

Übungen zur Vorlesung Mathematik II/2 5. Woche – bedingte Wahrscheinlichkeiten

- **A1** Es seien A und B zufällige Ereignisse. Mit Hilfe von p = P(A), q = P(B) und $r = P(A \cup B)$ ermittle man
 - (a) $P(A \cap B)$,
- (b) $P(A \setminus B)$,
- (c) P(A|B),
- (d) Seien p=0,5, q=0,2 und r=0,6. Sind für diese konkreten Werte die Ereignisse A und B unabhängig voneinander?
- A2 Sind die Ereignisse A und B in Bsp. 14.18 a) stochastisch unabhängig?
- A3 Bei der Übertragung der Zeichen "Punkt" und "Strich" in einem Fernmeldesystem werden durch Störungen 6% der gesendeten Punkte als Striche und 4% der gesendeten Striche als Punkte empfangen. Im Mittel sind 60% der gesendeten Zeichen Punkte. Füllen Sie die beiden folgenden Tabellen der sogenannten Verbundwahrscheinlichkeiten $P(B \cap A)$ und der bedingten Wahrscheinlichkeiten P(B|A) aus.

P(B A)			B:empf.=	
		p(A)	•	
Λ : mog —	•	0.6	0.94	
A:ges.=				

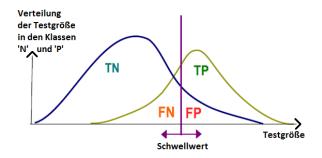
$P(B \cap A)$		B:empf.=	
		•	_
A:ges.=	•	$0.6 \cdot 0.94$	$0.6 \cdot \dots$

Zusatz: Sie kennen aus der Schule bereits die Vierfeldertafel und das sogenannte Baumdiagramm: welche Art (bedingte oder Verbund-) Wahrscheinlichkeiten haben Sie in der Vierfeldertafel, an den Baumzweigen und an den Baumenden notiert?

- **A4** In allen Räumen I, II, III, IV eines Studentenklubs findet eine Diskothek statt. Eine Studentin sucht dort einen bestimmten Studenten. Sie weiß: die Wahrscheinlichkeit, dass der Student die Diskothek besucht, ist gleich p; die Wahrscheinlichkeit, dass er sich **dann**¹ in einem bestimmten Raum aufhält, beträgt $\frac{1}{4}$.
 - (a) Wie groß ist die Wahrscheinlichkeit, dass die Studentin den Studenten im Raum *III* trifft?
 - (b) Wie groß ist die Wahrscheinlichkeit, dass sie ihn im Raum IV antrifft, **wenn**² sie ihn in den Räumen I III nicht gefunden hat?
- $\bf A5~$ Bei einem Klassifikator (z.B. einem medizinischen Test) werden in der Regel 2×2 Fälle unterschieden:

	Subjekt ist 'positiv'	Subjekt ist 'negativ'
Test sagt 'positiv'	true positive (tp)	false positive (fp)
Test sagt 'negativ'	false negative (fn)	true negative (tn)

Seien n_{tp} , n_{fp} , n_{fn} und n_{tn} die Häufigkeiten der entsprechenden Fälle. Im Folgenden sind alle Wahrscheinlichkeiten durch Verwendung dieser Häufigkeiten zu schätzen.


(a) Geben Sie die Wahrscheinlichkeit für den Fall 'Subjekt ist positiv' an!

^{&#}x27;'dann' = 'unter der Bedingung, dass er in die Diskothek gegangen ist'

²'wenn' = 'unter der Bedingung, dass ...'

- (b) Geben Sie die sogenannte Sensitivität (true-positive-rate) des Tests an! Das ist die Wahrscheinlichkeit, dass ein Subjekt positiv getestet wird unter der Bedingung, dass es positiv ist.
- (c) Geben Sie die sogenannte Spezifität (true-negative-rate) an! Das ist die **bedingte** Wahrscheinlichkeit, dass ein negatives Subjekt auch negativ getestet wird.
- (d) Es gibt weitere bedingte Wahrscheinlichkeiten, die (verschiedene) Falschklassifizierungen beschreiben? Geben Sie diese an! Welche addiert sich mit der Sensitivität zu 1 und welche mit der Spezifität?

Bemerkung: Die Grafik veranschaulicht, dass durch die Wahl des Testschwellwertes in der Regel ein Kompromiss zwischen guter Sensitivität und guter Spezifität gefunden werden muss.

Zusatz: Anwendung Bayes

- A6 Bei der Übertragung der Zeichen "Punkt" und "Strich" in einem Fernmeldesystem werden durch Störungen 6% der gesendeten Punkte als Striche und 4% der gesendeten Striche als Punkte empfangen. Im Mittel sind 60% der gesendeten Zeichen Punkte. Wie groß ist die Wahrscheinlichkeit dafür, dass
 - (a) ein Punkt gesendet wurde, wenn ein Punkt empfangen wurde?
 - (b) ein Strich gesendet wurde, wenn ein Strich empfangen wurde?
- A7 Ein Student sucht ein Buch, das mit Wahrscheinlichkeit p im Schreibtisch und mit Wahrscheinlichkeit 1-p im Bücherschrank liegt, wobei für die 10 Regale im Schrank jeweils gleiche Wahrscheinlichkeit vorliegt. Nachdem der Student in 8 Regalen nachgesehen hat, will er die Suche dort fortsetzen, wo die Wahrscheinlichkeit für das Auffinden des Buches am größten ist.
 - (a) Wo muss er suchen (in Abhängigkeit von p)?
 - (b) Wie lautet die Antwort, wenn er bereits nach dem 6. Regal diese Entscheidung treffen will?