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Impact of contact inhibition on collective cell migration and proliferation
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Contact inhibition limits migration and proliferation of cells in cell colonies. We consider a multiphase field
model to investigate the growth dynamics of a cell colony, composed of proliferating cells. The model takes
into account the mechanism of contact inhibition of proliferation by local mechanical interactions. We compare
nonmigrating and migrating cells, in order to provide a quantitative characterization of the dynamics and analyze
the velocity of the colony boundary for both cases. Additionally, we measure single cell velocities, number of
neighbor distributions, as well as the influence of stress and age on positions of the cells and with respect to each
other.
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I. INTRODUCTION

Collective cell migration and proliferation play funda-
mental roles in embryonic development, tissue regeneration,
wound healing, and many disease processes. Identifying the
principles behind these processes requires a multiscale ap-
proach, linking the properties of individual cells and cell-cell
interactions to the emerging collective behavior. Various mod-
eling approaches have been considered to address this task;
see [1–3] for reviews. We here use a multiphase field model
(see [4–12]), which allows for cell deformations and detailed
cell-cell interactions, as well as subcellular details to resolve
the mechanochemical interactions underlying cell migration.
Also topological changes, such as T1 transitions, follow nat-
urally in this framework. Multiphase field models, together
with efficient numerics and appropriate computing power,
allow one to analyze the connection of single cell behavior
with collective migration and growth of cell colonies, at least
for moderate numbers of cells. They already led to quanti-
tative predictions of many generic features in multicellular
systems [12–14].

Here, we especially focus on the complex interaction of
migration and proliferation, which are regulated by contact
inhibition processes. We distinguish between two different
inhibitory mechanisms. On the one hand, contact inhibition
by locomotion (CIL), which is a process whereby a cell ceases
motility or changes its trajectory upon collision with another
cell by active regulation (see [15] for a review). On the other
hand, contact inhibition of proliferation (CIP), which refers to
the suppression of cell growth and divisions in dense regions
of tissues [16,17]. CIL naturally results from mechanical in-
teractions and re-polarization mechanisms of the multiphase
field models and its impact on collective migration is well
explored, within this framework [5,8–10,12,13,18,19]. How-
ever, in order to focus on CIP, we here consider a simpler
motility mechanism which ignores the active regulation of

cell motility. Proliferation cannot easily be incorporated in
the energetic description of a multiphase field model. Even
if such attempts on a single cell level exist [20,21], we here
follow an ad hoc procedure, which simply divides a cell if
it has reached a certain size [4,22–24]. CIP is included by
a growth factor for each cell, which is affected by cell-cell
interactions. We study CIP for the dynamics of small groups
of cells, proliferating in a circular confinement, similar to the
experiments on monolayers of epithelia cells in [25,26]. In
particular, we analyze emerging features, such as the speed
of colony growth, the velocity of individual cells, topological
measures, such as number of neighbor distributions, as well as
relations between mechanical interactions and age on position
of the cells in the colony. For other computational studies on
CIP, but with much stronger restrictions on the deformation of
cells, we refer to [24,25,27,28]. Figure 1 shows the dynamics
of a growing colony for nonmigrating and migrating cells,
already indicating the differences of the models with respect
to morphology and velocity of the colony boundary.

The paper is structured as follows: We introduce the math-
ematical model in Sec. II, briefly describe the considered
numerical approach to solve it in Sec. III, discuss results in
Sec. IV, and draw conclusions in Sec. V. Technical details are
provided in Appendixes A–E. Movies corresponding to Fig. 1
are provided in the Supplemental Material [29].

