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Abstract We consider a microscopic field theoretical approach for interacting active nematic particles.
With only steric interactions the self-propulsion strength in such systems can lead to different collective
behaviour, e.g. synchronized self-spinning and collective translation. The different behaviour results from
the delicate interplay between internal nematic structure, particle shape deformation and particle–particle
interaction. For intermediate active strength an asymmetric particle shape emerges and leads to chirality
and self-spinning crystals. For larger active strength the shape is symmetric and translational collective
motion emerges. Within circular confinements, depending on the packing fraction, the self-spinning regime
either stabilizes positional and orientational order or can lead to edge currents and global rotation which
destroys the synchronized self-spinning crystalline structure.

1 Introduction

Active matter systems take energy from their environ-
ment and drive themselves out of equilibrium. This can
lead to novel collective phenomena and provides hope
to uncover the physics of living systems and to find
new strategies for designing smart devices and materi-
als. We refer to Ramaswamy [1], Marchetti et al. [2],
Cates and Tailleur [3], Menzel [4], Bechinger et al. [5]
and Gompper et al. [6] for various reviews. An impor-
tant example of active matter is constituted by natural
and artificial objects capable of self-propulsion. A fun-
damental challenge is to understand how such objects
interact and lead to collective phenomena. Most of the
microscopic modelling approaches in this field consider
active particles which have a fixed symmetric shape,
and movement is defined along a symmetry axis. This
leads to motion along a straight line just perturbed by
random, e.g. Brownian fluctuations. Both assumptions,
on shape and symmetry, are restrictive, as shape defor-
mations as well as deviations from symmetry destabi-
lize any straight motion and make it chiral, which would
result in circular motion. As most systems are imperfect
this should be the general case. While attempts exist to
generalize active particle models in this direction, see,
e.g. [7–10] for imposed alignment mechanisms, Denk et
al. [11] and Bär et al. [12] for anisotropic particle shapes
and Ohta and Ohkuma [13] and Menzel and Ohta [14]
for shape deformations, multiphase-field models, e.g.
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[15–18], where each object is modelled by a phase field
variable, which implicitly described the shape of the
object, and thus naturally allow for shape deformabil-
ity and also provide the possibility to incorporate asym-
metry to enforce chirality. It has already been demon-
strated that collisions of deformable objects can lead to
alignment [14,19–21]. As a result, these multiphase-field
models do not require any explicit alignment interac-
tions. A drawback of such models is the huge computa-
tional effort for large numbers of interacting objects. We
here consider an intermediate modelling approach. The
approach considers a particle density and combines it
with internal nematic structure. We are only interested
in relatively dense systems and study the influence of
activity in unconfined and confined domains.

The paper is organized as follows: In Sect. 2 we pos-
tulate a minimal model which is capable of shape defor-
mations and broken symmetry with respect to the direc-
tion of motion. The model is termed nematic active
phase field crystal model. Besides the motivation, the
evolution equations are explained and the numerical
approaches for solving and postprocessing are sketched.
Section 3 analyses the model for a single object and
identifies three different regimes: resting, circular or
spinning motion and translation. Section 4 considers
the emerging collective behaviour in unconfined and
confined geometries, and Sect. 5 discusses these results
and relates the observed phenomena to that of other
theoretical and experimental investigations.
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2 Modelling

2.1 Motivation

Microscopic field theoretical approaches for active sys-
tem can be considered as a compromise between the
full details of multiphase-field models and active par-
ticle models. They first have been introduced in [22]
for active crystals and consider a local particle density
variation field ψ, a local polar particle orientation field
P and a self-propulsion strength v0. The model com-
bines a phase field crystal model for freezing [23,24]
with a Toner-Tu model for self-propelled particles [25].
More recently this approach was also considered on sur-
faces [26] and has been extended by an active torque,
and the interplay of self-propulsion and self-spinning
of crystallites was investigated in [27]. A different path
was followed in [28,29] where the underlying phase field
crystal energy was modified to consider independent
active particles [30–33]. The approach allows to sim-
ulate a transition from a resting particle to a moving
state by increasing the self-propulsion strength. Within
this transition, the particle deforms and elongates per-
pendicular to the direction of motion. Other phenom-
ena, considered for more particles, are cell–cell colli-
sions, oscillatory motion in confined geometries, collec-
tive migration and cluster formation in homogeneous
systems [28], as well as the rich dynamics of heteroge-
neous systems of active and passive particles, ranging
from highly dilute suspensions of passive particles in
an active bath to interacting active particles in a dense
background of passive particles [29]. A common charac-
teristic of these models is the presence of an underlying
interaction potential for the density variation field ψ
but no enforcement of aligning the polar particle orien-
tation field P. Alignment results solely from inelastic
particle deformations through their interaction [19].

