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Spin textures on general surfaces of the correlated topological insulator SmB6
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Employing the k · p expansion for a family of tight-binding models for SmB6, we analytically compute
topological surface states on a generic (lmn) surface. We show how the Dirac-cone spin structure depends on
model ingredients and on the angle θ between the surface normal and the main crystal axes. We apply the
general theory to (001), (110), (111), and (210) surfaces, for which we provide concrete predictions for the spin
pattern of surface states which we also compare with tight-binding results. As shown in previous work, the spin
pattern on a (001) surface can be related to the value of mirror Chern numbers, and we explore the possibility
of topological phase transitions between states with different mirror Chern numbers and the associated change
of the spin structure of surface states. Such transitions may be accessed by varying either the hybridization
between conduction and f electrons or the crystal-field splitting of the low-energy f multiplets, and we compute
corresponding phase diagrams. Experimentally, chemical doping is a promising route to realize such transitions.
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I. INTRODUCTION

The material SmB6 has triggered a large body of research
activities recently, given the proposal [1–3] that it realizes a
three-dimensional (3D) topological Kondo insulator (TKI). In
general, TKIs are strongly correlated systems with f -electron
local moments in which a topologically nontrivial band
structure emerges at low temperature via Kondo screening [4].
In addition, strong interactions may lead to novel phenomena
not present in weakly correlated topological insulators (TIs)
such as Bi2Se3, etc.

On the experimental front, there is a growing body of
results, in particular from transport [5–8] and photoemission
studies [9–14], which appear consistent with the hypothesis
that SmB6 indeed realizes a TKI. However, doubts have been
raised about the proper interpretation of experimental data
[15–17], and recent quantum oscillation measurements have
raised a puzzle [18].

Theoretically, band-structure calculations [1,2] confirm
SmB6 to be a strong TI, with Z2 indices (ν0,ν1ν2ν3) =
(1,111). In addition, it has been argued [19] that SmB6

is also a topological crystalline insulator [20], having
three nonzero mirror Chern numbers (MCNs), denoted as
C+

kz=0, C+
kz=π , C+

kx=ky
. While Ref. [19] showed that C+

kz=0 =
2 mod 4, C+

kz=π =1 mod 4, C+
kx=ky

= 1 mod 2 independent of
band-structure details, recent work [21,22] has demonstrated
that the exact values of these MCNs depend on the de-
tails of the band structure, with C+

kz=π =+1, C+
kz=0 =±2,

and C+
kx=ky

=±1, giving four possible topological crystalline
phases.

Given that the presence of surface states with spin-
momentum locking is one of the most characteristic observable
properties of TIs, a thorough characterization of these states,
also for different surface orientations [23], is of crucial
importance. For SmB6 previous work has mostly focused
on the simplest (001) surface, but the combined effects of
parity invariants and MCNs promise rich physics on other
surfaces, which is mostly unexplored (with notable exceptions
in Refs. [18,19,24–26]). We also note that different kinds of
spin-momentum locking can lead to different instabilities once
electron-electron interactions are considered [27].

The aim of this paper is to close this gap on the theory
side: We shall characterize the dispersion and spin structure
of the surface states of SmB6 (and similar materials) for
flat surfaces of general orientation. To this end, we employ
the k · p approach, in which an effective Hamiltonian is
obtained around the point X = (0,0,π ) of band inversion. This
approach is particularly suitable because it allows to obtain
fully analytical results for surface states induced by parity
invariants in the limit of small momenta [28]. An obstacle is
that the inverted subspace of orbitals couples to the noninverted
one due to the low symmetry of a generic (lmn) surface,
leading to large matrices which cannot be easily diagonalized.
To deal with this, we develop a method which allows one
to approximatively compute the effective Hamiltonian on a
general surface: by a careful choice of the quantization axis
one can find a coordinate system in which the noninverted
subspace can be neglected. We compare the results of the k · p
approach with those from numerical tight-binding calculations
and find excellent agreement. In addition, we also discuss
the possibility of topological transitions between states with
different MCNs [21,22].

On a phenomenological level, this paper extends and
generalizes the results of Refs. [21,22] in that it considers
generic surfaces; results for the (001) surface will be repeated
to lay out the methodology and to give a complete view on the
topic. Moreover, the interplay between multiplets is treated in
more detail, and the discussion of topological phase transitions
is substantially extended with respect to those papers.

A. Summary of results

The first part of the paper is devoted to deriving the
low-energy theory for SmB6 surface states for generic surface
orientation. Surface Dirac cones arise from the projection
of time-reversal-invariant bulk momenta with inverted bands
onto the two-dimensional (2D) surface Brillouin zone (BZ).
In SmB6 bands are inverted at the three bulk X points,
yielding in general three Dirac cones of surface states on a
(lmn) surface (Fig. 1). To each cone we can assign an angle
θ ≡ arctan

√
l2 + m2/n (and cyclic permutations of l,m,n)

with 0 � θ � π/2. For given θ , the effective surface-state
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FIG. 1. (a) 3D BZ and mirror planes kz = 0, kz = π, kx = ky ;
2D BZ for (b) (001) surface, (c) (011) surface, (d)(111) surface,
(e) (lm0) surface, (l + m) even, (f) (lm0) surface, (l + m) odd,
and their mirror planes. On all surfaces, �̄ = (0,0); on the (001),
X̄ = (π,0), X̄′ = (0,π ), M̄ = (π,π ); on the (lm0), X̄ = (π,0), Ȳ =
(0,π/

√
m2 + n2), S̄ = (π,π/

√
m2 + n2); on the (111), K̄,K̄ ′ =

(0, ± 2π
√

2/3), M̄ = (2π/
√

6,0), M̄ ′, M̄ ′′ = (π/
√

6, ± π/
√

2).

Hamiltonian takes the generalized Dirac form

H eff
θ = −vyk̄y σ̂x + vxk̄x σ̂y + v⊥k̄y σ̂z ≡ εk̄�nk̄ · �̂σ, (1)

where σ̂x,y,z denote pseudospin operators, k̄x and k̄y are
momenta parallel to the surface, εk̄ is the surface-state
dispersion, and vx,vy,v⊥ are velocities which depend on
microscopic parameters and on θ . The unit vector �nk̄ encodes
the direction of the pseudospin for states with positive energy.
Its winding number [21,22] w̄d ≡ sgn(vxvy), which takes a
value ±1 according to the sense of rotation of the pseudospin
with respect to momentum, is determined in a nontrivial way
by MCNs, model parameters, and the angle θ . However,
simplifications occur if the parameter w = sgn(C+

kz=0C+
kz=π ),

characterizing the topological crystalline phase, is w = +1,
as suggested [21] by experimental results [14] on SmB6. In
this case, we find that all Dirac cones have a positive winding
number w̄d = +1; the same holds for the winding of the
physical spin.

In the second part of the paper, we demonstrate how
to access topological phase transition between phases with
different w = ±1 by tuning the hybridization term or the
crystal-field splitting. We illustrate this scenario by use of
numerical diagonalization of tight-binding models, derive
relevant phase diagrams, and discuss the observable signatures
of the transitions in terms of changes of the surface states.
Interestingly, the relevant models also admit phases with

higher MCNs, albeit in small windows of parameters. We argue
that chemical doping may change the crystal-field splitting in
order to drive a topological transition in SmB6.

B. Outline

The remainder of the paper is organized as follows. General
aspects of the employed band-structure model are described in
Sec. II. In Sec. III, we derive the k · p Hamiltonian which
we use to compute surface states on the (001) surface in
Secs. IV and V. In Sec. VI, we apply the k · p treatment to
general surfaces. Section VII is devoted to topological phase
transitions between phases with opposite w. The paper closes
with concluding remarks in Sec. VIII. Longer derivations are
relegated to the Appendixes.

II. MODELING

In this section, we provide information about the orbital
basis which our model is built upon, as well as definitions of
the pseudospin and of related quantitites.

A. Orbital basis

SmB6 crystallizes in the simple cubic (SC) structure, with
a SC BZ [see Fig. 1(a)]. Ab initio calculations [2,29,30] show
that only bands arising from Sm orbitals are close to the Fermi
energy, and, in particular, a total of 10 rare-earth orbitals per
site are needed for a correct tight-binding description [31],
namely, the spin-degenerate Eg (dx2−y2 and dz2 ) quadruplet
and the lowest-lying f -shell j = 5

2 multiplet. Other orbitals,
including the Sm j = 7

2 multiplet and all B6 states, are
excluded since their energies are far away from the Fermi
level. The cubic crystal field splits the j = 5

2 multiplet into
a �8 quadruplet and a �7 doublet, which can be expressed

in terms of |jz〉 states as |�(1)
8 ±〉 =

√
5
6 | ± 5

2 〉 +
√

1
6 | ∓ 3

2 〉,
|�(2)

8 ±〉 = | ± 1
2 〉, |�7±〉 =

√
1
6 | ± 5

2 〉 −
√

5
6 | ∓ 3

2 〉, where ±
denotes a pseudospin index. For the d states, the effect of
spin-orbit coupling will be neglected.

In what follows, we abbreviate d1 ≡ dx2−y2 , d2 ≡ dz2 ,

f 1 ≡ �
(1)
8 , f 2 ≡ �

(2)
8 , f 7 ≡ �7, so the basis of our

Hamiltonian is |d1 ↑〉,|d1 ↓〉,|d2 ↑〉,|d2 ↓〉,|f 1+〉,
|f 1−〉,|f 2+〉,|f 2−〉,|f 7+〉,|f 7−〉.

B. Symmetries

The time-reversal operator T ≡ −2iŜyK , where Ŝy acts on
the spin variable and K is the complex conjugation, acts on
this basis as

T |dmσ 〉 = −iσy |dmσ ′〉, m = 1,2; σ,σ ′ =↑ , ↓ (2)

T |f mσ 〉 = +iσy |f mσ ′〉, m = 1,2,7; σ,σ ′ = ± (3)

where σy ≡ (σy)σσ ′ acts on the subspace spanned by σ,σ ′ =
↑ , ↓ for d states, or by σ,σ ′ = +,− for f states.

Mirror-symmetry operators Ml ≡ PC2(l), where P is the
inversion and C2(l) is a twofold rotation around axis l, act
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as [21]

Ml|dmσ 〉 = −iσl|dmσ ′〉, m = 1,2 (4)

Ml|f mσ 〉 = +iσl|f mσ ′〉, m = 1,2,7 (5)

where l = x,y,z; moreover,

Mx±y |d1σ 〉 = +iσx±y |d1σ ′〉, (6)

Mx±y |d2σ 〉 = −iσx±y |d2σ ′〉, (7)

Mx±y |f mσ 〉 = −iσx±y |f mσ ′〉, m = 1,7 (8)

Mx±y |f mσ 〉 = +iσx±y |f mσ ′〉, m = 2 (9)

where σx±y = (σx ± σy)/
√

2.
MCNs are defined as [19,21,22]

C±
BZ

= i

2π

2∑
a,b=1

εab

N∑
n=1

∫
BZ

d2k〈∂au
±
n (k)|∂bu

±
n (k)〉, (10)

with M|u±
n (k)〉 = ±i|u±

n (k)〉, and where k lies in the plane BZ
which is invariant with respect to the symmetry operator M

(M = Mz when BZ is kz = 0 or kz = π, M = Mx−y when BZ
is kx = ky), and we sum over all N occupied bands. We note
that C+

BZ
+ C−

BZ
= 0 and, by cubic symmetry, C+

kz=0 = C+
kx=0 =

C+
ky=0, etc.

As remarked, four phases are possible, each characterized
by the triplet of numbers (C+

kz=0,C+
kz=π ,C+

kx=ky
): (±2, + 1, ± 1).

Since the sign of MCNs fixes the mirror-symmetry eigenvalues
of surface states [32], each phase has different surface-state
properties as shown in Refs. [21,22] (see Sec. VI). For SmB6,
the results of Ref. [21] can be written in a concise form using
v and w:

v ≡ sgn(C+
kz=0C+

kx=ky
), (11)

w ≡ sgn(C+
kz=0C+

kz=π ). (12)

For (001) surface states |φ+(k)〉 of positive energies, i.e., above
the Dirac energy, on the �̄ cone the following relations are then
satisfied:

My |φ+
�̄

(|kx |,0)〉 = −iw|φ+
�̄

(|kx |,0)〉, (13)

Mx−y |φ+
�̄

(kx =ky >0)〉 = +ivw|φ+
�̄

(kx =ky >0)〉, (14)

Mx |φ+
�̄

(0,|ky |)〉 = +iw|φ+
�̄

(0,|ky |)〉, (15)

while on the X̄ cone,

Mx |φ+
X̄

(0,|ky |)〉 = +i|φ+
X̄

(0,|ky |)〉, (16)

My |φ+
X̄

(−|kx |,0)〉 = +iw|φ+
X̄

(−|kx |,0)〉, (17)

and on the X̄′ one,

My |φ+
X̄′(|kx |,0)〉 = −i|φ+

X̄′(|kx |,0)〉, (18)

Mx |φ+
X̄′(0, − |ky |)〉 = −iw|φ+

X̄′(0, − |ky |)〉. (19)

C. Relation between spin and pseudospin

We start with remarks on notation. With σi (i = x,y,z,0)
we denote the standard Pauli matrices for (pseudo)spin indices,
i.e., for d states they act in the space of ↑ , ↓, while for f

states they act in the space of +,−. With ŝi (i = x,y,z,0) we
denote Pauli matrices for operators acting into an arbitrary
two-dimensional space, which is typically the space spanned
by the doublet of surface states at k‖ = 0. With Ŝi (i = x,y,z)
we denote physical spin operators, with separate contributions
from the d (Ŝd

i ) and f shells (Ŝf

i ). With σ̂i (i = x,y,z) we
denote pseudospin operators, still with separate contributions
from the d (σ̂ d

i ) and f shells (σ̂ f

i ), and defined as follows.
For d electrons, with spin-orbit coupling neglected, we take

the pseudospin to coincide with the physical spin, apart from
a factor 2: 2Ŝd

i =σ̂ d
i . For dx2−y2 states we have in the |d1 ↑〉,

|d1 ↓〉 basis

σ̂ d
x =

(
0 1
1 0

)
, σ̂ d

y =
(

0 −i

i 0

)
, σ̂ d

z =
(

1 0
0 −1

)
. (20)

For f electrons, the physical spin in the �
(1)
8 -�(2)

8 -�7 basis
is given in Appendix F. If we restrict to �

(1)
8 states, we have in

the |f 1+〉,|f 1−〉 basis

2Ŝf
x = 5

21

(
0 −1

−1 0

)
, 2Ŝf

y = 5

21

(
0 i

−i 0

)
,

2Ŝf
z = 11

21

(−1 0
0 1

)
. (21)

In the same basis, we take as pseudospin

σ̂ f
x =

(
0 −1

−1 0

)
, σ̂ f

y =
(

0 i

−i 0

)
, σ̂ f

z =
(−1 0

0 1

)
,

(22)
that is, we get rid of the prefactors with respect to the real
spin. As a consequence, for �

(1)
8 states, the spin is parallel

to the pseudospin with direction-dependent coefficients 5/21
or 11/21. For �7 states, Eq. (22) continues to apply, whereas
all the prefactors in Eq. (21) become −5/21, such that spin
and pseudospin are antiparallel. We note that the minus sign
appearing in our definition of the pseudospin with respect to
the standard Pauli matrices is linked to the different behavior
of d and f states under mirror operators [see Eqs. (4) and
(5)]. Indeed, we can write Ml = −iσ̂l , and, as shown in
Ref. [22], once the pseudospin has this defined mirror-
symmetry property, MCNs fix its texture on surface states.

We also stress that the expectation value of the pseudospin
|〈 �̂σ 〉| is always normalized to unity on surface states, while

that of the physical spin �̂S has no definite normalization, but

|〈 �̂S〉| � 1
2 holds, with the equal sign for pure d states. Hence, it

is often useful to use pseudospin rather than spin operators. In
the course of the paper, we will always refer to both quantities,
bearing in mind that experiments must be compared to results
for the physical spin.

It is also possible to take into account the expectation value
of the orbital angular momentum; as shown in Appendix F,
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this is zero in the d shell, and equal to (−8) times the spin
expectation value in the f shell. We will not refer to this
quantity in the rest of the paper.

III. k · p HAMILTONIAN

In this section, we derive the k · p Hamiltonian by ex-
panding the tight-binding Hamiltonian of Ref. [31] around
X = (0,0,π ). We measure bulk momenta k relative to X and
keep all first-order terms in kx,ky,kz and all mixed terms
up to second order. Even though the lattice is cubic, the
k · p Hamiltonian has tetragonal symmetry, as dictated by the
momentum-space location of X.

We will exclusively work in a renormalized single-particle
picture, based on the assumption that many-body effects can be
captured by proper renormalizations of single-particle terms,
in particular the f kinetic energy and hybridization [33]. For
band structures, this assumption has been confirmed by many-
body numerical techniques [34,35].

