Übungen zur Vorlesung Mathematik I/1

3. Woche – vollständige Induktion und Mengen, Relationen, Abbildungen

Beweise mit vollständiger Induktion

Z A1 Bernoulische Ungleichung

$$\forall n \in \mathbb{N}_0, x \in \mathbb{R} \text{ mit } x \ge -1 : (1+x)^n \ge 1 + nx$$

- (a) Veranschaulichen Sie die Ungleichung für n=0,1,2 (Graphen der Funktionen 'links' und 'rechts' des Relationszeichens skizzieren).
- (b) Beweisen Sie die Ungleichung mittels vollständiger Induktion.

Lösung: s. Wikipedia

A2 Beweisen Sie mittels vollständiger Induktion: Für $n \in \mathbb{N}$ ist

(a) $n^3 + 2n$ ist durch 3 teilbar.

(b)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$$

(c)
$$4^1 \cdot 4^2 \cdot 4^3 \cdot \ldots \cdot 4^n = 2^{n(n+1)}$$

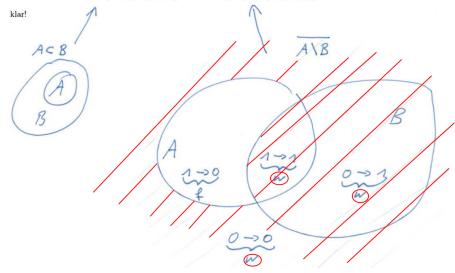
Zusatz: $2^n > n^2$ für $n \ge 5$.

Lösung: s. File induktion-aufgaben-loesungen A2, B18, C1, D5

Mengen, Relationen, Abbildungen

Z A3 Machen Sie sich anhand zweier Venn-Diagramme den Unterschied zwischen

 $\forall x: (x \in A) \Rightarrow (x \in B)$ und $\{x: (x \in A) \Rightarrow (x \in B)\}$ klar!



Lösung:

Links steht eine Aussage (über Mengen), nämlich $A \subset B$ und rechts die Beschreibung einer speziellen Menge, nämlich der rot-schraffierten im Bild.

- **A4** Skizzieren Sie die kartesischen Produkte a) $[1,2] \times [3,4]$ und b) $\{1,2\} \times [3,4]$. Zeichnen Sie in das Ergebnis von (a) eine Relation und eine Funktion ein.
- **A5** Gegeben ist folgende Relation:

Zwei natürliche Zahlen x, y stehen zueinander in Relation $x \sim y$, wenn x|y (x teilt y).

- (a) Veranschaulichen Sie die Relation mit Hilfe einer Tabelle beispielsweise mit den Zahlen 1 bis 8 (wie in VL 1_5, Bsp. 1.33).
- (b) Welche Eigenschaften besitzt die Relation (reflexiv, symmetrisch, antisymmetrisch, transitiv)?

Zusatz Falls es sich um eine Ordnungsrelation handelt ;-), veranschaulichen Sie die Ordnung durch einen (gerichteten) Graphen, der die Zahlen der Reihe nach verbindet, die in Relation stehen.

Lösung: a) s. VL-Folie 1_7.

b) reflexiv: x teilt x, antisymmetrisch: x teilt y und y teilt $x \Rightarrow x = y$,

transitiv: x teilt y und y teilt $z \Rightarrow x$ teilt z.

Zusatz: Ein Graph, in dem die Zahlen umso 'höher' stehen, je mehr Faktoren sie haben.

A6 Gegeben ist folgende Relation:

Zwei ET-Studenten x, y des Jahrgangs 2025 stehen zueinander in Relation $x \sim y$, wenn Sie in der gleichen Seminargruppe sind.

- (a) Ist das eine Äquivalenzrelation?
- (b) Handelt es sich um eine Ordnungsrelation?

Zusatz Was bedeutet die Aussage: 'Die Mengen A,B sind **disjunkt**.'? Sind zwei verschiedene Seminargruppen zueinander disjunkt?

Lösung: a) Ja, da die Relation reflexiv, symmetrisch und transitiv ist.

- b) Nein, da nicht antisymmetrisch.
- **A7** Geben Sie a) die Anzahl aller möglichen, b) die Anzahl aller **surjektiven** und c) die Anzahl aller **bijektiven** Abbildungen zwischen zwei drei-elementigen Mengen an.

Lösung: a) $3^3 = 27$, b), c) 3! = 6 das ist die Anzahl der Permutationen (Vertauschungen) der 3 Elemente.

Wiederholung

- A8 Übersetzen Sie die Aussage: 'Wenn A, dann B.' in
 - (a) \dots ist hinreichend für \dots
 - (b) ...ist notwendig für ...
 - (c) $\dots \Rightarrow \dots$

Lösung:

- (a) A ist hinreichend für B
- (b) B ist notwendig für A
- (c) $A \Rightarrow B$.