4.2.

5. Numerical experiments. The implementation of the TraceFEM discretiza-
tions is done with Netgen/NGSolve and ngsxfem [66, 40]. We use an unstructured
tetrahedral triangulation of \Omega := [ - 5

3 ,
5
3 ]

3 with starting mesh size h = 0.5 in the 3D
grid. The mesh is locally refined using a marked-edge bisection method for the surface
intersected tetrahedra [65]. The average over the longest edges in the triangular faces
of the surface cut through the initial tetrahedral computational grid elements is about
0.29. The code is available in [9, 28].
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A1822 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

(a) TraceFEM triangulation (b) SFEM triangulation (c) Velocity solution \bfu 

Fig. 5.1. Geometry biconcave shape with triangulations and solution (5.2). In the TraceFEM
triangulation a cut through the bulk mesh and cut surface elements of the level set are shown.
Glyphs in the solution represent the velocity, the coloring from blue to red the velocity magnitude
(color coding available online).

The implementation of the SFEM discretizations is done with AMDiS/Dune [76,
77, 6, 63]. We use an unstructured curved triangular grid [53, 64] with initial mesh
size h \approx 0.28 using a quartering (red) refinement of all triangles. The code is available
in [52].

5.1. Experiment on a biconcave shape. We consider a surface \Gamma called ``bi-
concave shape"" (cf. Figure 5.1), which has high curvature variations and is defined
implicitly as the zero-level set of a function \varphi (\bfitx ):

(5.1) \Gamma := \{ \bfitx = (x, y, z) \in \BbbR 3 | \varphi (\bfitx ) := (d2+x2+ y2+ z2)3 - 8d2(y2+ z2) - c4 = 0\} 

with c = 0.95 and d = 0.96. The smooth solutions of the surface Stokes problem (2.2)
are prescribed by

(5.2) p := x3 + xyz , u := curl\Gamma \psi , and \psi := x2y  - 5z3.

Note that u is tangential and divergence-free. The solutions are not extended
constantly along normals but by their definitions (5.2). Using MAPLE we calculate
the corresponding right-hand side f as described in Remark 4.1. The problem setting
is illustrated in Figure 5.1.

In Figures 5.2 and 5.3 we have plotted the discretization errors of the discrete
solution uh vs. the exact solution u in the L2-norm and H1-norm. We clearly see
that the error in the L2-norm is one order higher than the error in the H1-norm, as
expected. For both methods (TraceFEM and SFEM) and for both formulations (mixed
Taylor--Hood and stream function) we observe optimal orders k + 1 and k of the L2-
error and H1-error convergence, respectively, consistent with analyses presented in
[26, 10, 27].

In Figures 5.4 and 5.5 the L2-norm and H1-norm of the pressure errors are shown.
It turns out that (for both methods) the rate of convergence is less regular than for
the velocity error. For both methods the L2-error in the Taylor--Hood formulation
converges faster than the optimal (asymptotic) convergence order k. For the stream
function formulations, we observe the expected optimal order k + 1 for the L2-error.
The H1-error in pressure for the Taylor--Hood formulation has the optimal conver-
gence order 1 for k = 2, but shows higher than second order convergence for k = 3.
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1823

Fig. 5.2. \| uh  - u\| L2(\Gamma h) errors for k = 2 and k = 3 for the different methods.

Fig. 5.3. \| \nabla \Gamma h
(uh  - u) \| L2(\Gamma h) errors for k = 2 and k = 3 for the different methods.

Fig. 5.4. \| ph  - p\| L2(\Gamma h) errors for k = 2 and k = 3 for the different methods.

For the stream function formulation, in both TraceFEM and SFEM we (essentially)
observe the optimal order k for the H1-error in pressure.

We further determine \| uh \cdot \~nh\| L2(\Gamma h) to measure how well the numerical solu-
tion satisfies the tangential condition. Note that we use the improved normal vector
\~nh that is used in the penalty term in the Taylor--Hood formulation and in the ve-
locity reconstruction in the stream function formulation. In Figure 5.6 we see an

D
ow

nl
oa

de
d 

07
/0

6/
22

 to
 1

34
.6

1.
97

.1
27

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1824 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

Fig. 5.5. \| \nabla \Gamma h
(ph  - p) \| L2(\Gamma h) errors for k = 2 and k = 3 for the different methods.