A. Full orbital basis

In the 10-dimensional basis |d1 ↑〉, |d1 ↓〉, |d2 ↑〉,
|d2 ↓〉, |f 1+〉, |f 1−〉, |f 2+〉, |f 2−〉, |f 7+〉,|f 7−〉 of bulk
Bloch states, the result is as follows:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εd
1 (k) 0 0 0 −iV f v

1 kz −iV hv
1k− 0 −iV hv

12k+ −iV f v
7 kz −iV hv

7k−
0 εd

1 (k) 0 0 −iV hv
1k+ iV f v

1 kz −iV hv
12k− 0 −iV hv

7k+ iV f v
7 kz

0 0 εd
2 (k) 0 0 −iV hv

21k+ −iV f v
2 kz −iV hv

2k− 0 −iV hv
72k+

0 0 0 εd
2 (k) −iV hv

21k− 0 −iV hv
2k+ iV f v

2 kz −iV hv
72k− 0

iV f v
1 kz iV hv

1k− 0 iV hv
21k+ ε

f

1 (k) 0 0 0 m78 0
iV hv

1k+ −iV f v
1 kz iV hv

21k− 0 0 ε
f

1 (k) 0 0 0 m78

0 iV hv
12k+ iV f v

2 kz iV hv
2k− 0 0 ε

f

2 (k) 0 0 0
iV hv

12k− 0 iV hv
2k+ −iV f v

2 kz 0 0 0 ε
f

2 (k) 0 0
iV f7kz iV hv

7k− 0 iV h72k+ m78 0 0 0 ε
f

7 (k) 0
iV hv

7k+ −iV f7kz iV h72k− 0 0 m78 0 0 0 ε
f

7 (k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

with k± ≡ kx ± iky . Kinetic energy terms are diagonal, and
given by

εd
i (k) = εd

i − td
[
k2
z g

d
i + k2

‖ l
d
i

]
, i = 1,2 (24)

ε
f

i (k) = ε
f

i − tf
[
k2
z g

f

i + k2
‖ l

f

i

]
, i = 1,2,7 (25)

with k2
‖ ≡ k2

x + k2
y , td > 0 (electronlike), tf < 0 (holelike).

The gi and li represent combinations of tight-binding param-
eters and are defined in Appendix A. At zeroth order, we have
a coupling m78 between �

(1)
8 and �7:

m78 = −4η
f 1
78 + 8η

f 2
x7 > 0. (26)

Hybridization terms are nondiagonal; we will need the follow-
ing ones:

f v
1 = 2ηv1

x + 2ηv2
x + 6ηv2

z > 0, (27)

f v
2 = 2ηv1

z + 6ηv2
x + 2ηv2

z < 0, (28)

f v
7 = 2ηv1

7 − 4
√

3ηv2
7 − 4ηv2

x7 < 0, (29)

hv
1 = − 1

2ηv1
x − 3

2ηv1
z − 3ηv2

x + 3ηv2
z > 0, (30)

hv
2 = − 3

2ηv1
x − 1

2ηv1
z + 3ηv2

x − 3ηv2
z < 0, (31)

hv
7 = ηv1

7 + 2
√

3ηv2
7 − 6ηv2

x7 > 0. (32)

The explicit form of other terms appearing in the Hamiltonian
(23), which are not needed in what follows, is given in
Appendix A, together with the meaning of different tight-
binding parameters η. We also provide numerical values for

some of these parameters, extracted from density-functional-
theory (DFT) calculations of Refs. [30,31] for PuB6, which has
a band structure very similar to SmB6. In the rest of the paper
we will not rely on the exact parameter values, but will often
make use of (relative) signs, as indicated in Eqs. (26)–(32).

B. Reduced orbital basis

To enable analytical calculations, we will need to work
with matrices of dimension (at most) 4 × 4. This requires
a further basis reduction (and associated approximations),
and we discuss different possible choices in turn. The best
choice will depend on microscopic parameters, in particular
the crystal-field splitting between �7 and �8 multiplets.

We may either retain �8 states and work in subspace 1,
spanned by |d1 ↑〉,|d1 ↓〉,|f 1+〉,|f 1−〉 states [see Fig. 2(a)].
The Hamiltonian becomes

H (1) =

⎛
⎜⎜⎝

εd
1 (k) 0 −iV f v

1 kz −iV hv
1k−

0 εd
1 (k) −iV hv

1k+ iV f v
1 kz

iV f v
1 kz iV hv

1k− ε
f

1 (k) 0
iV hv

1k+ −iV f v
1 kz 0 ε

f

1 (k)

⎞
⎟⎟⎠.

(33)
Alternatively, we may retain �7 states yielding subspace 1′,
spanned by |d1 ↑〉,|d1 ↓〉,|f 7+〉,|f 7−〉 [see Fig. 2(b)]. The
Hamiltonian is

H (1)′ =

⎛
⎜⎜⎝

εd
1 (k) 0 −iV f v

7 kz −iV hv
7k−

0 εd
1 (k) −iV hv

7k+ iV f v
7 kz

iV f v
7 kz iV hv

7k− ε
f

7 (k) 0
iV hv

7k+ −iV f v
7 kz 0 ε

f

7 (k)

⎞
⎟⎟⎠.

(34)

195117-4



SPIN TEXTURES ON GENERAL SURFACES OF THE . . . PHYSICAL REVIEW B 93, 195117 (2016)

FIG. 2. Schematic bulk band structure around X illustrating the
approximation schemes; shown are tight-binding dispersions (solid
red) and the k · p approximation with four states (dotted blue) (for
details, see text). (a) Out of Eg and �8 (eight total states), we keep
d1 ≡ dx2−y2 and f 1 ≡ �

(1)
8 , and neglect d2 ≡ dz2 and f 2 ≡ �

(2)
8 ,

which are not inverted. (b) Out of Eg and �7 (six total states), we keep
d1 and f 7 ≡ �7, and neglect d2. (c) Out of Eg, �7, and �8 (10 total
states), we keep d1 and the linear combination f 17

p of f 1 and f 7 of
higher energy, and neglect states d2,f 2, and the linear combination
f 17

m of lower energy, which is inverted, but remains below the Fermi
energy εF . All states are twice (pseudo)spin degenerate.

When using both �7 and �8 states, we will just retain the linear
combination |f 17

p ±〉 of |f 1±〉 and |f 7±〉 of higher energy,
giving

H (1)′′=

⎛
⎜⎜⎝

εd
1 (k) 0 −iV f v

17kz −iV hv
17k−

0 εd
1 (k) −iV hv

17k+ iV f v
17kz

iV f v
17kz iV hv

17k− ε
f

17(k) 0
iV hv

17k+ −iV f v
17kz 0 ε

f

17(k)

⎞
⎟⎟⎠

(35)
with explicit expressions of f v

17,h
v
17,ε

f

17(k) given in Sec. IV C
[see Fig. 2(c)].

Matrices (33), (34), and (35) have the same cylindrical
symmetry and the same form, but different parameters. In the
kinetic energy sector they are all similar, in that parameters
gd

1 ,ld1,7 have always a negative sign, indicating the curvature of
the band at X: upward for d states, since (−td ) is negative,
and downward for f states, since (−tf ) is positive [see
Eqs. (24) and (25)]. However, they differ in the hybridization
sector since parameters f v

i and hv
i can have all different signs,

that we will later link to the topological properties of SmB6

and to the spin pattern of surface states.
It is also sometimes useful to consider the Hamiltonian in

subspace 2, spanned by |d2 ↑〉,|d2 ↓〉,|f 2+〉,|f 2−〉:

H (2) =

⎛
⎜⎜⎝

εd
2 (k) 0 −iV f v

2 kz −iV hv
2k−

0 εd
2 (k) −iV hv

2k+ iV f v
2 kz

iV f v
2 kz iV hv

2k− ε
f

2 (k) 0
iV hv

2k+ −iV f v
2 kz 0 ε

f

2 (k)

⎞
⎟⎟⎠.

(36)
Subspace 2 is not inverted, hence not relevant for topological
properties. However, Hamiltonian parameters can be tuned [3]
to achieve band inversion in this subspace instead of subspace
1, thus, it is instructive to see how this (experimentally
irrelevant) situation compares to the others.

We note that subspaces 1 and 1′ together, including both �7

and �8 states, form a six-dimensional space corresponding
to jz = ± 3

2 , while subspace 2 is four dimensional and
corresponds to jz = ± 1

2 .

C. Relation to earlier work

A Hamiltonian similar to Eq. (23) was introduced in
Ref. [36], with a few differences. First, the dz2 orbital was
neglected, reducing the Hilbert space to eight orbitals, this
is a meaningful approximation since this orbital is far from
the Fermi energy and not involved in the band inversion.
Second, instead of working with �7 and �8 states, the authors
used eigenstates of the jz operator, which is just a basis
rotation. Finally, the spirit is different: here we derive the
Hamiltonian from a tight-binding model constructed from
DFT results, and we stress how different parameters affect
the effective Hamiltonian, rather than taking numerical values
directly from DFT. This leads to a better understanding of how
different tight-binding terms affect the topological properties
of SmB6. Taking into account these differences, our approach
is compatible with that of Ref. [36], even though we reach
a different conclusion about the spin structure on the (001)
surface, most likely due to quantitative difference in the
numerical value of parameters (see Sec. V).

An approach similar to ours is followed in Ref. [37], where,
however, the starting tight-binding model is different; we will
return to this point in Sec. IV. In addition, the authors do not
focus on the spin structure of surface states, which instead is
our primary goal.

IV. EXPANSION AROUND �̄ FOR (001) SURFACE

In this section, we demonstrate the usage of the k · p
Hamiltonian of Sec. III to compute the effective surface-state
Hamiltonian for the Dirac cone at �̄ of a (001) surface. The
method consists of finding surface states in the form of a
Kramers doublet exactly at �̄, i.e., setting kx,y = 0, and then
expanding in kx,y to build an effective Hamiltonian for finite
kx,y onto the kx,y = 0 basis. This is a standard approach in the
theory of weakly correlated TIs (see, e.g., Ref. [28]). We will
always assume ideal surfaces, i.e., a confining potential which
is zero inside the crystal and infinite outside; for details, see
Appendixes B and C.

A. Eg-�8 basis

First, we concentrate on Eg and �8 states, i.e., we neglect
the �7 states in columns and rows 9 and 10 of Eq. (23).
Setting kx = ky = 0 defines an unperturbed Hamiltonian H0.
It splits into four 2 × 2 blocks, that we call H

+(1)
0 with basis

|d1 ↑〉,|f 1+〉, H−(1)
0 with basis |d1 ↓〉,|f 1−〉, H+(2)

0 with basis
|d2 ↑〉,|f 2+〉, H

−(2)
0 with basis |d2 ↓〉,|f 2−〉. The fact that

there are no terms connecting H
+/−(1)
0 to H

+/−(2)
0 is a direct

consequence of tetragonal symmetry along the �-X direction,
and will always be true, even keeping more terms in the
Hamiltonian. After finding surface states for H

(1)
0 , we take

the Hamiltonian HP ≡ H − H0, containing all terms in kx,y ,
as a perturbation to get the effective Hamiltonian as a function
of kx,y .
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For the unperturbed Hamiltonian H
(1,2)
0 blocks, within our

model, we get

H
+(1,2)
0 =

(
εd

1,2 − tdk
2
z g

d
1,2 −iV kzf

v
1,2

iV kzf
v
1,2 ε

f

1,2 − tf k2
z g

f

1,2

)
, (37)

while the other two blocks H
−(1,2)
0 are obtained by substituting

V with (−V ). As shown in Appendix B, it is possible to
analytically compute surface states at kx,y = 0. Those exist
only in the subspace where band inversion is achieved, that is,
in subspace 1 as defined in Sec. III B, since εd

1 < ε
f

1 and εd
2 >

ε
f

2 . After tracing out the z coordinate of the wave function,
they read as

|ψ+〉 = α|d1 ↑〉 + β|f 1+〉,
|ψ−〉 = α|d1 ↓〉 − β|f 1−〉, (38)

where the ket vectors are now Bloch states carrying a two-
dimensional surface momentum, and

α =
√√√√ tf g

f

1

tf g
f

1 − tdg
d
1

, (39)

β = − sgn
(
Vf v

1

)√ tdg
d
1

tdg
d
1 − tf g

f

1

. (40)

We stress that α and β can both be chosen real, with α2 + β2 =
1, and β2/α2 ∼ |td/tf | � 1, hence, surface states have mainly
f character.

After finding surface states at kx,y = 0, we can consider the
perturbing Hamiltonian, given in Appendix B, and build an
effective 2 × 2 Hamiltonian via

H eff
�̄

=
(〈ψ+|HP |ψ+〉 〈ψ+|HP |ψ−〉

〈ψ−|HP |ψ+〉 〈ψ−|HP |ψ−〉
)

(41)

to find

H eff
�̄

= |v0|w′(kx ŝy − ky ŝx), (42)

|v0| ≡ 2
∣∣V hv

1

∣∣
√

−td tf gd
1 g

f

1

tf g
f

1 − tdg
d
1

, (43)

w′ ≡ − sgn
(
αβV hv

1

) = sgn
(
f v

1 hv
1

) = ±1, (44)

where ŝx ,ŝy,ŝz are Pauli matrices in the |ψ±〉 basis.
Evaluating the spin expectation values (SEV) in the basis

(38) yields

2〈 �̂S〉 = 2〈(Ŝx,Ŝy,Ŝz)〉 = (γ +
5 ŝx ,γ

+
5 ŝy ,γ

−
11ŝz), (45)

where we introduce

γ ±
5 = α2 ± 5

21
β2, γ ±

11 = α2 ± 11

21
β2, (46)

with the properties γ +
5 ,γ +

11 > 0 and γ −
5 ,γ −

11 < 0 since α2 �
β2. For the pseudospin we find

〈�̂σ 〉 = 〈(σ̂x,σ̂y,σ̂z)〉 = (ŝx ,ŝy,γ
−ŝz), (47)

with γ − = α2 − β2 < 0. This shows that we can substitute
ŝx and ŝy in Eq. (42) exactly with pseudospin operators σ̂x

and σ̂y or approximatively with spin operators Ŝx and Ŝy . This

justifies what we did in Ref. [21], where we wrote the effective
Hamiltonian directly in terms of spin operators once knowing
the SEV from mirror-symmetry eigenvalues.

We can now easily diagonalize Eq. (42); the state |φ+(k)〉
at a given momentum k = (kx,ky) with positive energy εk =
+|v0|k (k = |k|) has the SEV

2〈φ+(k)| �̂S|φ+(k)〉 = w′γ +
5 (− sin θk, cos θk,0), (48)

with cos θk = kx/k, sin θk = ky/k, and the pseudospin

〈φ+(k)| �̂σ |φ+(k)〉 = w′(− sin θk, cos θk,0). (49)

These equations show that w′ dictates the sense of rotation of
the SEV (i.e., the chirality) and of the pseudospin. Moreover,
|φ+(k)〉 is such that

My |φ+(|kx |,0)〉 = −iw′|φ+(|kx |,0)〉, (50)

Mx−y |φ+(kx =ky >0)〉 = −iw′|φ+(kx =ky >0)〉, (51)

Mx |φ+(0,|ky |)〉 = +iw′|φ+(0,|ky |)〉, (52)

which, when comparing to Eqs. (13)–(15), shows that w′
from Eq. (44) is actually equal to w ≡ sgn(C+

kz=0C+
kz=π ) from

Eq. (12): as a consequence, in what follows, we will simply
put w′ = w; we also obtain v ≡ sgn(C+

kz=0C+
kx=ky

) = −1 from
Eqs. (11), (14), and (51).

As noticed in Ref. [36], due to time-reversal and C4v

symmetry (the surface symmetry group must contain a rotation
by π along an axis perpendicular to the surface), the SEV
along z on this surface is always zero, even beyond the
small-momentum expansion.

Equations (38), (42), and (44) represent the most important
results of this section. They show that the �̄ cone only exists in
subspace 1, and its chirality w depends on the relative sign of
the hybridization term in H0 through f v

1 (27) and in HP through
hv

1 (30). This is in agreement with the results of Ref. [22].
We remark that for the model used in Refs. [3,37] the

kinetic energy is such that εd
1 > ε

f

1 , εd
2 < ε

f

2 . As a result, the
minimum in the conduction band at X has dz2 character (X+

6
symmetry representation instead of X+

7 ) and surface states near
�̄ only exist in subspace 2, with basis dz2 and �

(2)
8 . As noted in

Ref. [21], this leads to v = +1 (instead of v = −1). Moreover,
with the same procedure as above, we can show that in this
case the chirality w = sgn(f v

2 hv
2), with f v

2 from Eq. (28) and
hv

2 from Eq. (31); this shows that hybridization parameters ηv1
z

and ηv2
z , if dominant, lead to w = −1, while dominant ηv2

x to
w = +1 [21]. Most of our equations are formally equivalent
to those in Ref. [37], once a proper replacement of quantities
from subspace 1 to subspace 2 is performed, while the final
results for spin structures are different due to the different
expressions for w.

