

Übungen zur Vorlesung Mathematik II/2 (inkl. Kurzlösung) Sommersemester 2019

5. Woche – Bayes - Probleme

- A1 Bei der Übertragung der Zeichen "'Punkt" und "'Strich" in einem Fernmeldesystem werden durch Störungen 6% der gesendeten Punkte als Striche und 4% der gesendeten Striche als Punkte empfangen. Im Mittel sind 60% der gesendeten Zeichen Punkte. Wie groß ist die Wahrscheinlichkeit dafür, dass
 - (a) ein Punkt gesendet wurde, wenn ein Punkt empfangen wurde?
 - (b) ein Strich gesendet wurde, wenn ein Strich empfangen wurde?

Kurzlösung:

$p(B \cap A)$		B=empf.		
		•		
A=ges.	•			
	_			

- Fälle, in denen ein Punkt empfangen wurde.

P(Punkt gesendet | Punkt empfangen)= 0.9724

- A2 Von drei Maschinen gleichen Typs werden von der ersten 20%, von der zweiten 30%, von der dritten 50% der Gesamtproduktion hergestellt. Erfahrungsgemäß entstehen bei der ersten Maschine 5%, bei der zweiten 4% und bei der dritten 2% Ausschuss.
 - (a) Mit welcher Wahrscheinlichkeit ist ein zufällig der Gesamtproduktion entnommenes Teil Ausschuss?
 - (b) Gesucht ist die Wahrscheinlichkeit dafür, dass ein zufällig gefundenes Ausschussteil von der ersten bzw. zweiten bzw. dritten Maschine hergestellt wurde.

Kurzlösung:

- (a) 0.032
- (b) 0.3125 bzw. 0.3750 bzw. 0.3125.
- A3 Man würfelt mit zwei Würfeln und bekommt die Information, dass mindestens eine 2 dabei ist.
 - (a) Jetzt greift man zufällig einen der beiden Würfel und stellt fest, dass darauf eine 2 zu sehen ist. Wie groß ist die Wahrscheinlichkeit, dass auf dem anderen Würfel
 - i) eine 2,
- ii) eine 4 steht?

- (b) Jemand nimmt den bzw. einen der beiden Würfel weg, auf dem eine 2 zu sehen ist. Wie groß ist die Wahrscheinlichkeit, dass auf dem anderen Würfel
 - i) eine 2, ii) eine 4 steht?

Analog A3 in Ü4 vorgehen. Kurzlösung:

(a) w1, w2 - Augenzahl Würfel 1/Würfel 2, B1 - Ereignis: Würfel 1 wird herausgegriffen. $B2 - \dots$

relevante			
Elemetarereigniss	e		
A=(w1,w2)	p(A)	p(B1 A)	p(B2 A)
(2,1)	1/11	1/2	1/2
(2,3)	1/11	1/2	1/2
(2,4)	1/11	1/2	1/2
(2,5)	1/11	1/2	1/2
(2,6)	1/11	1/2	1/2
(2,2)	1/11	1/2	1/2
(1,2)	1/11	1/2	1/2
(3,2)	1/11	1/2	1/2
(4,2)	1/11	1/2	1/2
(5,2)	1/11	1/2	1/2
(6,2)	1/11	1/2	1/2
A=(w1,w2)	p(A)	$p(B1 \cap A)$	$p(B2 \cap A)$

i)
$$p(w^2 = 2||w^1 = 2|| = \frac{1/22}{6/22} = \frac{1}{6}$$

(b) a la Monty Hall s. VL

relevante			
Elemetarereigniss	e		
A=(w1,w2)	p(A)	p(B1 A)	p(B2 A)
(2,1)	1/11	1	0
(6,2)	1/11	0	1

i)
$$p(w2 = 2| \boxed{w1=2}) = \frac{1/22}{11/22} = \frac{1}{11}$$

 ${\bf A4}~$ Es seien A und B zufällige Ereignisse. Mit Hilfe von $p=P(A),\ q=P(B)$ und $r = P(A \cup B)$ ermittle man

(a) $P(A \cap B)$,

(b) $P(A \setminus B)$,

(c) P(A|B),

(d) Seien p = 0, 5, q = 0, 2 und r = 0, 6. Sind für diese konkreten Werte die Ereignisse A und B unabhängig voneinander?

Kurzlösung:

(a) p + q - r (b) r - q (c) $\frac{p+q-r}{q}$

(d) Es gilt $0.1 = P(A \cap B) = P(A) \cdot P(B) = 0.5 \cdot 0.2 = 0.1$ und damit sind A und B voneinander unabhängig.

Sind die Ereignisse A und B in Bsp. 13.16 a) stochastisch unabhängig?

A6 Denken Sie sich eine Aufgabe aus, die mit der Bayes-Formel gelöst wird.