Fig. 5.6. \| uh \cdot \~nh\| L2(\Gamma h) errors for k = 2 and k = 3 for the different methods.

order k + 1 convergence for both the Taylor--Hood and stream function formulation
in both discretization methods. Note that in the stream function formulation on the
continuous level, due to the relation u\ast 

T = n\times \nabla \Gamma \psi 
\ast , the tangential condition is au-

tomatically fulfilled (cf. section 4.3.1). This explains why in Figure 5.6 the quantity
\| uh \cdot \~nh\| L2(\Gamma h) is (much) smaller for the stream function formulation than for the
Taylor--Hood formulation.

Since we are interested in solenoidal vector fields u, the error in the divergence,
div\Gamma h

(uh), is measured and plotted in Figure 5.7. In both the discrete solution of the
Taylor--Hood formulation and the reconstructed velocity vector in the stream function
formulation, the convergence order k can clearly be observed in these results.

We conclude that with the parameter settings (penalty parameter, stabilization
parameter) defined above the two methods, TraceFEM and SFEM, have (essentially)
the same rate of convergence for all considered quantities: velocity and pressure errors,
tangentiality measure and discrete divergence. For the Taylor--Hood formulation the
optimal velocity error convergence orders are k and k + 1 for the H1- and L2-norm,
respectively, and the optimal orders for the pressure error are k  - 1 and k for the
H1- and L2-norm, respectively. For the stream function formulation the optimal
orders are k and k + 1 for the H1- and L2-norm of the velocity error, and k and
k + 1 for the H1- and L2-norm of the pressure error. The numerical results show
that these optimal orders are attained and in certain cases, e.g., the pressure L2-norm
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1825

Fig. 5.7. \| div\Gamma h
(uh) \| L2(\Gamma h) errors for k = 2 and k = 3 for the different methods.

error in the Taylor--Hood formulation, we even observe a higher rate than the optimal
one. For the tangentiality measure \| uh \cdot \~nh\| L2(\Gamma h) we obtain the convergence order
k+1 in both the Taylor--Hood and the stream function formulation. For the discrete
divergence \| div\Gamma h

(uh) \| L2(\Gamma h) we obtain the convergence order k in both the Taylor--
Hood and the stream function formulation. We should remark that optimal error
convergence orders for SFEM are not known analytically and are here considered as
expected orders based on the results for a vector surface Laplacian [27]. Other open
issues, which are postponed to future investigations, are error norms for the tangential
velocity.

5.2. Discussion of results. We summarize and discuss a few aspects of the
methods treated above.

Surface approximation. In both the TraceFEM and SFEM one needs an initial
piecewise planar approximation \Gamma lin of \Gamma that is sufficiently accurate, in the sense that
the closest point projection \pi : \Gamma lin \rightarrow \Gamma should be a bijection and dist(\Gamma lin,\Gamma ) \sim h2.
For the TraceFEM it is easy to construct such a \Gamma lin, using linear finite interpolation
(or approximation) of the level set function on a volume triangulation. For SFEM,
opposite to TraceFEM, the approximation \Gamma lin has to be shape-regular and in general
the construction of \Gamma lin is more difficult, in particular for surfaces with strongly varying
curvatures. Given \Gamma lin, a higher order surface approximation is obtained by a suitable
parametric approach. In TraceFEM this is based on a transformation (deformation) of
the local volume triangulation \scrT \Gamma 

h , whereas in SFEM a transformation of the surface
approximation \Gamma lin is used.

Stream function formulation or formulation in (u, p)-variables. The stream func-
tion formulation can only be used if \Gamma is simply connected. Based on the complexity
results and the error plots presented above, we conclude that (for this test case) the
methods based on the stream function formulation are for k \leq 3 slightly more effi-
cient than the ones based on the (u, p)-variables. There is, however, not a decisive
difference in efficiency. In the stream function formulation the tangential contraint is
automatically satisfied, whereas in the (u, p) formulations we need a penalty approach.