II. MODELING

We consider two-dimensional phase field variables φi(x, t ),
one for each cell. Values of φi = 1 and φi = −1 denote the in-
terior and the exterior of a cell, respectively. The cell boundary
is defined implicitly by the region −1 < φi < 1. The dynam-
ics for each φi is considered as

∂tφi + v0(vi · ∇φi ) = �
δF
δφi

+ ki(φi + 1), (1)
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FIG. 1. Superimposed snapshots of cell colony at different times,
starting with one circular cell in the center (on top, gray). (Left)
nonmigrating; (right) migrating cells. The outer circle marks the
confinement. For selected snapshots, also showing the individual
cells of the colony, and the considered parameters, see Appendix E.
For the corresponding movies see the Supplemental Material [29].

for i = 1, . . . , N , where N = N (t ) denotes the number of
active cells. F is a free energy and vi is a vector field
used to incorporate active components, with a self-propulsion
strength v0. For nonmigrating cells we set v0 = 0. All quan-
tities are nondimensional quantities. As in previous studies
[10,12,18,30,31] we consider conserved dynamics but now
add an exponential growth term with a growth rate ki. The
free energy F = FCH + FINT + FCON contains passive con-
tributions, where

FCH =
N∑

i=1

1

Ca

∫
�

ε

2
‖∇φi‖2 + 1

ε
W (φi ) dx, (2)

FINT =
N∑

i=1

1

In

∫
�

B(φi)
∑
j �=i

w(φ j ) dx, (3)

FCON =
N∑

i=1

1

Co

∫
�

B(φi )w(φcon) dx, (4)

with nondimensional capillary, interaction, and confinement
number, Ca, In, and Co, respectively. The first is a Cahn-
Hilliard energy, with W (φi ) = 1

4 (φ2
i − 1)2 a double-well

potential and ε a small parameter determining the width of the
diffuse interface. Due to this energy noninteracting cells tend
to become circular. For simplicity, we here neglect other prop-
erties of the cell boundary, e.g., bending forces. In [30] they
are shown to be negligible in the context of cell migration.
The second is an interaction energy with B(φi ) = (φi + 1)/2,
a simple shift of φi to values in [0,1], and a cell-cell interaction
potential,

w(φ j ) = 1 − (a + 1)

(
φ j − 1

2

)2

+ a

(
φ j − 1

2

)4

, (5)

approximating a short-range potential, which is only active
within the interior of the cell and its diffuse boundary. The
approach offers the possibility to consider repulsive as well
as attractive interactions which can be tuned by parameter
a (see Appendix A). The last energy models the interac-
tion with the confinement, which is given by the phase
field function φcon(x) = tanh((‖x − m‖ − rcon)/(

√
2ε)), with

m = (l/2, l/2) the center of the computational domain and

rcon the radius of the circular confinement. The interaction
potential is the same as in Eq. (5), but we only consider
repulsive interactions (see Appendix A).

For the definition of vi in Eq. (1), we follow the simplest
possible approach, which can be considered as a general-
ization of active Brownian particles [32–34] to deformable
objects [11]. In this approach the specified propulsion speed
v0 is the same for each cell, but the specified direction of
motion, determined by the angle θi is controlled by rota-
tional noise dθi(t ) = √

2DrdWi(t ), with diffusivity Dr and
a Wiener process Wi, which results in vi = (cos θi, sin θi ).
Even if this mechanism of reorientation is the same for
each cell, the outcome concerning shape and motion de-
pends on the mechanical interaction considered through FINT

and FCON. The growth rate ki is sampled from a Gaussian
distribution with mean and variance determined by the prod-
uct of a constant growth factor kgrowth and CIP factors for
cell-cell interaction fi ∈ [0; 1] and cell-confinement interac-
tion ξi ∈ [0; 1], such that ki ∼ N ( fiξikgrowth, fiξikgrowth ). As a
measure for contact, we consider the variational derivatives
δFINT/δφi and δFCON/δφi and define the total interactions,
Ti = ∫

�
δFINT/δφidx and Tcon,i = ∫

�
δFCON/δφidx, which

enter in

fi = max(0, min(1 − sgn(Ti )
(Ti

L

)2

, 1)) (6)

and ξi defined in the same way, with Ti replaced by Tcon,i. The
parameter L is a limiting factor (see Appendix B). Ti/L and
Tcon,i/L are measures for mechanical interaction of cell φi with
neighboring cells and the confinement, respectively. Consid-
ering the thermodynamically consistent definition for the cell
pressure Pi = δFINT/CON/δφi and the associated passive stress
σ i = −Pi11 (see [9]), these quantities provide a measure of the
scalar average of the passive stress at cell φi.