For a single particle the interplay between a splay
(or bent) instability of the polar particle orientation
field P, the particle shape and the strength of the self-
propulsion v0 has been discussed [28] and corresponds
to the same mechanism as in phase-field models for
active droplets, see, e.g. [34,35]. As a result of the ver-
tical anchoring of the polar particle orientation field P
at the particle boundary, one +1 defect forms within
the particle. With no further interaction, due to the
isotropic properties of the particle, the resulting shape
of the particle is symmetric with respect to the direc-
tion of motion, see Fig. 1 (left). To incorporate chirality
thus requires an additional active force , as in [27], or a
different particle orientation field. Adapting approaches
of active nematic droplets [36,37], we propose a micro-
scopic field-theoretical approach, which couples a local
particle density variation field ψ, a local nematic parti-
cle Q-tensor field Q and a self-propulsion strength v0.
Similar mechanisms, as described above, also follow for
this model, but now the nematic properties lead to the
presence of two +1/2 defects, which allows to break
the symmetry and induces chirality, see Fig. 1 (mid-
dle). This property allows to consider only one active

parameter, the self-propulsion strength v0, to tune the
rich dynamics of the model.

2.2 Evolution equations

The proposed minimal model reads

∂tψ = M0Δ
δFvPFC

δψ
+ v0∇ · (ψQ∇ψ) (1)

∂tQ = LΔQ − c(trQ2 − 1)Q

− v0(2∇ψ∇ψT − ‖∇ψ‖2Id) − β1{ψ>0}Q,
(2)

with particle density variation field ψ, nematic particle
Q-tensor field Q and self-propulsion strength v0. The
first equation considers conserved dynamics for the free
energy FvPFC = FPFC +

∫
H(|ψ|3 − ψ3) dr, with

FPFC =
∫

ψ

2
(r + (1 + ∇2)2)ψ) +

ψ4

4
dr (3)

the Swift–Hohenberg energy [23,24,38], with param-
eter r related to an undercooling, and an additional
penalization term, with parameter H > 0. The penal-
ization enforces the density variations to remain posi-
tive. This modifies the particle interaction and allows
to phenomenologically describe independent particles
[30–33]. A detailed derivation of FPFC and its rela-
tion to classical density functional theory can be found
in [39–41]. The variational derivative reads δFvPFC

δψ =
(r + 1)ψ + 2∇2ψ + (∇2)2ψ + ψ3 + 3H(ψ|ψ| − ψ2). The
parameter M0 sets a mobility and is responsible for the
deformability of the density peaks. The active contri-
bution is considered in analogy to the polar model [28],
with Q∇ψ playing the role of the polar particle orien-
tation field P. The second equation considers uncon-
served dynamics of a Landau-de Gennes energy in its
one-constant approximation

FLdG =
∫

L

2
‖∇Q‖2 +

a

2
trQ2 +

2
3
b trQ3 +

c

4
trQ4 dr

(4)

with elastic constant L and entropic parameters b = 0
(as only two-dimensional systems are considered) and
a = −c. The active component is constructed to ensure
the Q-tensor properties and the last term restricts, in
analogy to Alaimo et al. [28], the nematic particle Q-
tensor field Q to be different from zero only within the
particles, with β > 0. The model is considered in a
nondimensional setting.