Complexity. If one defines complexity in terms of DOFs (cf. section 4.3.2), we
obtain complexity estimates \sim nk3 and \sim nk2 (precise relations in (4.15)--(4.17)) for
the TraceFEM and SFEM, respectively. The difference in the exponents is caused by
the fact that the TraceFEM uses finite element spaces on a strip of 3D tetrahedral
elements whereas the SFEM is based on spaces on 2D triangular elements.
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A1826 BRANDNER, JANKUHN, PRAETORIUS, REUSKEN, AND VOIGT

Rate of convergence and efficiency. In the numerical experiments we obtain for
both TraceFEM and SFEM in the (u, p) formulation and the stream function for-
mulation optimal rates of convergence in L2- and H1 norms. Looking at the size of
the errors we see that for comparable DOFs the SFEM typically has an error that is
10--50 times smaller than the corresponding error in the TraceFEM. Hence, if one uses
error/DOFs as a measure of efficiency, then the SFEM is significantly more efficient
than TraceFEM.

Parameter tuning. The parameters are summarized in Table 4.2. Note that for
SFEM in stream function formulation there are no parameters. The use of additional
scaling constants, e.g., cp, c\eta in \rho p = cph, \eta = c\eta h

 - 2, did not significantly change the
results.

Applications to other problem classes. The methods studied in this paper can
also be used in other (more complex) surface PDE problems. For example, the sur-
face Stokes problem may be coupled to a bulk flow problem. In such a setting the
TraceFEM has the advantage that for the bulk and surface problems one can use the
same finite element spaces. Another extension concerns (Navier--)Stokes equations on
evolving surfaces. If the surface evolution is smooth and without strong deformations
we expect, based on the results presented in this paper, that the evolving SFEM (cf.
[15] for the scalar-valued problem) is more efficient than a time dependent variant
of TraceFEM. If, however, the surface geometry has strong deformations, or even
topological singularities occur, the TraceFEM may be more attractive.

5.3. Benchmark problem. We consider the Stokes problem on the biconcave
shape as in (5.1), but with a prescribed right-hand side function f . This driving
force is constructed in such a way that a rotating flow around the x-axis emerges (cf.
Figure 5.1(b) for axes-directions). Choosing f asymmetric places the two emerging
vortices away from the center position at the geometric bumps on the x-axis (cf.
Figure 5.8). The position of the two vortices depends on the size of the curvature at
the bumps, which is controlled by the geometry parameter d in (5.1). This geometric
effect has already been discussed in [59, 61] for the surface Navier--Stokes equations
and in [74] for surface super fluids. The latter case allows for analytic expressions for
the interaction of vortices with the surface geometry. We here only use the geometry
effect to formulate a benchmark problem for the surface Stokes equations with the
center of the vortices as a quantity of interest.

For the construction of the right-hand side function, we consider the rotational
tangential field f0 := n \times (1, 0, 0)T . This tangential vector field is first restricted to
an outer ring of the surface and then accelerated depending on the rotational angle,
as follows:

f(x) := \chi \varepsilon (\bfitx )
1
2

\bigl( 
1 + sin(\alpha (\bfitx ))

\bigr) 
\cdot f0(\bfitx )

with \chi \varepsilon (\bfitx ) := \delta \varepsilon (x) \delta \varepsilon (
\sqrt{} 
y2 + z2  - R), \alpha (\bfitx ) := arctan2(y, z),

\delta \varepsilon (r) := 36\varphi \varepsilon (r)
2
\bigl( 
1 - \varphi \varepsilon (r)

\bigr) 2
, and \varphi \varepsilon (r) :=

1
2

\bigl( 
1 - tanh(3 r/\varepsilon )

\bigr) 
.

This construction follows the general ideas of [36]. The right-hand side f and the
velocity solution uh are illustrated for d = 0.96 in Figure 5.8. For the parameters we
have used R = 1.1 for the outer ring radius and \varepsilon = 0.2 for the restriction thickness.
The angle-dependent scaling factor is chosen such that it has a maximum on one side
and the minimum zero on the opposite site of the shape.
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DISCRETIZATION OF THE SURFACE STOKES EQUATIONS A1827

(a) Right-hand side \bff . (b) Velocity solution \bfu h.