Cell division is manually introduced if the cell size reaches
a threshold. Following experimental evidence for epithelia
tissue [35], we divide the cell perpendicular to its elongation
axis. The number N of active cells is increased by one and
the age of the two daughter cells start from zero. The overall
size of the two daughter cells is slightly below that of the
mother cell due to the necessity to introduce a diffuse interface
between the two daughter cells. For further details, we refer to
Appendix C.

III. NUMERICS AND PARAMETER SETTING

We employ a parallel and adaptive finite element method
to solve the N coupled systems of partial differential equa-
tions for φi. The algorithm is implemented in AMDiS [36,37]
and the algorithmic concepts to achieve parallel scaling with
the number of cells N are described in [38]. Briefly, they
consider one core for the evolution of each cell and parallel
concepts from particle methods to reduce the communication
overhead due to cell-cell interaction. The coupled fourth-
order equations in Eq. (1) are split into coupled systems of
second-order equations for the phase field variables φi and
the corresponding chemical potentials μi = δF/δφi. The dis-
cretization in time is semi-implicit with a Taylor expansion
of the double-well potential and an explicit treatment of the
other nonlinear terms. For the Cahn-Hilliard part we introduce
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FIG. 2. Radius of a circle of corresponding area of growing
colony over time and corresponding slope for v0 = {0, 1}, In = 0.05,
and L = 10 000. The horizontal line shows the confinement, which
is reached at t ≈ 40. For related results with varying v0, In, and L see
Appendix E.

an additional singular function in the energy (see [39]). This
does not affect the asymptotic behavior as ε → 0 but helps
to ensure φi ∈ [−1, 1] and to increase accuracy [40,41] (see
Appendix D for details).

IV. RESULTS

We start with one circular cell, N = 1, in the center of a
circular confinement within the computational domain, � =
[0, l] × [0, l]. The size of the cell is just below the dividing
threshold. Numerical parameters, such as grid resolution and
time step are considered as large as possible to ensure stable
behavior and resolution of the essential physics. The grid
spacing within the diffuse boundary is h ≈ 0.2ε, in the interior
of each cell h � ε and in the exterior h � 10ε with increasing
values for regions far away from the interior. The time step
is chosen as τ = 0.005. Other parameters, if not specified
differently, are set as l = 100, rcon = 45, ε = 0.15, Ca = 0.1,
Co = 0.005, Dr = 0.01, and kgrowth = 0.3. We compare non-
migrating and migrating cells (v0 = {0, 1}) and consider In =
0.05 and L = 10 000. Figure 2 shows the growth, expressed
through the radius of a circle with the same area as the cell
colony. The radius grows linearly and slightly faster for the
migrating cells. This linear growth regime corresponds to a
constant boundary velocity of the cell colony and is consistent
with theoretical approaches, in which, due to CIP, only the
cells at the boundary are able to grow and divide [25,28].
Exponential colony growth observed in early stages, e.g., in
[24,25,28], is restricted to the growth of a single cell in our
setting. Already for two cells, the deformability of the cells
and the attachment forces lead to the emergence of a pro-
nounced common edge, which restricts independent growth
of the cells and thereby the linear growth regime kicks in
earlier. In order to further analyze the effect of CIP on colony
growth, we consider the age and the stress, expressed through
Ti/L, of each cell (see Fig. 3). While for the nonmigrating
case the age of the cells is more or less decreasing with
increasing radius of the cell colony and the inner cells develop
a homogeneous stress distribution, both age and stress are
more heterogeneously distributed in the migrating case, which

FIG. 3. Four snapshots of cell colony growth with color cod-
ing by age (top) and stress Ti/L (middle) for nonmigrating cells
(left) and migrating cells (right). The corresponding times are t =
{10, 20, 30, 35}. (Bottom) Corresponding relation between age and
stress for all cells at all times t � 35. The color coding is with respect
to the number of cells with the considered age/stress relation. Only
points with more than 250 counts are shown.

is quantified in the age/stress diagrams. For cells with age
below five, both diagrams are similar, indicating an increase of
stress with age. But for cells with age above five, the diagrams
differ. The homogeneous stress distribution for nonmigrating
cells results in a horizontal line at Ti/L ≈ 1. For migrating
cells, this is less pronounced with larger stresses emerging,
corresponding to a heterogeneous distribution. Therefore mi-
grating cells can generate space, which allow them to grow
further if the threshold for cell division is not reached. This
increases the cell density and leads to stresses with Ti/L > 1.