2.3 Numerical approach

The coupled equations are reformulated as a set of
second-order equations and solved using an operator
splitting approach for ψ and Q in a semi-implicit man-
ner. Discretization in space is done by finite elements
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Fig. 1 (Right) Particle density variation field ψ for a single
density peak (colour coding) with the 0.01 level set indicat-
ing the shape of the particle. With the 0.01 level set we
consider 95% of the mass of the density peak. The internal
polar (left) and nematic (middle) structure is visualized by
the director field. The figures further show the direction and

strength of motion (arrows) and the location of topological
defects (black points). For the polar model (left) one +1
defect is located on the symmetry axis, and for the nematic
model (middle) two +1/2 defects break the symmetry and
make the motion chiral

[42,43], and adaptive refinement is considered to ensure
a fine discretization within the particles. The approach
is implemented in AMDiS [44,45].

We consider a square domain Ω = [−6d, 6d]2, with
periodic boundary conditions, where d = 4π√

3
the lattice

distance of the phase field crystal model. A circular
confinement is enforced using an interaction potential
to be added to FvPFC , which reads

∫
Bψ2ϕB dr with

B > 0 and ϕB a tanh-approximation of 1Ω\Ωc
, with

Ωc = {‖r‖ < 6d}.
The model parameters are fixed as r = −0.9, M0 =

20, L = 0.2, c = 0.1, H = 105, β = 10 and B = 105.
The self-propulsion strength v0 will be varied and spec-
ified below. Numerical parameters concerning grid res-
olution, time step and tanh-approximation are chosen
to guarantee mesh-independency and stable behaviour.

As initial condition we specify

ψ0 = A

N∑

i=1

(

cos

(√
3

2
‖r − ri‖

)

+ 1

)

1‖r−ri‖<2π/
√
3

(5)

with prefactor A such that
∫

ψ0 dr = Nd2/|Ω|√
(−48 − 56r)/133 and particle initial positions ri for

i = 1, . . . , N with N the number of particles. As ini-
tial Q-tensor field we consider a symmetric field with
one +1 defect in the centre of each particle and vertical
anchoring at the particle boundary. The initial Q-tensor
field is perturbed by white noise to break the symme-
try. The +1 defects are unstable and immediately split
into two +1/2 defects. The way these defects rearrange
sets the shape of the particle and its direction of move-
ment.

For postprocessing purposes the centre of the i-th
particle at time tn is computed as rn

i =
∫

Bi
rψn dr/

∫
Bi

ψn dr, with Bi a small circle around the maxi-
mum of the i-th density peak. The radius of Bi is

related to d. The i-th particle velocity follows as vn
i =

(rn
i − rn−1

i )/(tn − tn−1), and the mean particle veloc-
ity magnitude is the average over all vn

i , computed as
vn = 1/N

∑N
i=1 ‖vn

i ‖.
As in [20,28] we define for every time tn the trans-

lational order parameter φn
T and the rotational order

parameter φn
R with

φT (tn) =
1
N

∥
∥
∥
∥
∥

N∑

i=1

v̂n
i

∥
∥
∥
∥
∥

, φR(tn) =
1
N

N∑

i=1

(r̂n
i )T v̂n

i

and

φO(tn) = sin

(
1
N

N∑

n=1

arctan(vn
i )

)

where v̂n
i = vn

i /‖vn
i ‖ is the unit i-th particle velocity

vector and r̂n
i = rn

i /‖rn
i ‖ the unit i-th particle posi-

tion vector at time tn. In case of collective translation
or collective rotation, we get φT,i ≈ 1 or |φR,i| ≈ 1,
respectively. However, also collective orientation in syn-
chronously spinning particles leads to φT,i ≈ 1. To
distinguish translational and orientational order φO

measures synchronously changing orientation. The fre-
quency of the oscillation in φO(t) determines the col-
lective angular spinning velocity.

3 Single particle

We first consider the situation of one particle. It is
placed in the centre of the domain, and we consider the
effect of v0. Figure 2 shows the particle velocity, the
eccentricity and the asymmetry of the defect arrange-
ment as a function of v0. The eccentricity is defined as
en
i =

√
1 − (rn

i,min)2/(rn
i,max)2, where rn

i,min and rn
i,max
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Fig. 2 Particle velocity (top), eccentricity (middle) and
defect asymmetry (bottom) of a single particle depending
on self-propulsion strength v0 (left). The vertical lines indi-
cate the separation into three regimes. From left to right:
a resting, b circular or spinning motion and c translation.