B. Eg-�7 basis

We repeat the calculation, now retaining the �7 doublet
together with the Eg quartet, i.e., neglecting rows and columns
from 5 to 8 in Eq. (23). Along �-X the �7 doublet can only
hybridize with dx2−y2 , that we therefore assume to be inverted,
and we only consider subspace 1′ from Sec. III B [see Eq. (34)].
(Note that in the opposite case, with the inversion in dz2 , no
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insulator would be obtained.) We can repeat the same steps of
the previous subsection with the substitutions

ε
f

1 → ε
f

7 > εd
1 , g

f

1 → g
f

7 < 0, l
f

1 → l
f

7 < 0,

f v
1 → f v

7 , hv
1 → hv

7, (53)

so we obtain the effective surface Hamiltonian (42) with w =
sgn(f v

7 hv
7) and the basis

|ψ+〉 = α|d1 ↑〉 + β|f 7+〉,
|ψ−〉 = α|d1 ↓〉 − β|f 7−〉. (54)

For the pseudospin expectation value, we obtain the same
results as in the previous section, Eqs. (47) and (49); the SEV
in the basis (54) is

2〈 �̂S〉 = (
γ −

5 ŝx ,γ
−
5 ŝy ,γ

+
5 ŝz

)
, (55)

and the wave function |φ+(k)〉 has the SEV

2〈φ+(k)| �̂S|φ+(k)〉 = wγ −
5 (− sin θk, cos θk,0), (56)

which is reversed with respect to the case with the �8

quadruplet since γ −
5 < 0. This is a consequence of the fact

that, for �8 states, SEV and pseudospin are parallel, while
for �7 states they are antiparallel [22]. We also notice that
|φ+(k)〉 has the same mirror-symmetry eigenvalues as before
[Eqs. (50)–(52)], so, given the same MCNs, �7 states give an
opposite SEV pattern with respect to �8 states [21]. This is
due to the fact that, strictly speaking, MCNs denote the sense
of rotation of the pseudospin on surface states [22], while
relations for the SEV can be in general more complicated
[21,22].

C. Eg-�7-�8 basis

The two different choices of the previous subsections
correspond to large values of the crystal-field splitting, such
as we can ignore either �7 or �8 states. If we have to take into
account both �7 and �8 multiplets, the �̄ cone is composed by
dx2−y2 , �

(1)
8 , and �7 states, Hamiltonian H

+(1)
0 (37) becomes a

3 × 3 matrix, and no analytic solution can be found anymore.
However, when kz = 0, i.e., exactly at X, we can diagonalize
the f block

H
1,7
0 =

(
ε

f

1 m78

m78 ε
f

7

)
= ε

f

1 + ε
f

7

2
+

(−�
2 m78

m78
�
2

)
, (57)

with � = ε
f

7 − ε
f

1 , out of which we pick the state which is
mostly responsible for the band inversion, i.e., the one of higher
energy, which is (we do the same for H

−(1)
0 )

∣∣f 17
p ± 〉 = β1|f 1±〉 + β7|f 7±〉, (58)

sgn(β1β7) = sgn(m78), β2
1 + β2

7 = 1. (59)

Keeping only |d1 ↑〉 and |f 17
p +〉 states, we now get

H
+(1)
0 =

(
εd

1 − tdk
2
z g

d
1 −iV kzf

v
17

−iV kzf
v
17 ε

f
+ − tf k2

z g
f

17

)
, (60)

which is Eq. (37) with the substitutions f v
1 → β1f

v
1 + β7f

v
7 ≡

f v
17, g

f

1 → β2
1g

f

1 + β2
7g

f

7 ≡ g
f

17 < 0. With this approach we

neglect the other linear combination of |f 1〉 and |f 7〉 states,
called |f 17

m 〉 in Fig. 2(c), which at X remains below the Fermi
energy.

With this approximation, whose validity we will assess in
Sec. VII, the problem is now solvable by hand. We get the
doublet in the form

|ψ+〉 = α|d1 ↑〉 + ββ1|f 1+〉 + ββ7|f 7+〉,
(61)

|ψ−〉 = α|d1 ↓〉 − ββ1|f 1−〉 − ββ7|f 7−〉,
with sgn(αβ) = − sgn(Vf v

17). When we project the perturbing
Hamiltonian, which is now a 6 × 6 matrix, we get Eq. (42)
with the substitution hv

1 → β1h
v
1 + β7h

v
7 ≡ hv

17. The chirality
w, as a consequence, is now given by

w = sgn
[
f v

17h
v
17

]
= sgn

[(
β1f

v
1 + β7f

v
7

)(
β1h

v
1 + β7h

v
7

)]
. (62)

This approach is equivalent to starting from Eq. (35) with
the given expressions of f v

17 and gv
17, and ε

f

17(k) = ε
f
+ −

tf (k2
z g

f

17 + k2
‖ l

f

17),lf17 = β2
1 l

f

1 + β2
7 l

f

7 .
Relations for the pseudospin, Eqs. (47) and (49), remain

invariant, with a redefinition of w according to Eq. (62). For
spin operators we find

2〈 �̂S〉 = (γ +′
5 ŝx ,γ

+′
5 ŝy ,γ

−′
11 ŝz), (63)

γ ±′
5 = α2 ± 5

21
β2β2

1 ∓ 5

21
β2β2

7 ∓ 4
√

5

21
β2β1β7, (64)

γ ±′
11 = α2 ± 11

21
β2β2

1 ∓ 5

21
β2β2

7 ± 8
√

5

21
β2β1β7, (65)

and for the SEV on the state of positive energy

2〈φ+(k)| �̂S|φ+(k)〉 = wγ +′
5 (− sin θk, cos θk,0). (66)

While the pseudospin is the same as before, the SEV, on the
other hand, can be parallel or antiparallel to the pseudospin
according to the sign of γ +′

5 , which depends on the relative
weights β1 and β7. We also note that the sign of the interference
term in Eq. (64) depends on the relative sign of β1 and β7,
which is the sign of m78 [see Eq. (59)]. Ab initio calculations
indicate m78 > 0 for SmB6 [see Eq. (26)], favoring antiparallel
spin and pseudospin.

V. EXPANSION AROUND X̄ FOR (001) SURFACE

Here, we employ the same technique as in the previous
section, but for the effective Hamiltonian at the surface
momenta X̄,X̄′ on the (001) surface.

A. Eg-�8 basis

One route to obtain surface states around X̄ is to project
X′ = (π,0,0) onto the (001) surface [37]. In this case, H

+(1)
0

is a 4 × 4 matrix which does not admit a simple analytical
solution. An alternative route is to project X = (0,0,π ) onto
the (100) surface: In this case, ky and kz remain good quantum
numbers, and we obtain surface states near ky = 0, kz = π .
To get the effective Hamiltonian for the (001) surface, we then
must perform a rotation of the coordinate system.
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We will follow this second route, even if apparently
more involved, as it allows for a good approximation which
makes the problem solvable by hand. Upon retaining the
�8 quadruplet, the Hamiltonian H+

0 , obtained by setting
ky = kz = 0, has now as a basis |d1 ↑〉,|d2 ↑〉,|f 1−〉,|f 2−〉,
but does not decouple any more into two 2 × 2 blocks, due
to the terms in hv

12 and hv
21. However, we may adopt the

approximation to neglect these couplings between subspaces
1 and 2, such that |ψ+〉 and |ψ−〉 live entirely into subspace
1, which is reasonable since it is where band inversion is
achieved:

|ψ+〉 � α|d1 ↑〉 + β|f 1−〉,
|ψ−〉 � α|d1 ↓〉 + β|f 1+〉. (67)

This is found to be an excellent approximation when compared
to the tight-binding results in the limit of small momenta: the
weight of states in subspace 2 rarely exceeds a few percent. We
remark that such a simplification can be achieved only with
our choice of projecting X = (0,0,π ) onto the (100) surface.
As shown below, the weight of states in subspace 2 on the
(001) surface is 75%, i.e., projecting X′ = (π,0,0) onto the
(001) surface does not admit any obvious approximation.

Neglecting the couplings between subspaces 1 and 2, H+
0

in the basis |d1 ↑〉,|f 1−〉 reads as

H+
0 =

(
εd

1 − tdk
2
xl

d
1 −iV kxh

v
1

iV kxh
v
1 ε

f

1 − tf k2
xl

f

1

)
, (68)

which corresponds to Eq. (37) with the substitution gd
1 →

ld1 ,g
f

1 → l
f

1 ,kz → kx,f
v
1 → hv

1. We can take coefficients α

and β as real, with sgn(αβ) = − sgn(V hv
1) from Eq. (40), as

a calculation similar to the one of the previous section shows,
and which also leads to the effective Hamiltonian for small
momenta.

We have, however, to go back to the (001) surface through
a coordinate rotation kx → kz → ky → kx , which changes d

and f states according to Wigner U matrices [3,31], and a basis
rotation ŝx → ŝz → ŝy → ŝx , to get the effective Hamiltonian
around X̄′:

H eff
X̄′ = −|v1|wkyŝx + |v2|kx ŝy, (69)

with basis

|ψ ′
+〉 = α

2
(|d1 ↑〉 −

√
3|d2 ↑〉) + β

2
(|f1+〉 −

√
3|f2+〉),

|ψ ′
−〉 = α

2
(|d1 ↓〉 −

√
3|d2 ↓〉) − β

2
(|f1−〉 −

√
3|f2−〉),

(70)

and velocities

v1 = −2αβVf v
1 = 2w

∣∣Vf v
1

∣∣
√

−td tf ld1 l
f

1

tf l
f

1 − td l
d
1

, (71)

v2 = −2αβV hv
1 = 2

∣∣V hv
1

∣∣
√

−td tf ld1 l
f

1

tf l
f

1 − td l
d
1

> 0. (72)

It can be observed that the relative sign of the two Dirac
velocities, that is the winding number of the X̄ cone, is given
by sgn(v1v2) = w = sgn(f v

1 hv
1), that is, the same expression
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FIG. 3. (a) Bulk tight-binding band structure for parameters
tc = 0.8 eV, tf = −0.002 eV, V = 0.063 eV, ηd1

z = ηf 1
z = 0.8, ηd2

z =
−0.3, ηf 2

z = −0.45, εd − ε8 = 1.45 eV, ηv1
z = −2.1, ηv2

z = 0.6.
Also shown is the result of the k · p approximation around X [see
Fig. 2(a)]. (b) Tight-binding band structure for a (001) slab of 30
layers, together with the analytical k · p approximation of surface
states described in the text, and the numerical solution of the k · p
model including bulk states (see Appendix E). We see that both k · p
solutions give Dirac energies and velocities in excellent agreement
with the tight-binding solution; obtaining accurate velocities requires
to take into account third-order terms in k for the hybridization (see
Appendix D).

which gives the chirality of the �̄ cone. Thus, we recover,
through a different derivation, the results of Ref. [22].

In Fig. 3, we present a comparison between the analytical
k · p result and the numerical tight-binding solution. We note
that obtaining the exact value of the velocities v0,v1,v2 requires
to take into account higher-order terms in the small-momentum
expansion (see Appendix D); for our choice of the parameters,
it is enough to take the hybridization up to third order in k.

We also remark that the reported dispersion of surface states
does not fully agree with photoemission results, in that the
Dirac energies are here inside the bulk gap, while experi-
mentally they appear to be in the valence band [9–14]. One
plausible explanation is the so-called “Kondo-breakdown”
scenario in which f electrons on the surface are no more Kondo
screened, yielding surface states with larger velocity [38]. In
an effective single-particle description, Kondo breakdown is
equivalent to an infinite f -electron scattering potential at the
surface [39] which, however, does no longer allow for an
analytical treatment within the k · p approach. Importantly,
a comparison of numerical results with and without this
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scattering potential indicates that the spin pattern of surface
states is robust to this perturbation.

Spin and pseudospin operators become

2〈 �̂S〉 = (γ +
5 ŝx ,γ

+
11ŝy ,γ

−
5 ŝz), (73)

〈�̂σ 〉 = (ŝx ,ŝy,γ
−ŝz), (74)

which shows that operators ŝx and ŝy in Eq. (69) can be
substituted exactly by pseudospin operators σ̂x and σ̂y , or,
up to a constant factor, by spin operators Ŝx and Ŝy , once
again justifying writing the effective Hamiltonian in terms of
spin operators [21]. For the state |φ+

X̄′(k)〉 with positive energy

εk =
√
v2

1k
2
y + v2k

2
x at a given momentum k for Eq. (69) the

SEV and pseudospin are

2〈φ+
X̄′ (k)| �̂S|φ+

X̄′(k)〉 = (−γ +
5 w sin θk,γ

+
11 cos θk,0), (75)

〈φ+
X̄′(k)| �̂σ |φ+

X̄′(k)〉 = (−w sin θk, cos θk,0), (76)

with cos θk = |v2|kx/εk, sin θk = |v1|ky/εk. Moreover, we
find

My |φ+
X̄′(|kx |,0)〉 = −i|φ+

X̄′(|kx |,0)〉, (77)

Mx |φ+
X̄′(0, − |ky |)〉 = −iw|φ+

X̄′(0, − |ky |)〉, (78)

which agrees with Eqs. (18) and (19), confirming that w =
sgn(f v

1 hv
1) = sgn(C+

kz=0C+
kz=π ).

After a π/2 rotation we also obtain the effective Hamilto-
nian around X̄:

H eff
X̄

= |v1|wkxŝy − |v2|ky ŝx, (79)

and similar expressions hold for the SEV and the pseudospin:

2〈φ+
X̄

(k)| �̂S|φ+
X̄

(k)〉 = (−γ +
11 sin θk,γ

+
5 w cos θk,0), (80)

〈φ+
X̄

(k)| �̂σ |φ+
X̄

(k)〉 = (− sin θk,w cos θk,0), (81)

where now cos θk = |v1|kx/εk and sin θk = |v2|ky/εk. More-
over, Eqs. (16) and (17) hold.

Equations (69), (70), and (79) are the most important results
of this section: they show that Dirac cones at X̄ and X̄′ have two
different velocities, whose relative sign is given by Eq. (44),
that is, the same expression which gives the chirality of the
�̄ cone. Equation (70) implies that in our approximation, the
Dirac cones at X̄,X̄′ are composed from 75% of �

(2)
8 and dz2

states and from 25% of �
(1)
8 and dx2−y2 states. This is in good

agreement with tight-binding results, which for typical values
of the parameters shows these percentages to be � 70% and
� 30%. We recall that, for the present reduced basis, the �̄

cone is entirely composed by �
(1)
8 and dx2−y2 states.

B. Eg-�7 basis

When using the �7 doublet instead of �8 quadruplet, the
basis for H+

0 is spanned by |d1 ↑〉,|d2 ↑〉,|f 7−〉; with the same
approximation of the previous subsection we can neglect term
hv

72 in Eq. (23), hence, |d2 ↑〉. The basis for surface states at

ky = 0,kz = π on the (100) surface becomes

|ψ+〉 = α|d1 ↑〉 + β|f 7−〉,
|ψ−〉 = α|d1 ↓〉 + β|f 7+〉. (82)

After rotation, the effective Hamiltonian is Eq. (69) with basis

|ψ ′
+〉 = α

2
(|d1 ↑〉 −

√
3|d2 ↑〉) − β|f7+〉,

|ψ ′
−〉 = α

2
(|d1 ↓〉 −

√
3|d2 ↓〉) + β|f7−〉, (83)

and the usual substitutions f v
1 ,hv

1,l
d,f

1 → f v
7 ,hv

7,l
d,f

7 ; the
winding number has the same expression of the chirality at
�̄: w = sgn(f v

7 hv
7).

The pseudospin behaves as in the previous section,
Eqs. (74) and (76). Spin operators are

2〈�S〉 = (γ −
5 ŝx ,γ

−
5 ŝy ,γ

+
5 ŝz), (84)

and the SEV on the state with positive energy is

2〈φ+
X̄′ (k)| �̂S|φ+

X̄′(k)〉 = γ −
5 (−w sin θk, cos θk,0), (85)

which is antiparallel with respect to the �8 case since γ −
5 < 0.

We see that when performing the rotation to go back to the
(001) surface, �7 goes into itself [Eq. (83)], so now surface
states at X̄ are mostly �7 in character, just like surface states at
�̄. In this case, when projecting along the x direction, the
approximation of neglecting subspace 2 is always reliable
since here we are only discarding a d state (dz2 ), which
contributes a small weight to surface states; this is confirmed
by tight-binding results.