The increased heterogeneity for the migrating case also
becomes evident if the cell properties are averaged according
to their position in the colony with respect to the center.
Figure 4 shows the magnitude of the cell velocity and the
measure for cell-cell interaction fi. While the spatial-temporal
distribution of the cell-cell interaction is similar for the non-
migrating and migrating cases, the cell velocities strongly
differ. Not only within the center of the colony, where the
nonmigrating cells are more or less stationary and significant
movement is present for the migrating cells, but also on the
colony boundary, which shows significantly larger velocities
for the migrating cells. It has been argued that this larger
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FIG. 4. Radial analysis. (Top) Magnitude of cell velocity |v|avg as
a function of distance from colony center and time. (Bottom) Mea-
sure of cell-cell interaction fi. (Left) nonmigrating; (right) migrating
cells.

velocity at the colony boundary is the main reason for the
increased growth rate in the migrating case and that at long
times the colony expands as fast as the cells on the boundary
are able to migrate away from the colony center. This relation
between the strength of activity and the growth rate of the
colony is consistent within the considered parameter range
(see Appendix E). The colony grows faster for larger values
of v0.

Another measure concerns the topology of the cells in the
colony. We consider the coordination number, the number of
nearest neighbors, for each cell and calculate the histogram
(see Fig. 5). The data is shown for different time instances.
On average, the number of neighbors evolves similarly for
the nonmigrating and the migrating cells [see Fig. 5 (right)],
and reaches six, which is consistent with Euler’s polyhe-
dral formula. However, the histograms show the difference
between the nonmigrating and migrating cases [see Fig. 5
(left, middle)]. While for nonmigrating cells a steady-state
configuration emerges, with a strong peak at six neighbors,
the structure of the migrating cells is more heterogeneous with

FIG. 6. Experimental coordination number reported in the litera-
ture: Drosophila, Xenopus, Hydra [42], Anagallis, cucumber [43],
together with computational results [28,44,45] and our migrating
(v0 = 1) and nonmigrating (v0 = 0) results for t > 50.

significantly more cells with five and seven neighbors. For
tissues where cell proliferation is the primary cell activity,
measurements on embryonic epithelial tissues have shown
that the statistics of the coordination numbers are universal
[42]. Figure 6 shows experimental data together with various
simulation approaches and our results. As most of the experi-
mental data are for cells in confinements, we consider the late
time behavior for t > 50 and show the average of the distri-
bution over time. While the nonmigrating case overestimates
the number of cells with six neighbors, the migrating case is
in reasonable agreement with the experimental data and other
simulation approaches.

V. CONCLUSIONS

In summary, we have used a multiphase field model to
explore the effect of CIP in growing colonies of nonmigrating
and migrating cells. The extension of the multiphase field
model, as a minimal cell-based model, which accounts for cell
deformability and force transmission at cell-cell contacts, to
growth and cell division, allows one to analyze the impact of
contact inhibition. CIP is included by linking cellular growth
to the short-range interaction with neighboring cells, which
is realized by considering the chemical potential associated

FIG. 5. Histogram of the coordination number of the cells at different times: (left) nonmigrating, (middle) migrating cells. (Right) Averaged
number of neighbors over time for both cases. Only the cells not touching the confinement are considered.
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with the interaction energies. The stochastic behavior of mi-
gration and growth on a single cell level manifests in global
patterns in a multicellular context. The emerging neighbor
distribution in the growing colony is a result of cell division.
Under the influence of confinement it is in good agreement
with experimental measurements for various organisms. The
agreement for the migrating case is better; the nonmigrating
case overestimates the number of cells with six neighbors. The
proposed model leads to the typical linear boundary growth
of the colony radius with increased growth rate for increased
activity. It further allows for various investigations concerning
cell velocity, age, and stress distributions. They all signifi-
cantly differ between nonmigrating and migrating cells and
ask for experimental validations.
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APPENDIX A: INTERACTION POTENTIAL