The error bars correspond to values at different times within
the nonequilibrium steady state. For the circular or spinning
regime the dynamically stable state is shown as a function
of time (right) for v0 = 1.5 (red), v0 = 1.75 (blue) and
v0 = 2.0 (black)

are the minimal and maximal distances between the
centre of mass and the 0.15 level set of ψ for particle i
at time tn, respectively. The 0.01 level set is considered
as the particle boundary. The asymmetry of the defect
arrangement is computed as the deviation from the cen-
tre of mass with respect to length and angle, as an

i =

|‖dn
i,1−rn

i ‖−‖dn
i,2−rn

i ‖|+
∣
∣
∣
∣
(dn

i,1−rni )
Tvn

i

‖dn
i,1−rni ‖ − (dn

i,2−rni )
Tvn

i

‖dn
i,2−rni ‖

∣
∣
∣
∣,

where dn
i,1 and dn

i,2 are the positions of the two +1/2
defects for particle i at time tn. Various approaches
exist to determine defects in nematic liquid crystals,
see [46] for a comparison of various methods. We here
consider them as degenerate points of Q for which
Q11 = Q12 = 0. This allows an easy detection of the
position of a defect. For a nematic liquid crystal in 2D
two types of topological defects predominate +1/2 and
−1/2. Considering the sign of δ = ∂Q11

∂x
∂Q12
∂y − ∂Q11

∂y
∂Q12
∂x

allows to distinguish between them. Due to the setting
within a particle and the specified vertical anchoring
only +1/2 defects occur in the considered parameter
regime.

Figure 2(left) shows three regimes: (a) resting, char-
acterized by a zero velocity, the cell shape deforms with
increasing v0 and the defect positions are symmetric,
(b) circular or spinning, the velocity fluctuates, which
has an effect on the eccentricity and the asymmetry of
the defect positions, and (c) translation, with increasing
velocity, constant shape and symmetric arrangement of
defects. The nonequilibrium steady state of the circular
or spinning regime is shown in Fig. 2(right) for different
v0. The oscillations underpin the correlation between
velocity, eccentricity and defect asymmetry. While they
are strongest for v0 = 1.5, they decrease for v0 = 1.75
and are almost gone for v0 = 2.0, in accordance with
the error bars in Fig. 2(left).

To further highlight the connection between parti-
cle velocity, eccentricity and asymmetry of the defect
positions Fig. 3(left) shows the particle shape together
with the principle eigenvector of the largest eigenvalue
of Q (director field) and the defect positions for vari-
ous v0. As the defects can also be located at the 0.01
level set, the nematic liquid crystal, which is forced to
decay to zero in regions with ψ ≤ 0, is also shown in the
vicinity of the particle. The defects deform the director
field and the deformed director field is responsible of the
symmetry breaking. For the circular or spinning regime
the shape deformation is asymmetric with respect to
the direction of movement and the defect asymmetry
increases with v0. The direction (up or down) depends
on the splitting of the +1 defect into two +1/2 defects
and the resulting shape deformation. For the transla-
tion regime the shape is symmetric with respect to the
direction of motion and also the defect arrangement is
almost symmetric. With increasing v0 the defects are
located closer to the symmetry axis and the velocity of
movement, which only slightly deviates from the sym-
metry axis, increases. Figure 3(right) shows a typical
circular path together with the corresponding director
field and the velocity in the shown time instances. Due
to the small radius of the circulation, which is almost
independent on the strength of activity v0, we denote
this motion as spinning in the following.