C. Eg-�7-�8 basis

With the choice of the basis

|ψ+〉 = α|d1 ↑〉 + ββ1|f 1−〉 + ββ7|f 7−〉,
|ψ−〉 = α|d1 ↓〉 + ββ1|f 1+〉 + ββ7|f 7+〉, (86)

we obtain the same Hamiltonian at X̄′ [Eq. (69)], with the new
definition of the winding number [Eq. (62)]. The relations for
the pseudospin (74) and (76) remain invariant. For the spin we
find

2〈 �̂S〉 = (γ +′
5 ŝx ,γ

+′
11 ŝy ,γ

−′
5 ŝz), (87)

and for the SEV on the state of positive energy

2〈φ+(k)| �̂S|φ+(k)〉 = (−wγ +′
5 sin θk,γ

+′
11 cos θk,0). (88)

Similar relations hold at X̄.
We note that terms γ +′

5 and γ +′
11 [Eqs. (64) and (65)] can

be positive or negative according to the relative weight of
β1 and β7 in |f 17

p ±〉. Even if unlikely, it may also happen
that, when |β1| ∼ |β7|, they carry different signs; in this case
the winding number of the SEV would be different from the
winding number of the pseudospin, with only the latter directly
related to the topological phase. In Ref. [21] we assumed this
scenario not to occur, which should be a safe assumption for
most of parameter space.
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D. Comparison with DFT and experiments

We now relate our model-dependent analysis to concrete
results for SmB6 found in the literature. As we have shown,
the winding number w ≡ sgn(C+

kz=0C+
kz=π ) depends on the

retained f multiplet (�7 or �8), the symmetry of the in-
verted subspace (dx2−y2 subspace-1-symmetry representation
X+

7 , or dz2 subspace-2-symmetry representation X+
6 ), and

the hybridization. Based on DFT results [29–31], we can
safely state that the band inversion happens in subspace
1, which is spanned by dx2−y2 , �

(1)
8 , and �7. This leads to

v ≡ sgn(C+
kz=0C+

kx=ky
) = −1, and, when we take into account

the �8 quadruplet only, to w = sgn(f v
1 hv

1); as a consequence,
ηv2

z leads to w = +1, while ηv1
x and ηv2

x to w = −1 [see
Eqs. (27) and (30)]. Ab initio calculations [30,31] show the
largest hybridization term to be ηv1

z , which, however, does not
lead alone to a gap by symmetry mismatch (actually, it does not
appear in f v

1 ); the second most important term is ηv2
z , hence,

w = +1; numerical solutions by keeping many hybridization
terms show w = +1 to remain the correct solution. When
we use the �7 doublet, instead, w = sgn(f v

7 hv
7), which gives

w = +1 for ηv1
7 and ηv2

x7, and w = −1 for ηv2
7 [see Eqs. (29)

and (32)], which is the largest term in ab initio calculations,
leading to w = −1 even when keeping more hybridization
terms. Hence, retaining different multiplets leads to different
values of w, and to different topological phases.

Spin-resolved photoemission data [14] indicate a winding
number w = +1 on the X̄ cone, leading to a preference toward
our �8 model; this is in agreement with Ref. [40], which
finds surface states to be mostly �8. While early theory papers
[1–3] have not discussed the Dirac-cone spin structure, it was
shown in Refs. [21,22] that a full characterization of the SmB6

electronic structure requires the knowledge of the exact value
of MCNs, which directly influence the spin structure of surface
states. In a few ab initio calculations, the spin structure is
addressed: in Ref. [36] it seems to contradict experimental
results, rather suggesting w = −1; while the one of Ref. [35]
agrees with experiments, as well as the one of Ref. [31], which
is, however, based on PuB6 ab initio calculations [30]. We thus
believe that the question deserves further consideration; from
our point of view it reduces to understanding if �7 (w = −1)
or �8 (w = +1) states are mostly responsible for the bulk gap
and the composition of surface states; in Sec. VII, we show
that varying their relative energy leads to a topological phase
transition w = −1 ↔ +1 between these two possibilities,
where the latter one should be realized in “clean” SmB6.

VI. GENERIC FLAT SURFACE

So far, we have studied surface states on the (001) surface,
well studied already in previous papers. The power of the k · p
approach is, however, that we can obtain analytical results also
for a generic flat (lmn) surface without much additional effort.
Here, we will in particular consider (110), (111), and (210)
surfaces. We note that, by construction, the k · p approach
only yields results for surface Dirac cones protected by parity
invariants because those arise from bands near time-reversal-
invariant momenta. In contrast, Dirac cones only protected by
mirror symmetries are not accessible; this will be relevant for
the (110) surface of SmB6.

In the following, we denote surface momenta as k̄x and k̄y

to distinguish them from bulk momenta, a distinction which on
the (001) surface is not needed since there k̄x = kx, k̄y = ky .

A. Surface states from parity invariants and
mirror Chern numbers

Since there are three bulk X points with band inversion,
parity invariants predict in general three Dirac ones in the 2D
BZ. Mirror symmetries might complicate the situation, and we
discuss a number of surfaces explicitly.

On the (110) surface, one X point is projected onto the
X̄ = (π,0) point of the rectangular surface BZ, while the other
two onto Ȳ = (0,π/

√
2), which will then hybridize and gap

out: as a consequence, only a single Dirac cone is predicted by
parity invariants at X̄. As shown in Ref. [19], MCNs predict
the presence of two additional Dirac cones along the �̄-Ȳ
direction. Indeed, the kz = 0 plane is projected to k̄x = 0, while
kz = π to k̄x = π , and kx = ky to k̄y = 0 [see Fig. 1(c)]. We
must therefore have a Dirac cone along X̄-S̄ and X̄-�̄, which
is simply the cone at X̄ predicted by parity invariants, and two
new cones along �̄-Ȳ as a consequence of C+

kx=ky
= ±2; these

cones are protected by mirror symmetry only. In addition to
this, we can characterize the X̄ cone with a winding number;
its SEV is fixed along the X̄-S̄ direction by C+

kz=π = +1, but
it changes along the X̄-�̄ direction according to C+

kx=ky
and

C+
kz=π ; while the first one fixes mirror eigenvalues, the second

one tells what the SEV for a given mirror eigenvalue is. As a
result, the winding number of the X̄ cone is w, the same as on
the (001) surface. This is shown in Fig. 5. We note, however,
that the winding number on the X̄ cone of the (110) surface is
only fixed at low energies [21], when we can neglect subspace
2; at higher energies the spin direction along k̄y = 0 can thus
in principle be reversed, and so the winding number. This is
different from the (001) surface where the winding number is
constrained by the symmetry operation Mz.

On the (210) surface, the situation is different: one X point
is projected onto the X̄ = (π,0) point of the rectangular surface
BZ, as for the (110) surface; however, the other two X points
are projected to �̄ = (0,0) and Ȳ = (0,π/

√
5). Hence, parity

invariants predict three Dirac cones, with no additional cones
protected by mirror symmetry only. Since no Dirac cone is
crossed by two mirror planes [see Fig. 1(e)], we cannot make
any general predictions on the winding number.

On the (111) surface, the three bulk X points are projected
to the three inequivalent M̄ points of the hexagonal surface BZ.
Mirror planes kx = ky,ky = kz,kz = kx are projected along the
three �̄-M̄ directions, fixing mirror-symmetry eigenvalues of
Dirac cones along those lines; the only information we get is
that the SEV is antiparallel at the two extrema of each cone,
and nothing can be said about winding numbers using mirror
eigenvalues only. These results are shown in Fig. 6.

We finally stress that for all the surfaces, the qualitative
spin structure along high-symmetry directions only depends
on w as one can realize by comparing in each of the Figs.
4, 5, 6, the pairs of panels (a) and (c) and (b) and (d), which
share the same w, differ by v, and still have the same SEV. The
number v, on the other hand, dictates the orbital composition
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FIG. 4. Mirror planes as in Fig. 1 together with mirror-symmetry
eigenvalues and SEV (green arrows) on the surface BZ for a (001) sur-
face, as a function of v ≡ sgn(C+

kz=0C+
kx=ky

) and w ≡ sgn(C+
kz=0C+

kz=π ).

The panels correspond to MCNs (C+
kz=0,C+

kz=π ,C+
kx=ky

) as follows: (a)
(−2, + 1, + 1), (b) (+2, + 1, − 1), (c) (−2, + 1, − 1), (d) (+2, +
1, + 1). To draw the SEV we assume �8 states; for �7 states the SEV
is reversed. From Ref. [21].

of the different cones, and does not give any information on the
spin.

B. Geometrical considerations

We want to develop a general theory for the spin structure
of a Dirac cone on a given surface, following what we did in
Secs. IV and V.

FIG. 5. Mirror planes, mirror-symmetry eigenvalues, and SEV on
the BZ for a (110) surface for the same cases as in Fig. 4.

FIG. 6. Mirror planes, mirror-symmetry eigenvalues, and SEV on
the BZ for a (111) surface for the same cases as in Fig. 4.

Given a generic (lmn) surface (without loss of generality,
we will only consider non-negative l,m,n integers), the three
indices are equivalent due to cubic symmetry. However, when
we choose to expand around X = (0,0,π ), the resulting k · p
Hamiltonian has tetragonal symmetry, with the z direction
inequivalent to x and y. Consequently, the third index, which
fixes the new z direction, is inequivalent to the first two: so we
introduce the (lm/n) notation, to stress that index n is inequiv-
alent from l and m. So, given (lmn), we have in general three
inequivalent triplets (lm/n) = (ml/n), (mn/l) = (nm/l), and
(ln/m) = (nl/m) which correspond to the three possible
choices for the z axis, or, alternatively, to the k · p expansion
at each of the three different X points.

The (lm/n) triplet describes the direction along which k̄z

points, with polar angles

θ ≡ arctan

√
l2 + m2

n
, (89)

φ ≡ arctan
m

l
, (90)

and k̄z → −id/dz, while k̄x and k̄y will remain good quantum
number.

We can thus perform a rotation in momentum space with
Euler angles ω,ω′ = θ,ω′′ = φ (we adopt the zyz convention),
where ω, which is for the moment arbitrary, corresponds to a
rotation in the k̄x,k̄y plane; details are given in Appendix G.
When ω = 0 we find that the X = (0,0,π ) point is projected
at

k̄X = (−π sin θ,0), (91)

so k̄x is the direction which joins �̄ to the position of the cone,
unless θ = 0, which corresponds to the �̄ cone on the (001)
surface, for which k̄x and k̄y directions are equivalent. Also, to
the X point we can assign the (lm/n) triplet, and an angle θ

as defined in Eq. (89).
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FIG. 7. The projection along different directions gives rise to
different surface BZs, and the X = (0,0,π ) point is projected on
different surface HSP. For a given (lmn) surface, we project the X

point along the (lmn), (mnl), and (nlm) directions [we use the same
color for each triplet (lmn)], giving rise to three surface Dirac cones.
The only relevant parameter for each surface cone is the angle θ

between kz and the projection direction, which enters the expression
for the winding number Eq. (113).

We can also find that X′ = (π,0,0) and X′′ = (0,π,0) are
projected, respectively, to

k̄X′ = π (cos θ cos φ, − sin φ), (92)

k̄X′′ = π (cos θ sin φ, cos φ), (93)

which are the positions of the two other Dirac cones in the 2D
BZ when ω = 0.

However, as argued in Sec. V, it is advantageous to always
project X since this allows to safely neglect subspace 2. Hence,
instead of considering three distinct X points and projecting
them onto the same (lmn) surface, we follow the equivalent
procedure of only considering the single X = (0,0,π ) point
which we project onto the three (lmn),(mnl),(nlm) surfaces,
as sketched in Fig. 7. Equations (89) and (90) continue to apply,
but with a permutation of the indices l,m,n in such a way
that, given a (lmn) surface, the triplets (lm/n),(mn/l),(nl/m)
correspond each to one of the cones, with angles θ, θ ′, and
θ ′′ (see also Appendix G). Specifically, on the (001) surface
the �̄ cone corresponds to the triplet (00/1) while the X̄ and
X̄′ cones to (10/0) and (01/0), respectively. Similarly, the X̄

cone on the (110) surface corresponds to (11/0), while (10/1)
and (01/0) correspond to the two Ȳ cones. Finally, on the
(111) surface, all cones are equivalent. We stress that, in our
approximation, all Dirac cones will live in subspace 1, but with
a cone-dependent orbital quantization axis.

C. Results for a generic surface

In this section, we find the effective surface Hamiltonian
for a given (lm/n) triplet; this Hamiltonian is valid for small

momenta around the surface point k̄X on which the bulk X =
(0,0,π ) point is projected; details are given in Appendix G. As
before, we focus on subspace 1, so ignoring any coupling to
subspace 2, and for the moment use only �8 states.

We find that the effective Hamiltonian, up to the linear term
in k̄‖, is

H eff
θ = v1k̄x ŝy − v2k̄y ŝx

= |v1|wk̄x ŝy − |v2|k̄y ŝx, (94)

where v1 and v2 depend on θ :

v1(θ ) = 2
∣∣V hv

1

∣∣ f v
1

f̄ v
1 (θ )

√
−td tf ḡd

1 (θ )ḡf

1 (θ )

tf ḡ
f

1 (θ ) − td ḡ
d
1 (θ )

, (95)

v2(θ ) = 2
∣∣V hv

1

∣∣
√

−td tf ḡd
1 (θ )ḡf

1 (θ )

tf ḡ
f

1 (θ ) − td ḡ
d
1 (θ )

> 0, (96)

with

ḡa
1 (θ ) = ga

1 cos2 θ + la1 sin2 θ < 0, a = d/f (97)

f̄ v
1 (θ ) =

√(
f v

1

)2
cos2 θ + (

hv
1

)2
sin2 θ sgn

(
hv

1

)
. (98)

Limiting cases are |v1(0)| = |v2(0)| = |v0| from Eq. (43),
v1(π/2) = v1 from Eq. (71), and v2(π/2) = v2 from Eq. (72).
Moreover, the center of the cone is at the energy

E(θ ) = ε
f

1 td ḡ
d
1 (θ ) − εd

1 tf ḡ
f

1 (θ )

td ḡ
d
1 (θ ) − tf ḡ

f

1 (θ )
. (99)

Equation (94) has the same form as Eq. (79) for the X̄ cone
on the (001) surface, but the basis is in general different, as
well as the values of the velocities v1,v2. It also has formally

the same spectrum Ek̄ = ±εk̄ = ±
√

v2
1 k̄

2
x + v2

2 k̄
2
y , which gives

rise to elliptic isoenergy contours.
When we look at pseudospin operators, we discover that ŝx

is in general not simply proportional to σ̂x , but contains a σ̂z

component as well:

〈�̂σ 〉 = (Aθ ŝx + Bθγ
−ŝz,ŝy, − Bθ ŝx + Aθγ

−ŝz), (100)

with

Aθ =
∣∣hv

1

∣∣ sin2 θ + w
∣∣f v

1

∣∣ cos2 θ

|f̄ v
1 | , (101)

Bθ =
∣∣hv

1

∣∣ − w
∣∣f v

1

∣∣∣∣f̄ v
1

∣∣ sin θ cos θ. (102)

As a consequence, we find

ŝx = Aθ σ̂x − Bθ σ̂z, ŝy = σ̂y (103)

since A2
θ + B2

θ = 1. Inserting these expressions into Eq. (94)
we obtain the Hamiltonian in terms of pseudospin operators

H eff
θ = v1k̄x σ̂y − v2k̄yAθ σ̂x + v2k̄yBθ σ̂z (104)

= |v1|wk̄xσ̂y − |v2Aθ |ww̄d (θ )k̄y σ̂x + v2Bθ k̄yσ̂z

≡ |vx |wk̄xσ̂y − |vy |ww̄d (θ )k̄y σ̂x + v⊥k̄y σ̂z, (105)
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with vx = v1, vy = v2Aθ, v⊥ = v2Bθ , and

w̄d (θ ) = sgn
(∣∣f v

1

∣∣ cos2 θ + w
∣∣hv

1

∣∣ sin2 θ
)

= sgn
[∣∣f v

1

∣∣n2 + w
∣∣hv

1

∣∣(l2 + m2)
]
. (106)

Equivalently, this can be written as

H eff
θ = εk̄

(
nx

k̄σ̂x + n
y

k̄σ̂y + nz

k̄σ̂z

) = εk̄�nk̄ · �̂σ, (107)

�nk̄ = (−vyk̄y,vxk̄x,v⊥k̄y)/εk̄, (108)

with �nk̄ a unit vector; this is Eq. (1) quoted in the Introduction.
Hence, surface states are eigenstates of the pseudospin operator
�nk̄ · �̂σ ; due to spin-orbit coupling, surface states are never

eigenstates of the physical spin operator �̂S.
We can read off that the pseudospin of the state |φ+(k̄)〉

with positive energy εk̄ is �nk̄, or

〈φ+(k̄)| �̂σ |φ+(k̄)〉 = �nk̄

= [− sin θk̄|Aθ |ww̄d (θ ),w cos θk̄, sin θk̄Bθ ], (109)

where we have defined sin θk̄ = |v2|k̄y/εk̄, cos θk̄ =
|v1|k̄x/εk̄. For the SEV we find

