Übungen zur Vorlesung Mathematik I/2

1. Woche – Eigenwerte / Eigenvektoren / Kegelschnitt

A1 Weltformel für diagonalisierbare Matrizen $A = S\Lambda S^{-1}$ (s. 7.53)

Betrachtet wird die lineare Abbildung $\underline{y} = A\underline{x}$. Gegeben sind die Eigenwerte $\lambda_1 = 2$ und $\lambda_2 = 1$ sowie die zugehörigen Eigenvektoren $\underline{v}^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $\underline{v}^2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ der Matrix A. Bitte alles Folgende auch skizzieren!

- (a) Geben Sie das Bild $y = A\underline{v}^1$ des Vektors \underline{v}^1 an.
- (b) Geben Sie das Bild $\underline{y} = A\underline{x}$ des Vektors $\underline{x} = 1 \cdot \underline{v}^1 + 3 \cdot \underline{v}^2 = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ an.
- (c) Geben Sie die Matrix A an.

Lösung:

(a)
$$A\underline{v}^1 = \lambda_1 \underline{v}^1 = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

(b) Überlagerungsgedanke (= Linearität):

$$A\underline{x} = \lambda_1 \cdot 1\underline{v}^1 + \lambda_2 \cdot 3\underline{v}^2 = 2\begin{pmatrix} 1\\1 \end{pmatrix} + 3\begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{pmatrix} 5\\-1 \end{pmatrix}$$

(c) S. 7.53+54:
$$\Lambda = S^{-1} \cdot A \cdot S = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
 mit $S = (\underline{v}^1 & \underline{v}^2) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
 $\rightarrow A = S \cdot \Lambda \cdot S^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$

Man kann sich gern nochmal überzeugen, dass A tatsächlich die vorgegebenen Eigenwerte/Eigenvektoren hat.

Z A2 LGS - EW/EV - für fortgeschrittene Studenten

Schreiben Sie die Gleichung $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \underline{0} \quad (*)$ als lineares Gleichungssystem in der Form $M \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \underline{0} \quad (**) \text{ (s. Bem. 7.13)}$

Sie wissen (wann ist das Kreuzprodukt = 0 ?), dass (*) und damit auch (**) die Lösung

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} \quad (***)$$

¹Diagonalisierbare Matrizen spielen bei der so genannten Jordan-Normalform in der Regelungstechnik eine Rolle.

Denken Sie jetzt einmal 'in linearen Gleichungssystemen': Was wissen Sie durch (***) über den Rang der Koeffizientenmatrix M (Sie können es auch per Gauß-Algorithmus überprüfen)?

Und denken Sie jetzt 'in Eigen-werten/-vektoren': Was wissen Sie durch (***) über mindestens einen Eigenwert von M? Bringen Sie 'beides Denken' auf einen Nenner!

Lösung:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}}_{M} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$(***) \Rightarrow \begin{cases} \operatorname{Rang}(M) < 3 & \operatorname{LGS-Denke} \\ \lambda_1 = 0 & \operatorname{EW-Denke} \end{cases}$$

Gemeinsamer Nenner: $\det M = 0 \Leftrightarrow \text{Mindestens ein Eigenwert}(M)$ ist gleich Null.

Kegelschnitt Hyperbel

Der Graph der Funktion $y = \frac{1}{x}$ (1) wird Hyperbel genannt. Bei Kegelschnitten wird jedoch bei $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (2) von einer Hyperbel gesprochen. Überzeugen Sie sich, dass (1) in geeigneten neuen Koordinaten in (2) übergeht.