To compute the interaction between two deformable
objects typically requires nonlocal terms. Here, this is circum-
vented by considering the phase field variables of all cells. The
term B(φi )

∑
j �=i w(φ j ) in FINT considers the interactions of

cell i with all other cells. The short-range nature of the inter-
action results from B(φi ), which is nonzero only at the interior
of the cell and within its diffuse boundary. Figure 7 shows the
impact of the parameter a in the definition of w in Eq. (5)
in the main text and the considered strength of interaction
between two cells for a = 1.5 (attractive and repulsive) and
a = 1 (repulsive), to be used for FINT and FCON, respectively.
Figure 7 also shows the interaction potential ω as a function
of the signed distance d of the φ = 0 level set, which can be
computed from the equilibrium tanh profile of the phase field
φ = tanh (d (x, t )/(

√
2ε)) (see [18,46]):

d = − ε√
2

ln

(
1 + φ

1 − φ

)
. (A1)

This only holds within the diffuse interface −1 < φ < 1. Neg-
ative values correspond to the interior of the cell.

APPENDIX B: MODELING CIP

Influencing the growth rate ki solely by the chemical
potentials, which are associated with the interaction and con-
finement energies, FINT and FCON, respectively, provides a
way to measure contact without any additional computations.
The considered functional form for fi and ξi (see Fig. 8)
provides one possibility to have unlimited growth for total
interaction Ti � 0, and a nonlinear reduction towards sup-
pressed growth if Ti � L, with adjustable parameter L. Ti/L
is used as a measure of stress in the modeling approach for
CIP.

FIG. 7. (Top) The considered interaction energies for cell-
cell interaction, a = 1.5 (attractive and repulsive, left) and cell-
confinement interaction, a = 1 (repulsive, right). (Middle and
bottom) Functional form for the interaction potential for different
parameters a as a function of phase field φ and signed distance d
from the φ = 0 level set.

APPENDIX C: CELL DIVISION

Cell division depends on cell size and cell geometry. Cell
area/volume is easily measured as Vi = ∫

�
B(φi ) dx. In order

to find the elongation axis we compute the Q tensor (symmet-
ric and trace-free tensor) for the cells which are above a given

FIG. 8. CIP factor fi for cell-cell interaction. The CIP factor ξi

for cell-confinement interaction has the same functional form.
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FIG. 9. (From left to right) Phase field φi of a cell along with the mesh. If the volume of the cell reaches the threshold for division the Q
tensor Si is computed. The white arrow marks the largest eigenvector of Si, and the white line, perpendicular to the vector, is the axis along
which the cell will divide. Next, the mesh is refined within the cell. Then, the cell is divided along the specified axis by setting φi = −1 within
a small band along the dividing axis. New indices j and k are assigned to the phase fields of the daughter cells. The fine mesh guarantees
recovering the characteristic tanh profile within one time step. Last, the new phase fields φ j and φk along with the coarsened mesh after 10
time steps after the division.

threshold for Vi. This reads

Si =
∫ [

1
2 ((∂yφi )2 − (∂xφi )2) −(∂xφi )(∂yφi )

−(∂xφi )(∂yφi ) 1
2 ((∂xφi )2 − (∂yφi )2)

]
dx.

The eigenvector of Si corresponding to the largest eigenvalue
points along the elongation axis of the cell. The cell is di-
vided perpendicular to this axis by assigning φi = −1 along
a small strip passing through the center of mass, defined as
ci = (

∫
�

B(φi )x dx)/(
∫
�

B(φi ) dx). The width of this strip is
considered to be of order ε. Two new phase fields are assigned

according to the proposed approach in [4]. Resulting sharp
corners are smeared out in the next time step due to FCH and
also the slight loss of area/volume is compensated within the
next time steps due to growth. Numerically we also refine
the mesh before cell division and coarsen the mesh after cell
division. The grid spacing for the interior of the cell to be
divided corresponds to that of the diffuse boundary, h ≈ 0.2ε.
This certainly increases the computational cost, but it only
happens localized in space (restricted to φi = 1) and time
(within a few time steps). Figure 9 shows an example of a
cell division process.