2〈φ+(k̄)| �̂S|φ+(k̄)〉
= [− sin θk̄|A+

θ |ww̄(θ ),γ +
5 w cos θk̄, sin θk̄B

+
θ ](110)

with

A+
θ =

∣∣hv
1

∣∣γ +
11 sin2 θ + w

∣∣f v
1

∣∣γ +
5 cos2 θ∣∣f̄ v

1

∣∣ , (111)

B+
θ =

∣∣hv
1

∣∣γ +
11 − w

∣∣f v
1

∣∣γ +
5∣∣f̄ v

1

∣∣ sin θ cos θ, (112)

and

w̄(θ ) = sgn
(∣∣f v

1

∣∣γ +
5 cos2 θ + w

∣∣hv
1

∣∣γ +
11 sin2 θ

)
= sgn

[∣∣f v
1

∣∣γ +
5 n2 + w

∣∣hv
1

∣∣γ +
11(l2 + m2)

]
. (113)

Equations (109) and (110) constitute central results of this
section, to be analyzed in the following. We first notice that
there is no φ dependence, as a consequence of the cylindrical
symmetry of the k · p Hamiltonian (33). For the in-plane
SEV, we can define a θ -dependent winding number w̄(θ ). The
winding number can be simply found by looking at the relative
sign of the in-plane SEV component along k̄x and k̄y , to get
w̄(θ ) = sgn(wA+

θ ), leading to Eq. (113).
First, we will consider for simplicity w̄d (θ ) from Eq. (106),

which represents the winding number of the pseudospin [see
Eq. (109)]. This winding number w̄d (θ ) depends both on the
surface geometry via the angle θ as well as on microscopic
details of the material via k · p parameters f v

1 and hv
1. As a

consequence, w̄d (θ ) is in general not uniquely determined by
w ≡ sgn(C+

kz=0C+
kz=π ), the latter characterizing the topological

phase. The only exceptions are θ = 0 and π/2. In particular,
for θ = 0,w̄d (0) = +1, which says that the �̄ cone on the (001)
surface always has a positive winding number due to its high
symmetry (see Sec. IV). When θ = π/2, instead, w̄d (π/2) =
w, which says that for the X̄ cone on the (100) surface the
winding number depends directly on the topological phase
(see Sec. V). This also applies to the X̄ cone of all (lm0)

surfaces [but only at small momenta, whereas on the (001)
surface it holds at any momenta as a consequence of mirror
planes [21,22]]. We further notice that w̄d (θ ) is always positive
if w = +1. In contrast, for w = −1 there exists a critical angle
θc = arctan(f v

1 /hv
1)2 such that w̄d (θ ) = +1 (−1) for θ < θc

(θ > θc), respectively.
The qualitative behavior of the winding number of the SEV,

w̄(θ ), is very similar to the one of the pseudospin, w̄d (θ ). It
displays a different critical value θc if w = −1, dictated by
A+

θc
= 0 instead of Aθc

= 0, but remains +1 always if w = +1.
We then note that the SEV perpendicular to the surface is in

general nonzero, unless θ = 0, θ = π/2, or f v
1 = hv

1 (which
corresponds to the limiting case of a hybridization with cubic
symmetry in the k · p Hamiltonian). Being proportional to k̄y ,
it will point along the positive z direction on half of the cone,
and along the negative direction on the other half. We stress
that when w = +1, the out-of-plane component of the SEV
and of the pseudospin is likely to be small since the two terms
of Eqs. (112) and (102) tend to cancel each other (|f v

1 | ≈ |hv
1|),

while it is expected to be large were the w = −1 phase realized,
since in that case the two terms would sum. In this case, the ef-
fect would be mostly visible close to θc; in particular, exactly at
θc, at k̄x = 0 the SEV would point perpendicular to the surface.

For �7 states, results for the pseudospin are identical; for
the real spin, we have to substitute γ ±

5 ,γ ±
11 → γ ∓

5 : as usual,
this implies that the SEV has opposite sign with respect to �8

states, so it is antiparallel to the pseudospin. For the �7-�8

case, results for the pseudospin are identical, with the usual
redefinition of w according to Eq. (62); for the real spin, we
have to substitute γ ±

5 ,γ ±
11 → γ ±′

5 ,γ ±′
11 . As already remarked in

Sec. V, the SEV is usually either parallel (when |β1| � |β7|)
or antiparallel (when |β7| � |β1|) to the pseudospin, while
for |β1| ∼ |β7| pathological situations can arise, in which the
SEV is somewhere parallel, somewhere else antiparallel to
the pseudospin in a momentum-dependent way; we, however,
ignore this (unlikely) situation.

The possible scenarios for the spin structure are summa-
rized in Fig. 8. We stress that these results refer to the ω = 0
case; for finite ω one has to rigidly rotate these patterns by an
angle ω.

We now apply this general theory to a few particular
cases. We note that, when compared to tight-binding results,
the values of the velocities (95) and (96) are not exact. As
explained in Appendix D, higher-order terms in k need to
be kept to reproduce these velocities exactly: while those
can be easily taken into account for the (001) surface, on a
general (lmn) it is not straightforward, so in what follows
we will stick to the simple theory of this section. We finally
remark that keeping more terms will also in general break the
cylindrical symmetry of the Hamiltonian (33) by introducing
a φ dependence in the effective Hamiltonian.

D. Results for (001) surface

First, we can obtain again the results of Secs. IV and V
for a (001) surface. For the �̄ cone, θ = 0,w̄(0) = w̄d (0) =
+1,B0 = 0,A+

0 = wγ +
5 ,A0 = w. The effective Hamiltonian

(105) corresponds to Eq. (42) with vx = vy ≡ v0 (there we
showed ŝx,y = σ̂x,y). The SEV (110) becomes Eq. (48); the
pseudospin (109) gives Eq. (49).
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FIG. 8. Possible scenarios for the SEV of a Dirac cone at linear
order in the k · p expansion on a general (lmn) surface, as a function
of w ≡ sgn(C+

kz=0C+
kz=π ) and of θ ≡ arctan

√
l2 + m2/n. (a) When

w = +1, the winding number is positive for every θ,w̄(θ ) = +1.
When θ �= 0,π/2, the SEV acquires an out-of-plane component (in
the figure encoded by the color of the arrows), which is proportional
to k̄y = 0, and depends on the parameter B+

θ of Eq. (112), which is
in general small. (b) When w = −1, the winding number is negative
when θ is larger than a critical value θc, and in particular when
θ = π/2, and positive when θ < θc, and in particular when θ = 0.
Like for w = +1, when θ �= 0,π/2, the SEV acquires an out-of-plane
component, which in this case can be large.

For the X̄ cone, θ ′ = θ ′′ = π/2,w̄(π/2) = w̄d (π/2) =
w,Bπ/2 = 0,A+

π/2 = γ +
11,Aπ/2 = 1. The effective Hamiltonian

(105) becomes Eq. (79). The SEV (110) becomes Eq. (80); the
pseudospin (109) gives Eq. (81). Results for the X̄′ cone can
be achieved by rotating the results for X̄ by the same angle
ω = π/2 in both momentum and spin space.

Predictions for the SEV in the small-momentum limit
for this surface, when w = +1, are shown in Fig. 9(a). As
remarked, these predictions hold also for larger momenta along
high-symmetry directions.

E. Results for (110) surface

On this surface, one bulk X point is projected onto X̄, while
two X points are projected onto Ȳ . We start with X̄ which
corresponds to the triplet (11/0), hence giving θ = π/2. We
observe that it is the same value of θ which describes the X̄

cone on the (001) surface; hence, we can apply most of the
results of Sec. V and of the previous subsection. In particular,
the effective Hamiltonian is

H eff
θ=π/2 = |v1|wk̄xσ̂y − |v2|k̄y σ̂x, (114)

and the SEV on eigenstates is given by

2〈φ+(k)| �̂S|φ+(k)〉 = (− sin θkγ
+
11, cos θkγ

+
5 ,0), (115)

so the SEV lies in the surface plane, and w still denotes the SEV
winding number. The only difference with respect to Sec. V is
that here we cannot express our basis with a quantization axis
perpendicular to the surface without enlarging the basis [as we

did in Eq. (70)] because a φ = π/4 rotation does not belong
to cubic symmetry operations. We can only state that, in our
approximation, surface states at X̄ are composed of �

(1)
8 and

dx2−y2 states w.r.t. a quantization axis parallel to k̄x .
In fact, this same theory applies to all (lm0) surfaces, which

all have a Dirac cone at X̄. For the (110) surface, which has
C2v symmetry, the spin remains within the surface plane even
beyond the present approximation (see Sec. V). However, other
surfaces have only Cs symmetry, not containing a rotation
by π , and the SEV can point out of the surface beyond this
approximation.

Turning to the cones at Ȳ , we note that in the low-order
k · p approximation they are projected exactly at the same
energy, which is given by Eq. (99) with θ ′ = θ ′′ = π/4. We
also find ω′ = −π/2, ω′′ = π/2, which implies that one cone
is rotated by π with respect to the other one. This means that
their combined SEV perpendicular to the surface is zero in
agreement with C2v symmetry.

However, when solving the tight-binding model [19], the
two cones are projected at different energies. They then
anticross, hence get gapped and become topological trivial,
except along the �̄-Ȳ direction where their crossing leads to
two new cones protected by mirror symmetry (see Fig. 10).
These cones are topological nontrivial but not originating from
parity invariants, such that the k · p method is not applicable as
noted before. Predictions for the SEV in the small-momentum
limit for this surface, when w = +1, are shown in Fig. 9(c).

We note that, provided that the Fermi energy lies above the
Dirac energy of all cones, our results are compatible with that
of a very recent ARPES experiment [26] on SmB6 where two
surface states were observed, centered at X̄ and Ȳ , respectively.

FIG. 9. Predicted SEV for surface states above the Dirac energies
from the perturbative calculation in the small-momentum limit, when
we assume w = +1, for all the surfaces considered in this paper:
(a) (001), (b) (111), (c) (110) and (lm0) with l + m even, (d) (210)
and (lm0) with l + m odd. In all Dirac cones at high-symmetry points
the winding number is positive; for Dirac cones not at high-symmetry
points, i.e., the two central cones in case (c), our perturbative approach
cannot be applied so we cannot make predictions, except along the
high-symmetry direction k̄x = 0. The color of the arrows encodes the
expectation value of the spin perpendicular to the surface as in Fig. 8;
this value is generally small.
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FIG. 10. Tight-binding band structure for a (110) slab of 30
layers, together with the analytical k · p approximation of surface
states for the same parameters as Fig. 3. Note that the low-order
k · p approximation yields two identical cones at Ȳ , while in the full
solution the two cones hybridize and gap out, except along the Ȳ -�̄
direction, where two new cones protected by mirror symmetry appear
(only one is shown).

In that case, the signal at Ȳ should arise from two nearly
degenerate cones.

F. Results for (111) surface

In this case, all indices are equal, and θ = θ ′ = θ ′′ =
arctan

√
2. The X point is projected at M̄ = (2π/

√
6,0). This

is the situation in which none of the terms in Eq. (105) vanish.
The SEV can point out of the surface, and the winding number
depends on model details according to

w̄d (θ = arctan
√

2) = sgn
(
2w

∣∣hv
1

∣∣ + ∣∣f v
1

∣∣). (116)

The two other cones, at M̄ ′ and M̄ ′′, are equivalent to the one
at M̄ , and their effective Hamiltonians and SEV can be found
after a ω′,ω′′ = ±2π/3 rotation.

Predictions about the SEV in the small-momentum limit for
this surface, when w = +1, are shown in Fig. 9(b); an example
of the band structure is given in Fig. 11.
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FIG. 11. Tight-binding band structure for a (111) slab of 30
layers, and analytical k · p approximation of surface states for the
same parameters as Fig. 3. We show just one of the three equivalent
M̄ points.

G. Results for (lm0) surfaces

Now, we consider a (lm0) surface for which θ = π/2.
Equations (91), (92), and (93) yield

k̄X = (π,0), (117)

k̄X′ = (0, − π sin φ) = (0, − mπ/
√

l2 + m2), (118)

k̄X′′ = (0,π cos φ) = (0,lπ/
√

l2 + m2). (119)

The 2D BZ is defined by k1 = (2π,0), k2 =
(0,2π/

√
l2 + m2), so k̄X′′ − k̄X′ = (0,(l + m)π/

√
l2 + m2) is

zero up to a multiple of k2 if l + m is even, while it is equal to
k2/2 = (0,π/

√
l2 + m2) when l + m is odd. We thus arrive

at the conclusion that if (l + m) is even, both X′ and X′′ are
projected onto the same 2D BZ point, and parity invariants
predict a single Dirac point at X̄, while, if (l + m) is odd, X′
and X′′ are projected onto different 2D BZ points, and parity
invariants predict three Dirac points at X̄,Ȳ ,�̄. In the first
case, to which the (110) surface belongs, MCNs still predict
two Dirac cones along the Ȳ -�̄ direction; while, in the second
case, to which the (210) surface belongs, there are already two
Dirac cones along this direction predicted by parity invariants,
so MCNs do not predict any more cones.

In addition, when l �= m, so, for all these surfaces except the
(110) one, the kx = ky mirror plane is no more projected onto
k̄y = 0, while kz = 0,π is always projected onto k̄x = 0,π ,
so two mirror planes survive. However, no Dirac cone is cut
by two mirror planes, so we cannot in general define winding
numbers without resorting to a concrete model; and, when it
exists, the �̄ cone is anisotropic since k̄x and k̄y correspond to
inequivalent bulk directions, except on the (001) surface.

For the (210) surface, the cone at �̄ is described by θ ′′ =
arctan 2, and the cone at Ȳ by θ ′ = arctan(1/2); X̄ corresponds
to θ = π/2, always leading to winding number w̄(θ ) = w.
We can thus see that, varying l and m, this class of surfaces
allows to tune the winding number on the �̄ and Ȳ cones when
w = −1.

We remark that, except for the (110) one, these surfaces
have Cs symmetry, which does not contain rotations by π , so
in general the SEV can point also out of plane: this happens
already in the low-order k · p approximation for cones �̄ and
Ȳ , while for X̄ we would need to keep more terms in the
small-momentum expansion. A numerical diagonalization of
the tight-binding model shows that, with reference to Fig. 9(d)
(where we show predictions about the SEV in the small-
momentum limit), when w = +1,〈Ŝz〉 < 0 for k̄x − π < 0,
and 〈Ŝz〉 > 0 otherwise. In Fig. 12, we give an example for the
band structure.

H. Summary of results on different surfaces

At this point, it is useful to summarize our main results
for SmB6 surface states. All Dirac cones can be described by
a generalized Dirac Hamiltonian, and the winding number of
the SEV, defined ignoring the out-of-plane component of the
spin, is w̄(θ ) in Eq. (113). For θ = π/2, corresponding to the
X̄ cone on the (001) surface, we get

w̄d (π/2) = w̄(π/2) = w = sgn
(
f v

1 hv
1

) = sgn(C+
kz=0C+

kz=π ).
(120)
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FIG. 12. Tight-binding band structure for a (210) slab of 30
layers, and analytical k · p approximation of surface states for the
same parameters as Fig. 3.

Making use of the experimental fact [14] that the winding
number of this cone is w = +1 we deduce that

w̄d (θ ) = sgn
(
sin2 θ

∣∣hv
1

∣∣ + cos2 θ
∣∣f v

1

∣∣) = +1 = w̄(θ ).
(121)

Hence, the winding number w̄(θ ) is +1 for all Dirac cones on
all surfaces; exceptions could by those Dirac cones protected
by mirror symmetry only [being present on (lm0) surface with
(l + m) even], as the k · p approach is not applicable there. A
concise summary is in Table I and Fig. 9.

To derive these results, the following approximations
were made, to be discussed in turn: (i) We have used an

effective single-particle approach, (ii) we have worked in the
small-momentum limit, (iii) we have ignored the coupling to
subspace 2, (iv) we have treated the interplay between �7 and
�8 states in an approximate way, and (v) we have ignored
surface details.