Having spinning and translation as possible motility
modes within one model, determined by the strength
of activity, offers the possibility to switch between both
modes. If these switches occur randomly in time and
the spinning mode randomizes the translation direc-
tion, the behaviour is reminiscent to run-and-tumble
particles and, however, here controlled by regulating
the activity.
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Fig. 3 (left) Particle shape, nematic liquid crystal field
and position of +1/2 defects for various v0 correspond-
ing to the resting regime v0 = 1.25, the spinning regime
v0 = 1.5, 1.75, 2.0 and the translation regime v0 =

2.5, 3.0, 3.5, 4.0. To highlight the particle deformation a cir-
cular shape of the same area is plotted with the same centre
of mass (red dotted line). The arrows indicate the particle
velocities. (right) Circular particle path for v0 = 2.0

4 Collective behaviour

The behaviour in the resting and translation regimes
essentially coincides with that of the polar active phase
field crystal model [28]. This also remains true for the
emerging collective behaviour in unconfined and con-
fined geometries, see Appendix A. We thus only concen-
trate on the spinning regime in more detail. First, we
characterize the behaviour of interacting spinning parti-
cles in unconfined and confined geometries for an inter-
mediate packing fraction of 0.57. To compute the pack-
ing fraction we consider the 0.01 level set of ψ to deter-
mine the area of the particles as AN =

∫
I{ψ>0.15} dr.

The area of one particle A = AN/N ≈ 0.9d2 with
d = 4π/

√
3 the lattice distance in the phase field crys-

tal model. This essentially motivates to consider the
0.01 level set. The packing fraction results as AN/|Ω|
or AN/|Ωc|.

4.1 Synchronization in unconfined and confined
geometries

We first consider 120 particles in the square domain Ω
with periodic boundary conditions. The self-spinning
particles form crystalline structures with local triangu-
lar order, with dislocations and regions with no par-
ticles, which dynamically rearrange. The particles are
self-spinning, and due to local interactions some parti-
cles also move to positions further away than the spin-
ning radius. This is consistent for all considered self-
propulsion strength v0. However, only for v0 = 2.0
the translational order parameter φT ≈ 1, which indi-
cates translational order or in the current context syn-
chronized spinning. This is confirmed by the angular
order parameter φO, which oscillates with fixed peri-
odicity, see Fig. 4a, b. The behaviour in the circular
confinement Ωc is similar, see Fig. 4c, d. Also in this
setting the translational order parameter φT ≈ 1 for

v0 = 2.0 and the angular order parameter φO oscil-
late with fixed periodicity. This nonequilibrium steady
state is reached much faster than in the unconfined
geometry. One could conclude that in this setting con-
finement helps to synchronize the particles. Deviations
from synchronized spinning in the reached nonequilib-
rium steady state are only found at the edge. This corre-
sponds with regions with crystalline defects or no par-
ticles. In the centre a crystal with perfect triangular
lattice and synchronously spinning particles emerges.

In contrast to the translational regime considered in
Appendix A with translational and rotational motion as
nonequilibrium steady states, here both settings behave
similar. In unconfined and confined geometries the ini-
tially independently spinning particles undergo a tran-
sition to a nonequilibrium steady state of positional
and orientational order, a synchronized spinning crys-
tal. The simulations only confirm this for v0 = 2.0. If
this state is also reached at later times for the other
self-propulsion strength v0 remains open.

4.2 Varying packing fraction and emerging edge
currents

All previous simulations consider a packing fraction of
0.57. We now vary this in the circular confinement and
observe different behaviour, see Fig. 5. For a smaller
packing fraction of 0.48, at least within the consid-
ered time neither synchronized spinning nor crystal
formation can be observed. Instead only small crys-
talline patches form and dynamically rearrange. Due
to the available space particle interactions lead to local
positional rearrangements. Similar to the situation in
unconfined geometries particles can move to positions
further away than the spinning radius. Figure 5b shows
the coarse-grained trajectories of the particles (without
the spinning component), and Fig. 5c the bond number
averaged over a larger time frame. The chaotic trajec-
tories and the low bond number for a packing fraction
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Fig. 4 a Three different time instances (t = 100, 500, 900
from left to right) indicating the evolution to synchronized
spinning for v0 = 2.0 and N = 120 in the square domain Ω
with periodic boundary conditions. The particles are visual-
ized by the 0.15 level set of ψ. The colour corresponds with
the direction of the arrow and indicates the direction of
motion. The initial condition is a square lattice of circular
particles with perturbed nematic fields. The perturbation
leads to a random distribution of the resulting direction of
motion. b The translational, rotational and angular order