FIG. 10. Snapshots of colony growth. (Left) Nonmigrating, (right) migrating cells. The time instances are
{0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 47.5}. All postprocessing concerning colony growth is
limited to t � 35 to exclude the influence of the confinement. The corresponding movies are provided in the Supplemental Material [29].
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APPENDIX D: NUMERICAL STABILISATION

Following [39] we use instead of the Cahn-Hilliard energy,

FCH =
N∑

i=1

1

Ca

∫
�

ε

2
‖∇φi‖2 + 1

ε
W (φi ) dx,

a degenerate form,

FDCH =
N∑

i=1

1

Ca

∫
�

gα (φi )

(
ε

2
‖∇xsφi‖2 + 1

ε
W (φi )

)
dx,

with

gα (φi ) = 1√
γ 2(φi + 1)2(φi − 1)2 + α2ε2

, γ > 0, α > 0,

with appropriate γ to ensure scaling properties and α to guar-
antee differentiability. This modification does not affect the
asymptotic behavior as ε → 0 but helps to ensure φi ∈ [−1, 1]
and to increase accuracy (see [39,41]).

APPENDIX E: ADDITIONAL RESULTS

Figure 10 shows snapshots of all cells in the colony cor-
responding to Fig. 1 in the main text. Besides the different
morphologies of the colony boundary also the stronger defor-
mations of the individual cells for migrating cells are visible.
Only configurations with t � 35 are considered in any post-
processing concerning colony growth to exclude the influence
of the confinement.

In order to demonstrate the differences in colony growth
between nonmigrating and migrating cells we consider the
results of Fig. 2 in the main text for different parameters
In and L. Figure 11 shows the corresponding behavior and
the robustness of the qualitative differences, showing faster
colony boundary growth for migrating cells.

We further vary v0. Figure 12 shows the corresponding
results to Fig. 2 in the main text for various v0. The results
confirm the linear colony growth with a growth rate which
is proportional to v0. However, this trend reverses as soon as

FIG. 11. Evolution of colony radius for nonmigrating cell (top)
and migrating cells (bottom) for different values of In and L with
L = 10 000 (left) and In = 0.05 (right).

FIG. 12. Evolution of colony radius for different v0 with L =
10 000 and In = 0.05.

the colony gets in contact with the confinement. As colonies
of migrating cells reach the confinement faster the additional
effects of CIP due to the interaction with the confinement slow
down the growth of the colony from this time on.

As a last example we consider the late time behavior,
for which the influence of the confinement becomes signif-
icant. Figure 13 shows the resulting configurations varying
L, In, and v0. Increasing L reduces the measures for stress
Ti/L and Tcon,i/L and thus also the effect of CIP. This leads
to faster growth of the cells and within the confinement
to larger packing fractions and more polygonal cell shapes.

FIG. 13. Colony snapshots at late times after the confinement is
filled. (Row 1) L = 5000, 7500, and 10 000 (left to right) for In =
0.05 and v0 = 0. (Row 2) L = 5000, 7500, and 10 000 (left to right)
for In = 0.05 and v0 = 1. (Row 3) In = 0.005, 0.01, and 0.05 (left
to right) for L = 10 000 and v0 = 0. (Row 4) In = 0.005, 0.01, and
0.05 (left to right) for L = 10 000 and v0 = 1.
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The remaining free space and roundish cells in contrast to
the tightly packed and polygonal cells are clearly visible in
the first row, which considers the nonmigrating case. This
behavior qualitatively remains for the migrating case (see
second row). However, the cell configurations are more het-
erogeneous, with respect to size, cell shape, and number of

neighbors for the migrating case. This is consistent with the
observations in the growing colony (see Fig. 10). Similar
results are obtained if In is increased. This decreases FINT

and therefore Ti and thus leads to a similar effect, as seen in
the third and fourth row, for nonmigrating and migrating cells,
respectively.
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