Approximation (i) implies that, after renormalization ef-
fects due to the Hubbard repulsion taken into account, the
SEV behaves as in the noninteracting picture. This is based on
assumptions frequently made in the field of heavy-fermion
metals [33], but would need to be verified in many-body
calculations based, e.g., on dynamical mean-field theory
(DMFT). Approximation (ii) is standard in the context of
TI surface states; we remark that, on the (001) surface, the
presence of mirror planes allows to extend our results to larger
momenta [21]. Approximation (iii) can be verified within our
model by comparing to tight-binding results, and we have
found it justified in all the cases we analyzed. Approximation
(iv) is somewhat delicate, as both �7 and �8 states are known
to be close to the Fermi energy [2,35], and, as a consequence,
both contribute to surface states. We have argued in Ref. [21]
that a minimal model can ignore �7 states, but a definite
answer requires more accurate ab initio calculations which are
not available at present. Approximation (v) requires thorough
consideration, especially because SmB6 surfaces are known
not to cleave well [41,42]. On the (001) surface, topological
arguments can help making general claims [21,22], but on
other surfaces microscopic details may become important.
We have recently studied effects of surface reconstruction
and surface scattering potentials for the (001) surface within

TABLE I. For each (lmn) surface we report its symmetry (“/” denoting no symmetry), the surface momenta k̄X to which each of the X

points is projected, the corresponding (lm/n) triplet, which is obtained fixing the z direction in the k · p Hamiltonian, the symmetry at k̄X , the
angle θ at which the X point is projected on the surface, and the pseudospin winding number w̄d (θ ) from Eq. (106); for the physical spin, a
similar result is given by Eq. (113). For (lm0) surfaces we assume l odd, m even. In the definition of surface momenta k̄X we keep minus signs
to agree with the general (lmn) formulas of the last three rows. The asterisk denotes that on the (110) surface we can formally apply our theory
to the two cones at Ȳ , but those become topologically trivial since they come in pair.

Surface Symm. Triplet k̄X S. at k̄X θ w̄d (θ )

(001) C4v (00/1) �̄ = (0,0) C4v 0 1
(01/0) X̄ = (π,0) C2v π/2 w

(10/0) X̄′ = (0,π ) C2v π/2 w

(110) C2v (11/0) X̄ = (−π,0) C2v π/2 w

(10/1) Ȳ = (0, − π/
√

2) Cs π/4∗ sgn(|f v
1 | + w|hv

1|)∗
(01/1) Ȳ = (0,π/

√
2) Cs π/4∗ sgn(|f v

1 | + w|hv
1|)∗

(111) C3v (11/1) M̄ = (−2π/
√

6,0) Cs arctan
√

2 sgn(|f v
1 | + 2w|hv

1|)
(11/1) M̄ ′ = (π/

√
6, − π/

√
2) Cs arctan

√
2 sgn(|f v

1 | + 2w|hv
1|)

(11/1) M̄ ′′ = (π/
√

6,π/
√

2) Cs arctan
√

2 sgn(|f v
1 | + 2w|hv

1|)
(210) Cs (21/0) X̄ = (−π,0) Cs π/2 w

(10/2) Ȳ = (0, − π/
√

5) Cs arctan(1/2) sgn(4|f v
1 | + w|hv

1|)
(02/1) �̄ = (0,0) Cs arctan(2) sgn(|f v

1 | + 4w|hv
1|)

(lm0) Cs (lm/0) X̄ = (−π,0) Cs π/2 w

l even (m0/l) Ȳ = (0, − π√
m2+n2

) Cs arctan(m/l) sgn(l2|f v
1 | + wm2|hv

1|)
m odd (0l/m) �̄ = (0,0) Cs arctan(l/m) sgn(m2|f v

1 | + wl2|hv
1|)

(lmn) / (lm/n) k̄X = π (−
√

l2+m2√
l2+m2+n2

,0) / arctan(
√

l2 + m2)/n) sgn(n2|f v
1 | + w(l2 + m2)|hv

1|)
(mn/l) k̄X′ = π√

l2+m2
( nl√

l2+m2+n2
, − m) / arctan(

√
m2 + n2)/l) sgn(l2|f v

1 | + w(m2 + n2)|hv
1|)

(nl/m) k̄X′′ = π√
l2+m2

( mn√
l2+m2+n2

,l) / arctan(
√

n2 + l2)/m) sgn(m2|f v
1 | + w(n2 + l2)|hv

1|)
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tight-binding models in some detail [39], showing that band
backfolding and the possibly resulting crossings of Dirac cones
are the main effects. Similar studies for other surfaces are left
for future work.

VII. TOPOLOGICAL PHASE TRANSITIONS

The first part of the paper, together with previous work
[21,22], that the spin winding numbers w̄(θ ) for surface Dirac
cones depend on the relative strength of different hybridization
terms, with a central role played by the combination of MCNs
w ≡ sgn(C+

kz=0C+
kz=π ). This prompts us to study the possibility

of bulk topological phase transitions between states with
different w = ±1 which could be observed as a change in
the spin structure of surface states; this is the subject of the
second part of the paper. We will consider the tuning of both
hybridization terms and crystal-field splitting, noting that the
latter is more likely to be accessible by pressure or doping.

A. Varying the hybridization

Theoretically, the easiest way to induce a topological transi-
tion is to consider two different hybridization terms in a given
model and to change their relative strength [22]. For example,
we can take the Eg-�8 model with hybridization terms ηv2

x and
ηv2

z , both leading to a fully insulating phase, the first one with
w = −1 and the second one with w = +1. We now study
how the system evolves when we take ηv2

x = cos ξ, ηv2
z =

sin ξ , so that ξ = 0 yields w = +1 and ξ = ±π/2 yields
w = −1. When we retain these two hybridization terms,
we get f v

1 (ξ ) = 2 cos ξ + 6 sin ξ, hv
1(ξ ) = −3 cos ξ + 3 sin ξ ,

so w(ξ ) = sgn[f v
1 (ξ )hv

1(ξ )], and we expect a topological
phase transition for w(ξc) = 0, so when 2 cos ξ + 6 sin ξ = 0,
leading to ξc1 = − arctan(1/3), or when −3 cos ξ + 3 sin ξ =
0, leading to ξc2 = π/4.

By numerically diagonalizing the tight-binding model, with
results shown in Fig. 13(a), we find that this prediction
is partially true, but the situation is more involved. When
f v

1 (ξ ) = 0 the gap closes at ξ = ξc1 along the X-� direction,
and when hv

1(ξ ) = 0 the gap closes at ξ = ξc2 along the X-M
direction. However, a third transition at ξ = ξc3, whose value
is parameter dependent, occurs along the X-R direction. To
account for this third transition requires to take into account
the full momentum dependence of the hybridization term
[22] or at least higher-order terms in the k · p expansion (see
Appendix D). In general, the closing of the gap along X-M and
X-R does not happen at the same energy; when ξc3 < ξ < ξc2,
we find a phase with MCNs (−2, − 3, − 1). For the k · p
Hamiltonian with all eight orbitals [Fig. 13(b)] and with the
four orbitals in subspace 1 [Fig. 13(c)], the gap closes for the
predicted values of ξc1 and ξc2, but the (−2, − 3, − 1) phase
is not described.

As a second example, we consider tuning via ηv1
z =

cos ξ, ηv2
z = sin ξ . In this case, the k · p Hamiltonian with

four orbitals predicts a bulk gap closing at ξc1 = 0 and
ξc2 = arctan(1/2) � 0.15π , as shown in Fig. 14(c). The
tight-binding model [Fig. 14(a)] confirms that ξc1 = 0, but
also gives ξc2 = 0.11π, ξc3 = 0.18π , with a (+2, − 3, + 1)
phase for ξc2 < ξ < ξc3. The k · p Hamiltonian with all eight
orbitals [Fig. 14(b)] in contrast to the reduced k · p Hamil-
tonian with four orbitals, yields ξc3 �= ξc2, with values only
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FIG. 13. Evolution of the band structure as a function of the
hybridization for the Eg-�8 model when ηv2

x = cos ξ, ηv2
z = sin ξ ,

(a) for the tight-binding model, (b) for the k · p Hamiltonian,
(c) for the k · p Hamiltonian in subspace 1. In (a), the gap closes along
X-� at ξc1 = − arctan(1/3) � −0.1π , along X-M at ξc2 = π/4, and
along X-R at ξc3 � 0.07π denoting the topological phase transitions
among the three phases (+2, + 1, − 1) (red curve), (−2, + 1, + 1)
(blue curve), (−2, − 3, − 1) (orange curve). This is summarized in
Fig. 15(a). In (b) and (c), ξc3 = ξc2; in (b) the second pair of bands
crossing along X-R is in subspace 2 due to the vanishing of hv

2. Other
nonzero parameters are tc = 0.8 eV, tf = −0.015 eV, V = 0.03 eV,
ηd1

z = ηf 1
z = 0.8, ηd2

z = ηf 2
z = −0.3, εd − ε8 = 1.45 eV, which are

chosen to reproduce qualitatively (but not quantitatively) the band
structure of Refs. [30,31].

slightly different from the tight-binding solution (ξc2 = 0.10π,

ξc3 = 0.21π ). This shows that in this case, to justify ξc3 �= ξc2

and the presence of the additional (+2, − 3, + 1) phase, one
has to take into account the coupling to subspace 2. We
note that it is exactly this coupling, described by parameters
hv

12,h
v
21,h

v
17, that lowers the cylindrical symmetry of the

k · p Hamiltonian restricted to subspace 1 [Eq. (33)] to the
tetragonal symmetry of the full k · p Hamiltonian [Eq. (23)],
making the X-M and X-R directions inequivalent, hence
allowing ξc3 �= ξc2.

The MCNs can be understood by the fact that, when the gap
closes along X-� (so, four times at kz = 0 and twice at kx =
ky), MCNs change by (±4,0, ± 2), along X-M (four times
at kz = 0 and kz = π ) by (±4, ± 4,0), and along X-R (four
times at kz = π and twice kx = ky) by (0, ± 4, ± 2) [22]. As
a consequence, the properties C+

kz=0 = 2 mod 4, C+
kz=π = 1

mod 4, C+
kx=ky

= 1 mod 2 are always satisfied. We recall that
higher MCNs lead, in general, to more surface Dirac cones.
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FIG. 14. Same as Fig. 13 but with ηv1
z = cos ξ, ηv2

z = sin ξ . In (a),
the gap closes along X-� at ξc1 = 0, along X-M at ξc2 � 0.11π , and
along X-R at ξc3 � 0.18π denoting the topological phase transitions
among the three phases (+2, + 1, − 1) (red curve), (−2, + 1, + 1)
(blue curve), (+2, − 3, + 1) (green curve). This is summarized
in Fig. 15(b). In (b), ξc2 = 0.10π, ξc3 = 0.21π ; in (c) ξc3 = ξc2 =
arctan(1/2) � 0.15π .

To conclude, in our cylindrical approximation the k · p
method restricted to subspace 1 always gives ξc2 = ξc3,
predicting only the w = ±1 phases. In contrast, additional
intermediate phases (+2, − 3, + 1) or (−2, − 3, − 1), with
ξc2 �= ξc3, exist once the symmetry is lowered from cylindrical
to tetragonal, by keeping either all orbitals or more terms in the
k · p expansion; this is generally achieved in the tight-binding
model. (Such phases were already discussed in Ref. [22] for a
simplified model.) Schematic phase diagrams are shown in
Fig. 15; similar results are achieved for all other pairs of
hybridization terms.

We remark that, using realistic parameters for
SmB6 from DFT/Wannier calculations [30,31], ηv2

z /ηv2
x �

−2.6, ηv2
z /ηv1

z � −0.3 (denoted as ξDFT in Fig. 14), so in both
cases we are deep in the (+2, + 1, − 1) (w = +1) phase. This
remains true even when considering more hybridization terms,
so the �8-only model has w = +1 and is most likely not close
to a phase transition.

From Fig. 16(a) we see that across the w = +1 ↔ w = −1
transition, the SEV on the �̄ cone is reversed, just like the SEV
on the X̄ cone along the X̄-�̄ direction, as a consequence of
the change of surface mirror eigenvalues. Along the X̄-M̄
direction, instead, the SEV is the same because C+

kz=π = +1 is
left invariant. As shown in Refs. [21,43], the spin structure

a b

FIG. 15. Topological crystalline phases as a function of two
hybridization parameters, (a) cos ξ = ηv2

x , sin ξ = ηv2
z , (b) cos ξ =

ηv1
z , sin ξ = ηv2

z . The bulk gap closes along X-� at ξc1, along X-M at
ξc2, along X-R at ξc3. The phases (+2, + 1, − 1),w= + 1 and (−2, +
1, + 1),w = −1 always appear; according to the relative value of
ξc1,ξc2,ξc3, a third phase can appear, which is (a) (−2, − 3, − 1),
corresponding to Fig. 13, or (b) (+2, − 3, + 1), corresponding to
Fig. 14; these two additional phases are not predicted by the k · p
method, for which ξc2 = ξc3, since they require the knowledge of the
full momentum dependence of the hybridization. In both cases, the
physical system is in the (+2, + 1, − 1), w = +1, phase, as denoted
by ξDFT; we note that the overall sign of the hybridization terms is
arbitrary, so ξ is defined modulo π .

FIG. 16. Schematic w = +1 ↔ w = −1 transition for surface
states on a (001) surface at energies above the Dirac points (a) varying
the hybridization with �8 states only, (b) varying the relative onsite
energy of �7 and �8 states: when δ < δc,w = +1, surface states are
mostly �8, when δ > δc,w = −1, they are mostly �7; mirror planes
are as in Fig. 1. In both cases, mirror eigenvalues change in the same
way, but, when w = −1, the spin in (b) is opposite as in (a), because
�7 states have opposite spin given the same mirror eigenvalues.
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of the X̄ cones strongly affects intercone scattering: as a
consequence, in quasiparticle interference (QPI) experiments,
the transition from w = +1 to w = −1 can be observed on
a (001) surface by the appearance of peaks due to intercone
X̄-X̄′ scattering.

We could repeat the same analysis with the �7 doublet,
with exactly the same results, the only difference being that
the SEV would be everywhere reversed. From a quantitative
point of view, following Refs. [30,31], the �7-only model is in
the w = −1 phase, and presumably far from a transition.

B. Varying the relative multiplet energy

A topological transition can also be realized by tuning
the crystal-field splitting, based on the fact that, for realistic
choices of the parameters, the Eg-�8 model is in the w = +1
phase, while the Eg-�7 one is in the w = −1 phase. Given
that about half a hole is expected in the j = 5

2 multiplet,
large crystal-field splitting will put the hole in the energetically
higher of the �7 and �8 multiplets which will then determine
the value of w. In practice, since the crystal-field splitting
is comparable to the kinetic energy, both multiplets will be
partly unoccupied, and w results from a competition between
the two. The ARPES results of Ref. [14] indicate that SmB6

is in the w = +1 phase, which leads us to conclude that
�8 are more important [21]. Consequently, tuning the �7

orbitals to higher energies can induce a transition to the
w = −1 phase. Experimentally, this could be achieved, e.g., by
negatively doping the B6 cages (preserving cubic symmetry)
since �7 orbitals have maxima along their direction, while
�8 have minima. We note that a change of the crystal-field
splitting might even be interaction induced [44], such that
DFT and more advanced computational methods might predict
different phase due to interaction-driven renormalizations; this
is beyond the scope of this paper.

We can expect a phase transition when w from Eq. (62) is
zero. We can here put β1 ≡ cos ξ, β7 ≡ sin ξ , leading to

w = sgn
[(

f v
1 cos ξ + f v

7 sin ξ
)(

hv
1 cos ξ + hv

7 sin ξ
)]

,

(122)
which gives tan ξc1 = −f v

1 /f v
7 and tan ξc2 = −hv

1/hv
7. To

simplify things, we use the results quoted in Appendix A
and Refs. [30,31], which tell us that f v

1 ,hv
1,h

v
7 > 0,f v

7 < 0.
As a consequence, when the coupling m78 from Eq. (26)
obeys m78 > 0 (corresponding to the physical system), only
ξc1 exists, which corresponds to f v

17 = 0, so to a gap closing
along X-�. On the other hand, when m78 < 0, only ξc2 exists,
which corresponds to hv

17 = 0, so to a gap closing along X-M
and X-R. Finally, if m78 = 0 we expect a gap closing at X.

We can also predict the value of �c required for the
transition

�c = m78

(
f v

1

)2 − (
f v

7

)2∣∣f v
1 f v

7

∣∣ , m78 > 0 (123)

�c = |m78|
(
hv

1

)2 − (
hv

7

)2

hv
1h

v
7

, m78 < 0 (124)

�c = 0, m78 = 0. (125)
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FIG. 17. Evolution of the band structure for the Eg-�7-�8 model
as a function of the energy difference δ ≡ ε7 − ε8 (crystal-field
splitting) between the �7 doublet and the �8 quadruplet, (a) for
the tight-binding model, (b) for the k · p Hamiltonian with all 10
orbitals, (c) for the k · p Hamiltonian with 4 orbitals, that we used
in the text to allow for analytical calculations. In (a), the gap closes
at δ = δc along X-� denoting the topological phase transition: when
δ < δc, w = +1, while when δ > δc, w = −1; in (b) the k · p method
captures qualitatively and quantitatively the details of the transition;
in (c) the reduced k · p method captures qualitatively the details of
the transition, but it misses the exact value of δc. Nonzero param-
eters are tc = 0.8 eV, tf = −0.015 eV, V = 0.05 eV, ηd1

z = ηf 1
z =

0.8, ηd2
z = −0.3, ηf 2

z = −0.5, εd − ε8 = 1.45 eV, ηf 2
7 = 0.5, η

f 3
7 =

0.25, η
f 2
x7 = 0.16, ηv1

z = −2.1, ηv2
z = 0.6, ηv2

7 = 0.5.