parameters (from left to right) for corresponding simulations
with v0 = 1.5 (red), v0 = 1.75 (blue) and v0 = 2.0 (black). c
Three different time instances (t = 100, 300, 500 from left to
right) indicating the evolution to synchronized spinning for
v0 = 2.0 and N = 100 in the circular domain Ωc. Visualiza-
tion and initial conditions are as in a. d The translational,
rotational and angular order parameters (from left to right)
for corresponding simulations with v0 = 1.5 (red), v0 = 1.75
(blue) and v0 = 2.0 (black). See also Supplementary Movie

of 0.48 underpin the described behaviour. The bond
number gives an indication of crystalline order and is
computed for particle j as bn

6j = (
∑

k∈Nj
e6iθn

jk)/Nj ,
with Nj the nearest neighbours of particle j within a
specified radius related to d and θn

jk the angle between

rn
k − rn

j and the x-axis. The considered averaged bond
number b̂6j accounts for the average over various times
tn. b̂6j = 0 considers the situation of an isolated par-
ticle and b̂6j = 1 that of a perfect triangular lattice,
a particle with six neighbours. The nearest neighbours
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Fig. 5 Varying packing fraction 0.48, 0.57, 0.66, 0.7 (from
left to right) with self-propulsion strength v0 = 2.0 in circu-
lar domain Ωc. a Time instance t = 500. Visualization and
initial conditions as in Fig. 4. b Coarse-grained particles tra-

jectories in time interval (200, 500). c Averaged bond order
parameter in time interval (200, 500). See also Supplemen-
tary Movie

Fig. 6 Kymographs corresponding to simulations in Fig.
5. (top) Orthoradial component and (bottom) radial com-
ponent of the particle velocity averaged over all particles

with distance R from centre for varying packing fraction
0.48, 0.57, 0.66, 0.7 (from left to right) with self-propulsion
strength v0 = 2.0

are constructed using a Voronoi tessellation for the cen-
tres of mass. For the low packing fraction the system is

in a fluid-like regime with isolated particles which can
easily change their positions.
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Fig. 7 a Three different time instances (t = 100, 300, 500
from left to right) indicating the evolution to collective
migration for v0 = 4.0 and N = 120 in a square domain
Ω with periodic boundary conditions. Visualization and ini-
tial conditions are as in Fig. 4. b The translational, rota-
tional and angular order parameters (from left to right) for
corresponding simulations with v0 = 3.0 (red), v0 = 3.5
(blue) and v0 = 4.0 (black). c Three different time instances

(t = 100, 300, 500 from left to right) indicating the evolution
to collective migration for v0 = 4.0 and N = 100 in the cir-
cular domain Ωc. Visualization and initial conditions are
as in a. d The translational, rotational and angular order
parameters (from left to right) for corresponding simulations
with v0 = 3.0 (red), v0 = 3.5 (blue) and v0 = 4.0 (black).
See also Supplementary Movie

For packing fraction 0.57 the coarse-grained trajecto-
ries show more or less stationary particles in the centre
and only small movements on the edge, see Fig. 5b.
This small edge currents differ from the behaviour in
the unconfined geometry discussed above. The emerg-
ing edge currents have an effect on the crystalline struc-
ture, which is quantified by the averaged bond number,

see Fig. 5c. With b̂6j ≈ 1 it shows a clear persistent
triangular lattice in the centre and deviations only at
the edge.

The situation changes for increasing packing fraction.
For 0.66 and 0.7 the dominating situation of a crys-
tal with triangular lattice and synchronously spinning
particles is destroyed. The edge currents increase and
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propagate towards the centre, see Fig. 5b. While for
0.66 a triangular lattice still exists at least over some
time span before it gets rearranged, the averaged bond
order for 0.7 has even less indication of such stable crys-
talline order, see Fig. 5c. The coarse-grained particle
trajectories, see Fig. 5b, show a transition towards a
global vortex. The snapshots in Fig. 5a further indicate
that the particles no longer spin synchronously. The
Supplementary Movies further confirm this behaviour.