Fig. 5.8. Geometry biconcave shape for d = 0.96 in the benchmark problem. The right-hand
side is nonzero only on a thin strip located close to the y-z-plane. Glyphs represents the force and
velocity magnitude by coloring from blue (small) to red (large) (color coding available online).

For this given right-hand side, the Stokes equations are solved using the four ap-
proaches discussed before, i.e., the TraceFEM and SFEM discretization of the Taylor--
Hood and stream function formulation, respectively. In the Taylor--Hood formulation,
for the resulting velocity field uh, inside a vortex we determine the location where the
size of the velocity is minimal and take this as an approximation of the vortex position.
For the stream function approximation \psi h, the location of a local maximum yields the
numerical approximation of the vortex position. Below this numerical approximation
of the vortex position is denoted by xv.

In Figure 5.9, the velocity magnitude and the location of the vortex on the upper
side (x > 0) are visualized. The Euclidean distance of the vortex location xv to the

center on the surface xc = (
\surd 
c4/3  - d2, 0, 0)T and the dependence of this distance

on the geometric parameter d are the quantities of interest. We study four different

cases, namely, d = 0, d = d0 :=
\sqrt{} 

3
8c

8/3 \approx 0.572, d = 0.8, and d = 0.96. The value d0
corresponds to a geometry with zero mean and Gaussian curvature in the geometry

(a) d = 0.0. (b) d = d0 \approx 0.572. (c) d = 0.8. (d) d = 0.96.

Fig. 5.9. Magnitude of the computed velocity field uh for different shape parameters d. In white
numerical vortex location and in red the center of the geometry. The slice highlights the direction
of the asymmetry of the force field and the shape of the geometry in this direction (color coding
available online).
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Table 5.1
Mean curvature tr(H) and Gaussian curvature K evaluated at the geometry center for various

geometry parameters d.

d = 0 d = d0 d = 0.8 d = 0.96
K 1.07 0 3.12 268.76

tr(H) 2.07 0  - 3.53  - 32.79

Table 5.2
Complexity of SFEM and TraceFEM grids for the geometry parameter d = 0.96 and grid

refinement level 5: (surface) grid size, number of elements in the computational grid, nnz, and
number of DOFs for k = 3 in the stream function formulation. Compare also Table 4.1

Grid size Grid elements nnz DOFs
SFEM h = 0.009984 528384 5.59 \cdot 108 8454148

TraceFEM h\Gamma = 0.009744 411354 7.52 \cdot 108 11065384

Table 5.3
Reference solution of the distance of the vortex center to the geometry center for various ge-

ometry parameters d.

d = 0 d = d0 d = 0.8 d = 0.96
SFEM 0.255577 0.308290 0.295497 0.245279

TraceFEM 0.254524 0.309088 0.295475 0.244346

center xc. The values for d with corresponding mean and Gaussian curvature in the
geometry center xc are given in Table 5.1.

We performed a numerical experiment in the same setting as explained in section
5. From the results presented in that section we see that on the finest level 5 and with
k = 3 the most accurate results in all cases (except the H1-norm velocity error in
TraceFEM) are obtained using the stream function formulation. Compare Table 5.2
for the actual complexity data of the grids for the geometry d = 0.96 used in SFEM
and TraceFEM. For the other geometry parameters the number of elements is in the
same order.

In Table 5.3 we present the distance results \| xv  - xc\| 2 both for the TraceFEM
and SFEM discretization of the stream function formulation for k = 3 and refinement
level 5.

Note that we extensively tested the stream function formulation and compared
it with the Taylor--Hood formulation (previous section) and that we use two different
methods (TraceFEM and SFEM) that are implemented in two different software codes.
Based on this we claim that the first 3--4 digits of the distance values in Table 5.3
are correct. These results can be used as benchmark values for the development and
testing of other codes used for the numerical simulation of surface Stokes equations.
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