In Fig. 17,we show an example with m78 = 8η
f 2
x7 > 0, cor-

responding to the physical system (additional examples with
m78 = 0 and m78 < 0 are shown in Appendix H). We note
that in the tight-binding model we can fix the onsite energy
difference δ ≡ ε7 − ε8, with � depending on δ and on the
hopping parameters according to Eqs. (A24) and (A26).
Figure 17(a) shows the results for the tight-binding model: the
gap closes along �-X at δ = δc, and a direct w = −1 ↔ +1
transition can be achieved: when δ < δc,w = +1, while when
δ > δc,w = −1. Figure 17(b) shows the k · p approximation,
which captures all the details of the transition, while Fig. 17(c)
shows that the k · p approximation with four orbitals captures
qualitatively the transition, but misses the exact value of δc.
This shows that the approximation of Sec. IV C is qualitatively
correct, but not enough to get accurate quantitative results.

We remark that, when taking into account terms in the
Hamiltonian coming from further nearest neighbors, as we
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FIG. 18. The w = −1 ↔ +1 transition as a function of the
crystal-field splitting δ between the �7 and �8 multiplets can happen
directly, as shown in (a), where at δ = δc the bulk gap closes along
�-X (see Fig. 17) or via intermediate transitions as shown in (b),
where at δ = δc1,δc2, . . . the gap closes along X-�, X-M, X-R, or at
low-symmetry points giving rise to intermediate phases with larger
MCNs.

did in Ref. [31], other phases with larger MCNs can appear
between the w = ±1 phases, with the bulk gap closing at
points away from high-symmetry directions. Such transitions
change only one MCN at a time: by symmetry considera-
tions, C+

kz=0 and C+
kz=π must change by ±8 and C+

kx=ky
by

±4. As a consequence, transitions like (−2, + 1, + 1) ↔
(−2, + 1, − 3) ↔ (+6, + 1, − 3) ↔ (+2, + 1, − 1) can be
observed, where in the first two cases we have, respectively,
�C+

kx=ky
= −4 and �C+

kz=0 = +8, while the last one corre-

sponds to closing the gap along �-X with �C+
kz=0 = −4

and �C+
kx=ky

= +2; if the order of the first two transitions
is inverted, we have (−2, + 1, + 1) ↔ (+6, + 1, + 1) ↔
(+6, + 1, − 3) ↔ (+2, + 1, − 1). The two kinds of tran-
sition, with and without intermediate phases, are shown
schematically in Fig. 18. However, the appearance of these
intermediate phases is not required, depends on the details
of the Hamiltonian, and their range of δ is in any case
small.

As shown in Fig. 16(b), with respect to the case in
Sec. VII A, the SEV across the transition changes in a different
way because �7 states have the opposite SEV given the same
mirror-symmetry eigenvalue, so the SEV in the w = −1 phase,
Fig. 16(b) right, where surface states have mainly �7 character,
is reversed with respect to Fig. 16(a) right, where only �8

states are used, while in the w = +1 phase, Fig. 16(b) left,
surface states have mainly �8 character, and the SEV is as
in Fig. 16(a) left. As a consequence, the SEV on the �̄ cone
is the same on both sides of the transition, just like the SEV
on the X̄ cone along the X̄-�̄ direction, while the SEV on
the X̄ cone along the X̄-M̄ direction is now reversed. We
point out that Fig. 16 is qualitative in the sense that things
can become more involved very close to a transition: for
example, the SEV, even if small, does not reverse exactly at the
transition.

We finally recall that the discussion of this section relies
on the assumption that �7 and �8 multiplets, when taken
alone, give rise to distinct topological phases. This is found
to be true in ab initio calculations for PuB6 [30,31], whose

band structure is very similar to that of SmB6. The only ab
initio data we have for SmB6 is the k · p expansion from
Ref. [36]. Using their data, we were not able to confirm the
above assumption, with more details given in Appendix I.
We note, however, that Ref. [36] predicts a spin structure on
the (001) surface corresponding to w = −1, in disagreement
with experiment [14], casting doubts on the accuracy of the
description.

VIII. CONCLUSIONS

In this paper, we have shown how the use of the k · p
theory for SmB6 allows to perturbatively compute surface
states and their symmetry properties. A central role is played
by the parameters v and w constructed from MCNs, v ≡
sgn(C+

kz=0C+
kx=ky

) and w ≡ sgn(C+
kz=0C+

kz=π ), which determine
the topological phase of a particular model for SmB6. We have
concrete provided predictions for the spin structure on general
surfaces. Given the experimental information [14,21] w = +1,
we find all cones to have an in-plane winding number +1, and
on surfaces of low symmetry a small out-of-plane component
of the spin is expected.

We have also proposed a simple physical mechanism for
inducing topological phase transition. This exploits the fact
that different phases w = ±1 are realized in models which
retaining only the �7 or �8 multiplets, such that varying the
relative energy of these multiplets will lead to a topological
phase transition with a sign change of MCNs and hence of
w. Experimentally, this could be in principle achieved by
doping the material in such a way that B6 cages acquire
a more negative charge. The topological phase transition is
marked by a closing of the bulk gap, and can be observed as
a change of the spin structure of surface states. We also stress
that the renormalization of parameters due to the Hubbard
repulsion could lead to an interaction-induced topological
phase transition [44].

Our results are based on a number of assumptions, most
importantly the validity of a renormalized single-particle
picture and the presence of flat nonreconstructed surfaces. A
partial discussion of these issues, focusing on (001) surface
states, is in Ref. [39], but it is clear that work beyond
single-particle approximations is needed to fully validate our
analysis.

We close by noting that our results will not only be
important for interpreting results from future photoemission
and tunneling experiments, which will be able to probe surface
states on arbitrary surfaces of SmB6 and related materials, but
also for understanding the results of ab initio DFT calculations:
Here, different spin structures have been reported in the DFT
literature, but not conclusively assigned to distinct topological
phases.
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APPENDIX A: PARAMETERS FOR THE k · p
HAMILTONIAN

Parameters of the k · p Hamiltonian (23) are defined as
follows:

εd = 〈d1 ↑ |H |d1 ↑〉000 = 〈d2 ↑ |H |d2 ↑〉000, (A1)

ε8 = 〈f 1 + |H |f 1+〉000 = 〈f 2 + |H |f 2+〉000, (A2)

ε7 = 〈f 7 + |H |f 7+〉000, (A3)

tdη
d1
x = 〈d1 ↑ |H |d1 ↑〉001, (A4)

tdη
d1
z = 〈d2 ↑ |H |d2 ↑〉001, (A5)

tdη
d2
z = 〈d2 ↑ |H |d2 ↑〉110, (A6)

tf ηf 1
x = 〈f 1 + |H |f 1+〉001, (A7)

tf ηf 1
z = 〈f 2 + |H |f 2+〉001, (A8)

tf ηf 2
z = 〈f 2 + |H |f 2+〉110, (A9)

tf η
f 1
7 = 〈f 7 + |H |f 7+〉001, (A10)

tf η
f 2
7 = 〈f 7 + |H |f 7+〉110, (A11)

tf η
f 3
7 = 〈f 7 + |H |f 7+〉111, (A12)

tf η
f 1
78 = 〈f 1 + |H |f 7+〉001, (A13)

tf η
f 2
x7 = 〈f 1 + |H |f 7+〉110, (A14)

V ηv1
x = 〈d1 ↑ |H |f 1+〉001, (A15)

V ηv1
z = 〈d2 ↑ |H |f 2+〉001, (A16)

V ηv2
x = 〈d1 ↑ |H |f 1+〉110, (A17)

V ηv2
z = 〈d2 ↑ |H |f 2+〉110, (A18)

V ηv1
7 = 〈d1 ↑ |H |f 7+〉001, (A19)

V ηv2
7 = 〈d2 ↑ |H |f 7+〉110, (A20)

V ηv2
x7 = 〈d1 ↑ |H |f 7+〉110, (A21)

where the subscripts 000, 001, 110, or 111 denote the direc-
tion along which the matrix element is calculated.

Further quantities appearing in Hamiltonian (23) are the
energies

εd
1 = εd − td

(
3ηd1

z − ηd1
x − 6ηd2

z

)
, (A22)

εd
2 = εd − td

(
3ηd1

x − ηd1
z + 2ηd2

z

)
, (A23)

ε
f

1 = ε8 − tf
(
3ηf 1

z − ηf 1
x − 6ηf 2

z

)
, (A24)

ε
f

2 = ε8 − tf
(
3ηf 1

x − ηf 1
z + 2ηf 2

z

)
, (A25)

ε
f

7 = ε7 − tf
(
2η

f 1
7 − 4η

f 2
7 − 8η

f 3
7

)
, (A26)

the kinetic energy parameters in kz,

gd
1 = ηd1

x + 3ηd2
z < 0, (A27)

gd
2 = ηd1

z + ηd2
z > 0, (A28)

g
f

1 = ηf 1
x + 3ηf 2

z < 0, (A29)

g
f

2 = ηf 1
z + ηf 2

z > 0, (A30)

g
f

7 = η
f 1
7 + 4η

f 2
7 + 4η

f 3
7 < 0, (A31)

and those in k‖,

ld1 = 1
4

( − ηd1
x − 3ηd1

z + 6ηd2
z

)
< 0, (A32)

ld2 = 1
4

( − 3ηd1
x − ηd1

z − 6ηd2
z

)
> 0, (A33)

l
f

1 = 1
4

( − ηf 1
x − 3ηf 1

z + 6ηf 2
z

)
< 0, (A34)

l
f

2 = 1
4

( − 3ηf 1
x − ηf 1

z − 6ηf 2
z

)
> 0, (A35)

l
f

7 = −η
f 1
7 + 4η

f 3
7 < 0. (A36)

Finally, hybridization terms other than the ones quoted in the
main text are

hv
12 = hv

21 =
√

3

2

( − ηv1
x + ηv1

z − 2ηv2
x + 2ηv2

z

)
, (A37)

hv
72 =

√
3ηv1

7 − 2ηv2
7 + 2

√
3ηv2

x7. (A38)

We note that, when keeping more hybridization terms than the
ones used in this work, in general hv

12 �= hv
21.

Using values from Ref. [31] we find

gd
1 = −0.96, ld1 = −1.02, (A39)

gd
2 = 0.52, ld2 = 1.20, (A40)

g
f

1 = −8.00, l
f

1 = −6.19, (A41)

g
f

2 = 1.92, l
f

2 = 3.27, (A42)

g
f

7 = −14.70, l
f

7 = −5.14, (A43)

f v
1 = 3.91, hv

1 = 5.42, (A44)

f v
2 = −4.52, hv

2 = −2.04, (A45)

f v
7 = −3.27, hv

7 = 2.44, (A46)

hv
12 = −0.89, hv

72 = −1.79, (A47)

together with td = 1 eV, tf = −0.01 eV, and V = 0.1 eV.
These values mainly serve as approximate guide since they

refer to PuB6. A fully accurate microscopic description in any
case requires longer-range tight-binding terms to be precise.
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APPENDIX B: DETAILS OF THE CALCULATION AT �̄

Here, we illustrate how to get the doublet of surface states
at �̄, following Refs. [28,37]. We start from Eq. (37). In a
semi-infinite slab geometry, we want to find surface states
at �̄, so we transform kz → −id/dz, and we pose ψn

+(z) =
eλzψn

+(λ) = eλz(αn
+(λ),βn

+(λ)), so that

H
+(n)
0 (kz → −iλ)ψn

+(λ) = En
+(λ)ψn

+(λ), n = 1,2 (B1)

together with ψ(z = 0) = ψ(z → −∞) = 0. We can now
write

(B − λ2)α1
+ − D1λβ

1
+ = 0, (B2)

D2λα1
+ + (C − λ2)β1

+ = 0 (B3)

with [we set E = E1
+(λ)]

B = εd
1 − E

−tdg
d
1

, C = ε
f

1 − E

−tf g
f

1

, (B4)

D1 = Vf v
1

−tdg
d
1

, D2 = Vf v
1

−tf g
f

1

, (B5)

from which

λ4 − λ2(B + C − D1D2) + BC = 0, (B6)

which determines four solutions λi(E), i = 1,2,3,4, in the
form ±√

�i, i = 1,2, where λ2 = �. In order to have surface
states we require two solutions λ1 and λ2 to have a positive
real part. This is equivalent to saying that �i are both real
positive, which leads to λi = +√

�i , or complex conjugate,
which leads to λ1 and λ2 being complex conjugate, too. So,

ψ1
+(z) = eλ1z(α1′

+,β1′
+ ) + eλ2z(α1′′

+ ,β1′′
+ ), (B7)

where, imposing the boundary condition at z = 0 we get α1′
+ =

−α1′′
+ ≡ α, β1′

+ = −β1′′
+ ≡ β, and

D2λ1

C − λ2
1

= D2λ2

C − λ2
2

, (B8)

B − λ2
1

D1λ1
= B − λ2

2

D1λ2
, (B9)

from which B = C = −λ1λ2 < 0,

E = ε
f

1 tdg
d
1 − εd

1 tf g
f

1

tdg
d
1 − tf g

f

1

, (B10)

B = C = ε
f

1 − εd
1

tdg
d
1 − tf g

f

1

, (B11)

and finally, after integrating in dz from −∞ to 0

ψ1
+ = N

(
1

λ1
− 1

λ2

)
[1,D2/(λ1 + λ2)]

= N

(
1

λ1
− 1

λ2

)
[1, − (λ1 + λ2)/D1], (B12)

where N is an unimportant normalization factor. We also find
that D1D2 = −(λ1 + λ2)2 < 0, which leads to B < 0, C < 0,
and D1D2 < 0 as conditions for having surface states.

For �
(2)
8 states we note that, while εd

1 < ε
f

1 , now εd
2 > ε

f

2 ,
which means that in this subspace no inversion is achieved, and
topological surface states are not allowed. Indeed, we observe
that the kinetic energy is such that dz2 and �

(2)
8 bands never

cross along �-X, while dx2−y2 and �
(1)
8 do [2,29].

So, surface states at �̄ only exist in the dx2−y2 -�(1)
8 subspace,

and we can write after the dz integration

|ψ+〉 = α|d1 ↑〉 + β|f 1+〉,
|ψ−〉 = α|d1 ↓〉 − β|f 1−〉, (B13)

which corresponds to Eq. (38); |ψ−〉 can be obtained with the
same procedure for H

−(1)
0 , or simply as |ψ−〉 = T |ψ+〉, and

α =
√√√√ tf g

f

1

tf g
f

1 − tdg
d
1

, (B14)

β = α
Vf v

1

−tf g
f

1 (λ1 + λ2)
= α

tdg
d
1 (λ1 + λ2)

Vf v
1

= − sgn
(
Vf v

1

)√ tdg
d
1

tdg
d
1 − tf g

f

1

, (B15)

where we have used td > 0, gd
1 < 0, or, equivalently, tf <

0, g
f

1 < 0, and λ1 + λ2 > 0 because they are both positive, or
complex conjugate with a positive real part. These correspond
to Eqs. (39) and (40).

After finding surface states at kx,y = 0, we can look at
the perturbing Hamiltonian HP , which is, in the basis |d1 ↑〉,
|d1 ↓〉,|f1+〉,|f1−〉,

HP =

⎛
⎜⎜⎜⎝

−tdk
2
‖ l

d
1 0 0 −iV hv

1k−
0 −tdk

2
‖ l

d
1 −iV hv

1k+ 0
0 iV hv

1k− −tf k2
‖ l

f

1 0
iV hv

1k+ 0 0 −tf k2
‖ l

f

1

⎞
⎟⎟⎟⎠,

(B16)

from which we get Eqs. (42)–(44) at the linear order.
When we retain �7 and �8 states, we have

H
+(1)
0 =

⎛
⎝εd

1 − tdk
2
z g

d
1 −iV kzf

v
1 −iV kzf

v
7

iV kzf
v
1 ε

f

1 − tf k2
z g

f

1 m78

iV kzf
v
7 m78 ε

f

7 − tf k2
z g

f

7

⎞
⎠,

(B17)

which we reduce to Eq. (60) by keeping |d1 ↑〉 and |f 17
p +〉.