- (a) Zeichnen Sie den Graphen von (1) in ein kartesisches Koordinatensystem!
- (b) Drehen Sie das Blatt solange, bis der Graph wie eine 'übliche' nach rechts/links geöffnete Hyperbel aussieht, und zeichnen Sie die 'neuen' Achsen für x' und y' ein.
- (c) Blatt zurückdrehen und 'neue' Einheitsvektoren in 'alten' Koordinaten ablesen. Diese werden in die Transformationsmatrix S als Spalten eingetragen: $\underline{x}_{\text{alt}} = S \cdot \underline{x}_{\text{neu}}$ (3) (analog $\underline{x} = S\underline{y} \Leftrightarrow \underline{y} = S^T\underline{x}$, wenn S orthogonal, vgl. 7.5 (bzw. 7.61 $\underline{y} = Q^T\underline{x}$ oder 7.63 $\underline{y} = A\underline{x}...$).
- (d) Es gilt $\underline{x}_{\text{alt}} = \begin{pmatrix} x \\ y \end{pmatrix}$ und $\underline{x}_{\text{neu}} = \begin{pmatrix} x' \\ y' \end{pmatrix}$. Geben Sie mit Hilfe von (3) x und y als Funktion von x' und y' an.
- (e) Setzen Sie dies in (1) ein und bringen es in die Form $\frac{x'^2}{a^2} \frac{y'^2}{b^2} = 1$. Geben Sie aund b an und vergleichen Sie mit Scheitel und Asymptote der Hyperbel im 'neuen' Koordinatensystem (Blatt wieder drehen).

A4 Kegelschnitt grafisch

Zeichnen Sie die folgenden Kegelschnitte in ein Koordinatensystem: $x^2-y^2=1,\ y^2-x^2=1,\ (x-1)^2-(y-2)^2=1,\ \frac{x^2}{2^2}-y^2=1,\ x^2-\frac{y^2}{a^2}=1$ (Asymptote mit zeichnen)

A5 Orthogonale Matrix

Geben Sie für die Matrix $Q = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$ die Inverse Q^{-1} , ihre Transponierte Q^T sowie $Q^T \cdot Q$ an. Ist Q eine orthogonale Matrix, d.h. bilden ihre Spaltenvektoren eine Orthonormalbasis (ONB)?

A6 Kompl. EW - Drehung

Betrachtet wird die Abbildung $\underline{y} = A \cdot \underline{x}$ mit $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$.

- (a) Geben Sie das Bild des Einheitsvektors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ an und zeichnen Sie beide Vektoren (Einheitsvektor und sein Bild) in ein Koordinatensystem. Wiederholen Sie das Gleiche für den Einheitsvektor $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- (b) Beschreiben Sie die Wirkung der Matrix/Abbildung (Drehung, Streckung).
- (c) Berechnen Sie nun die Eigenwerte der Matrix A.
- (d) Geben Sie Betrag und Winkel der Eigenwerte an und vergleichen mit (b).
- (e) Schreiben Sie A als Element von $C = \{aE + bI : a, b \in \mathbb{R}\}$ s. Bsp. 7.12. Wie hängen a und b mit den Eigenwerten zusammen und wie lautet die zu A gehörige komplexe Zahl z?
- (f) Modifizieren Sie A so, dass durch die Abbildung $\underline{y} = A_{neu} \cdot \underline{x}$ nur eine Drehung (und keine Streckung) realisiert wird (s. ggf. 7.63 oder 7.66).

Lösung:

- (b) Streckung um $\sqrt{5}$, Drehung um $-\arctan(1/2)$.
- (c) $\lambda_{1,2} = 2 \pm i$
- (d) $|\lambda| = \sqrt{5} = \text{Streckungsfaktor}$, $\arg(\lambda) = \pm \arctan(1/2) \stackrel{(*)}{=} \text{Winkel}$, um den die (Abbildung durch die) Matrix dreht.
- (e) $\lambda_{1,2} = a \pm b \, i, a = 2, b = 1, z = 2 i$
- (f) $A_{neu} = \frac{1}{\sqrt{5}} A$.

Bemerkung: (*) gilt leider nur, wenn Re und Im der konjugiert komplexen Eigenvektoren zueinander orthogonal sind (das ist hier der Fall). Die ganze Wahrheit ist etwas komplexer - nur etwas ;-).