The coarse-grained particle movements (without the
spinning component) are further analysed in Fig. 6,
which confirms the above discussion. The kymographs
show the orthoradial and radial components of the
coarse-grained velocity averaged over all particles which
are located at a distance R from the centre of the
domain Ωc. While there is almost no movement in
orthoradial direction, the slight edge currents for pack-
ing fraction 0.57 in the radial component and their
increased strength and extension towards the centre for
packing fractions 0.66 and 0.7 are clearly visible. The
direction of the emerging vertex rotation depends on
the shape of the particles at the boundary as a result
of their spontaneous symmetry breaking. The majority
decides on the emerging direction at the edge, which
persists towards the centre.

5 Discussion

The proposed minimal model allows to explore different
dynamical regimes by varying one activity parameter
only. The direct coupling of the self-propulsion strength
v0 with the internal nematic structure and the deforma-
bility of the particle lead to slightly deformed resting
states if v0 is below some threshold. It induces within a
certain parameter range chirality, which leads to circu-
lar or spinning motion. If it is above some threshold, a
symmetric shape and translational motion emerge. All
regimes have been investigated in unconfined and con-
fined geometries. While the translational regime is more
or less identical with the behaviour of the active polar
phase field crystal model [28] and the observed rota-
tional behaviour in circular confinements reminiscent
of various experiments, e.g. on highly concentrated bac-
terial suspension, which self-organize into a single sta-
ble vortex [47], collective behaviour of self-circulating
or self-spinning particles is much less explored. Self-
spinning particles are computationally considered in
circular confinements [48]. While fundamental issues
differ, e.g. our particles are deformable, our spinning
radius is significantly larger and our spinning veloc-
ity significantly lower, the emerging behaviour is simi-
lar. The competition between circular confinement, self-
propulsion and steric interactions can lead to the emer-
gence of edge flows and rotations. Within a wider per-
spective, similar edge flows and rotations have also been
observed in chiral fluids [49]. It is shown that in sys-
tems of synchronously spinning particles both parity
(or mirror) symmetry and time-reversal symmetry are
broken. Hydrodynamic theories with additional terms

to account for these broken symmetries, e.g. rotational
viscosity, tend to force the fluid as a whole to rotate
with the angular velocity of the spinning particles. How-
ever, the motion of the fluid in the bulk is suppressed
by friction. As a result, the fluid moves mostly at the
boundary and the penetration depth of the vorticity
of the fluid from the boundary into the bulk is con-
trolled by the shear viscosity. These results are similar
to the edge currents in our simulations and their propa-
gation towards the centre with increasing packing frac-
tion. These similarities with other systems range from
collective rotation of chiral molecules of a liquid crys-
tal [50], to sperm cells [51,52], colloidal and millime-
tre scale magnetes [53,54] and rotating robots [55]. An
interesting biological example is provided by Chlamy-
domonas reinhardtii (C. reinhardtii). This micron-sized
unicellular algae is able to self-propel to perform trans-
lational motion, but also has the ability to self-rotate
[56]. Rotation is used to sense the direction of light to
optimize efficiency of phototaxis [57].

The proposed microscopic field theoretical model can
be extended towards various directions, e.g. hydrody-
namic interactions. This is already considered within
the phase field crystal model for passive systems, e.g.
[58–61]. Other possibilities consider multicomponent
systems [29,39].
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A Collective behaviour in
translational/rotational regime

If the self-propulsion strength is above some threshold, a
symmetric arrangement of defects and a symmetric shape
of the particles is enforced. As a result, the particles
behave as in the polar active phase field crystal model [28].
This behaviour leads to collective translation in unconfined
geometries and collective rotation in circular confinements,
see Fig. 7. It shows simulations for different values of v0.
Collective behaviour is only reached in the considered sim-
ulation time for the largest values, ϕT ≈ 1 for v0 = 4.0
and |ϕR| ≈ 1 for v0 = 3, 5 and 4.0. This behaviour is in
qualitative agreement with results in [28] and correspond-
ing large-scale simulations of multiphase-field models [62].
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