APPENDIX C: SPATIAL DEPENDENCE OF
SURFACE STATES

We now consider the spatial dependence of surface states.
Knowing that B = C, Eq. (B11), we can write Eq. (B6) as

0 = λ4 − λ2(2B − D1D2) + B2

= (λ2 −
√

−D1D2λ − B)(λ2 +
√

−D1D2λ − B) (C1)

which reduces to

λ2 −
√

−D1D2λ − B = 0 (C2)
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if we require the real part of λ1,2 to be positive, with solution

2λ1,2 =
√

−D1D2 ±
√

−D1D2 + 4B

=
√

|D1D2| ±
√

|D1D2| − 4|B|, (C3)

where λ1,2 can be real or complex conjugate. The spatial part
of the wave function is

ψ(z) = N (eλ1z − eλ2z), (C4)

where we take ∫ 0

−∞
ψ2(z)dz = 1. (C5)

We observe that ψ(z) can always be taken as real; useful
integrals are

∫ 0

−∞
ψ ′(z)ψ(z)dz = 0, (C6)∫ 0

−∞
ψ ′′(z)ψ(z)dz = −λ1λ2 = B, (C7)

which hold for both real and complex conjugate λ1,2.
We note that, for a slave-boson-like renormalization tf →

b2tf , V → bV, b < 1, D1D2 is not affected [see Eq. (B5)],
while B only slightly, and in the limit b2tf → 0 it becomes
B = (εf

1 − εd
1 )/tdg

d
1 [see Eq. (B11)]. If we insert numerical

values from Appendix A, and we take ε
f

1 − εd
1 = 1.6 eV,

corresponding to the minimum of the d band with respect to
the Fermi energy, we get D1D2 = −1.99, B = −1.67. This
leads to λ1,2 = (0.71 ± i1.08), which shows that we are in the
regime in which the solutions are complex conjugate, hence,
the spatial part of the wave function oscillates, and is

ψ�̄(z) = 2.01e0.71z sin(1.08z), (C8)

where z is expressed in units of a0, the lattice spacing, that we
set to 1 everywhere. This holds at �̄ for a (001) surface.

At X̄, as shown in the main text, we have to substitute
f v

1 → hv
1, ga

1 → la1 , a = d/f . This leads to the new values of
D1D2 = −4.65, B = −1.57, λ1,2 = (1.08 ± i0.64), and

ψX̄(z) = 4.08e1.08z sin(0.64z). (C9)

If, instead, we use �7 states, at �̄, f v
1 → f v

7 , g
f

1 → g
f

7 , we
find D1D2 = −0.76, B = −1.67, λ1,2 = (0.43 ± i1.21),

ψ
�7

�̄
(z) = 1.40e0.43z sin(1.21z), (C10)

and at X̄, f v
1 → hv

7, g
f

1 → l
f

7 , D1D2 = −1.14, B =
−1.57, λ1,2 = (0.53 ± i1.13),

ψ
�7

�̄
(z) = 1.61e0.53z sin(1.13z). (C11)

These are shown in Fig. 19. We notice that in all cases the
wave function has a maximum at about z = −1, and decays
quickly within a few layers. This justifies the argument that a
perturbation in the first layer, for example, Kondo breakdown
[38] or surface reconstruction [39], should have a significant
impact on the wave function and of the dispersion of surface
states. However, we stress that the exact z dependence of the
wave function does not affect the results of the paper.

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-10 -8 -6 -4 -2  0
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z/a0

ψΓ− Γ8
ψX

-  Γ8
ψΓ− Γ7
ψX

-  Γ7

FIG. 19. Spatial part of the wave function ψ(z) at �̄ and X̄ on
a (001) surface, in our approximation with realistic parameters from
Ref. [31]; we consider either the �8 or the �7 multiplets.

APPENDIX D: THIRD-ORDER CORRECTIONS TO
THE VELOCITIES

We note that our theory is in general not enough to give
the exact value of the velocities v0,v1,v2. We can realize
this by noting that cubic terms proportional to k2

z kx,y in the
hybridization, that we have ignored in the main text, will
give rise to linear terms in kx,y once kz → −id/dz, and
the same holds for k2

xky,z once kx → −id/dx. The same
will happen for higher powers in the momentum k. These
higher-order terms come from next-nearest neighbors (NNs):
first-NN terms only give rise to linear terms (for which our
theory is exact) and to terms of the form k2n+1

x,y,z (which do
not create linear correction terms), while second-NN terms
to the mentioned mixed cubic terms, and so on. This makes
a general treatment quite involved. We can, however, restrict
our analysis up to second-NN hybridization, and in particular
to terms ηv1

x ,ηv1
z ,ηv2

z , to find

f v
1 → 2ηv1

x + 6ηv2
z

(
1 − k2

‖
4

)
≡ f v

1 + f ′
1k

2
‖, (D1)

hv
1 → −1

2
ηv1

x − 3

2
ηv1

z + 3ηv2
z

(
1 − k2

z

2

)
≡ hv

1 + h′
1k

2
z ,

(D2)

with f ′
1 = h′

1 = −3ηv2
z /2. These expressions, which come,

respectively, from the expansion of (cos kx + cos ky) and cos kz

(see Ref. [31]) must be inserted into Eq. (23). Here, we
ignore term ηv2

x since it introduces an even more complicated
momentum dependence in (k2

+ − k2
−)k+ for hv

1, and it is
anyway smaller than the other three terms [31]. Now, for the
�̄ cone on the (001) surface, kz → −id/dz, so we can ignore
the quadratic term in k2

‖ in f v
1 , while in hv

1,k
2
z becomes

k2
z → − d2

dz2
= −B > 0, (D3)

from Eq. (C7), with B ∼ −1 from Eq. (B11), so we get

hv
1 → −1

2
ηv1

x − 3

2
ηv1

z + 3ηv2
z

(
1 + B

2

)
= hv

1 − h′
1B, (D4)

which must be inserted in Eq. (43) to get the right value of
the velocity v0. For the X̄ cone on the same surface, kx →
−id/dx, so we can ignore the quadratic terms in k2

z in hv
1 and
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in k2
y in f v

1 , while in f v
1 ,k2

x becomes

k2
x → − d2

dz2
= −B ′ > 0, (D5)

where B ′ is obtained by B from Eq. (B11) with the usual
substitution g

d,f

1 → l
d,f

1 . Hence, the value of v2 Eq. (72)] is
unchanged, while for v1 [Eq. (71)] we have to substitute

f v
1 → 2ηv1

x + 6ηv2
z

(
1 + B ′

4

)
= f v

1 − f ′
1B

′. (D6)

With these corrections we get the exact values of the velocities,
as drawn in Fig. 3; we note that, since B,B ′ < 0, these
corrections reduce the value of the velocities, by a factor which
can be as large as ∼2.

For a general surface, things are more complicated. On
general grounds, linear terms in HP proportional to k̄x,y will be
of the form k̄x,y

∑
n cnk̄

n
z , with even powers of k̄z coming from

the hybridization, and odd powers from the kinetic energy.
Once k̄z → −id/dz the n = 1 term vanishes from Eq. (C6),
but all the other terms survive, and all contribute to the Dirac
velocity. In addition, we will have terms

∑
n dnk̄

n
z which belong

to H0.
These terms come from the same terms we just considered,

but, with respect to the (001) surface, we will also have
terms coming from higher terms in the expansion of sin ki =
±(ki − k3

i /6 + . . .), i = x,y,z, which give rise to linear terms
in k̄x,y when rotated. As a consequence, a general theory
becomes rather involved, and we stick to the linear order in
Figs. 10– 12.

APPENDIX E: NUMERICAL k · p METHOD
FOR SLAB GEOMETRY

In Fig. 3, together with the numerical solution of the tight-
binding model and the analytical results described in detail
in the paper, we also present the numerical solution of the
k · p Hamiltonian in a slab configuration with N layers for the
Eg-�8 basis. Here, we quickly describe this numerical bulk
k · p calculation, which loosely follows Ref. [36].

Around the �̄ cone, with the usual substitution kz →
−id/dz in Eq. (23), the operator d/dz now acts on the basis
ψn(z) = sin[πnz/(N + 1)] (up to a normalization factor),
where z = 1, . . . ,N is the layer index and n = 1, . . . ,N

is a quantum number. The kinetic energy gives a di-
agonal term 〈ψn| − d2/dz2|ψn〉 = 2 − 2 cos[π (n + 1)/(N +
1)], while the hybridization gives nondiagonal terms ∝
〈ψm|d/dz|ψn〉 which are evaluated numerically. This grants
that the energies at �̄ are exactly the same as those of
the tight-binding model. We then take terms in kx,y as a
perturbation. We finally numerically diagonalize the resulting
Hamiltonian, of size 8N (10N if one had to consider �7 states
as well), at each momentum close to �̄ to obtain the dispersion.
We note that to obtain the exact value of the Dirac velocities
we need to retain the third-order terms as described in the
previous appendix.

Around the X̄ cone, we follow the same method but with
kx → −id/dx, and terms in ky,z as a perturbation.

TABLE II. Definition of the pseudospin in the �
(1)
8 basis (above)

and in the �7 basis (below).

(σ̂x ,σ̂y,σ̂z) �
(1)
8 + �

(1)
8 −

�
(1)
8 + (0,0, − 1) (−1,i,0)

�
(1)
8 − (−1, − i,0) (0,0,1)

(σ̂x ,σ̂y,σ̂z) �7+ �7−
�7+ (0,0, − 1) (−1,i,0)
�7− (−1, − i,0) (0,0,1)

APPENDIX F: CALCULATION OF THE SEV

To determine the SEV 〈 �̂S〉 on our basis, we must trace out
the orbital degree of freedom; this is trivial in the d shell since
states are a direct product of a spin and an orbital part, which
is no more true in the f shell, due to the spin-obit coupling.
In this latter case we obtain the results of Table III [31]. In
Table II, we report our definition of the pseudospin �̂σ . The

same can be done for the angular momentum 〈 �̂L〉: for d states
it is completely quenched since we only take the Eg multiplet;
while for f states we obtain that its expectation value is −8
times the SEV. This is true in any basis, for example, for
j = 5

2 , jz = − 5
2 , . . . , 5

2 states:

|jz〉 =
√

1

2
− jz

7

∣∣∣∣jz − 1

2
, ↑

〉
−

√
1

2
+ jz

7

∣∣∣∣jz + 1

2
, ↓

〉
(F1)

we find

〈jz|L̂z|jz〉 = 8

7
jz, 〈jz|Ŝz|jz〉 = −1

7
jz, (F2)

and similar (matrix) relations hold for L̂x,Ŝx and L̂y,Ŝy (one

can build a matrix like the one in Table III substituting �̂S with
�̂L and multiplying all entries by −8).

As a consequence, for d states we find the following rules:

〈 �̂Ld〉 = 0, (F3)

〈 �̂J d〉 = 〈 �̂Ld〉 + 〈 �̂Sd〉 = 〈 �̂Sd〉, (F4)

〈 �̂Ld + 2 �̂Sd〉 = 2〈 �̂Sd〉, (F5)

while for f states

〈 �̂Lf 〉 = −8〈 �̂Sf 〉, (F6)

〈 �̂J f 〉 = −7〈 �̂Sf 〉, (F7)

〈 �̂Lf + 2 �̂Sf 〉 = −6〈 �̂Sf 〉. (F8)

For a generic state with α2 weight on d states, and β2 weight
on f states (α2 + β2 = 1):

〈 �̂S〉 = 〈 �̂Sd〉α2 + 〈 �̂Sf 〉β2, (F9)

〈 �̂L〉 = −8〈 �̂Sf 〉β2, (F10)

〈 �̂J 〉 = 2〈 �̂Sd〉α2 − 7〈 �̂Sf 〉β2, (F11)
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TABLE III. Expectation value of the spin in the �7-�8 basis.

2(Ŝx ,Ŝy,Ŝz) �
(1)
8 + �

(1)
8 − �

(2)
8 + �

(2)
8 − �7+ �7−

�
(1)
8 + 11

21 (0,0, − 1) 5
21 (−1,i,0) (0,0,0) 2

√
3

21 (−1, − i,0) 4
√

5
21 (0,0 − 1) 2

√
5

21 (1, − i,0)

�
(1)
8 − 5

21 (−1, − i,0) 11
21 (0,0,1) 2

√
3

21 (−1,i,0) (0,0,0) 2
√

5
21 (1,i,0) 4

√
5

21 (0,0,1)

�
(2)
8 + (0,0,0) 2

√
3

21 (−1, − i,0) 1
7 (0,0, − 1) 3

7 (−1,i,0) (0,0,0) 2
√

15
21 (1,i,0)

�
(2)
8 − 2

√
3

21 (−1,i,0) (0,0,0) 3
7 (−1, − i,0) 1

7 (0,0,1) 2
√

15
21 (1, − i,0) (0,0,0)

�7+ 4
√

5
21 (0,0, − 1) 2

√
5

21 (1, − i,0) (0,0,0) 2
√

15
21 (1,i,0) 5

21 (0,0,1) 5
21 (1, − i,0)

�7− 2
√

5
21 (1,i,0) 4

√
5

21 (0,0,1) 2
√

15
21 (1, − i,0) (0,0,0) 5

21 (1,i,0) 5
21 (0,0, − 1)

〈 �̂L + 2 �̂S〉 = 2〈 �̂Sd〉α2 − 6〈 �̂Sf 〉β2, (F12)

which shows that the expectation value of operator �̂L + 2 �̂S
must be comprised between −6〈 �̂S〉 (pure f states) and 2〈 �̂S〉
(pure d states).

In Ref. [36], these quantities were computed for surface
states using an ab initio approach; for in-plane components
authors find on the �̄ cone〈

L̂�̄
x,y + 2Ŝ�̄

x,y

〉 = −5.98
〈
Ŝ�̄

x,y

〉
, (F13)

which is in excellent agreement with our results for f states,
and the small difference is likely due to d weight on surface
states; on the X̄ cone,

〈
L̂X̄

x + 2ŜX̄
x

〉 = −5.11
〈
ŜX̄

x

〉
, (F14)〈

L̂X̄
y + 2ŜX̄

y

〉 = −5.43
〈
ŜX̄

y

〉
, (F15)

where the larger disagreement with f state results can be
interpreted as a larger d weight on surface states, or as the
influence of the j = 7

2 multiplet, for which spin and angular
momentum are parallel instead of antiparallel. For the out-of-
plane component, things are similar on the X̄ cone

〈
L̂X̄

z + 2ŜX̄
z

〉 = −5.27
〈
ŜX̄

z

〉
, (F16)

but the disagreement is larger on the �̄ cone〈
L̂�̄

z + 2Ŝ�̄
z

〉 = −7.47
〈
Ŝ�̄

z

〉
, (F17)

and cannot be explained by our theory, probably due to the
small basis used. We recall that all calculations involve single-
particle states, hence do not include many-particles effects.

APPENDIX G: SURFACE STATES FOR
A GENERIC SURFACE

In this appendix, we give details about the effective
Hamiltonian for a generic surface.

1. Rotations

Given the (lm/n) triplet and angles θ and φ from Eqs. (89)
and (90), we can perform a rotation in momentum space with
Euler angles ω,ω′ = θ,ω′′ = φ to obtain (cθ ≡ cos θ, sθ ≡

sin θ and similar for ω and φ)

k̄x = (cωcθcφ − sωsφ)kx + (cωcθ sφ + sωcφ)ky − cωsθkz,

k̄y = −(cωsφ + sωcθcφ)kx + (cωcφ − sωcθ sφ)ky + sωsθkz,

k̄z = sθ cφkx + sθ sφky + cθkz, (G1)

which can be inverted to give

kx = (cωcθcφ − sωsφ)k̄x − (cωsφ + sωcθcφ)k̄y + sθ cφk̄z,

ky = (cωcθ sφ + sωcφ)k̄x + (cωcφ − sωcθ sφ)k̄y + sθ sφk̄z,

kz = −cωsθ k̄x + sωsθ k̄y + cθ k̄z. (G2)

In the main text, we take take ω = 0 to get

k̄x = kx cos θ cos φ + ky cos θ sin φ − kz sin θ,

k̄y = −kx sin φ + ky cos φ,

k̄z = kx sin θ cos φ + ky sin θ sin φ + kz cos θ (G3)

and

kx = k̄x cos θ cos φ − k̄y sin φ + k̄z sin θ cos φ,

ky = k̄x cos θ sin φ + k̄y cos φ + k̄z sin θ sin φ,

kz = −k̄x sin θ + k̄z cos θ. (G4)

This shows that the X = (0,0,π ) point is projected at

k̄X = (−π sin θ,0) (G5)

[see Eq. (G5)], so k̄x is the direction which joins �̄ to the
position of the cone, unless θ = 0, which corresponds to the �̄

cone on the (001) surface, for which k̄x and k̄y directions are
equivalent. We can also notice from Eq. (G3) that X′ = (π,0,0)
and X′′ = (0,π,0) are projected, respectively, to

k̄X′ = π (cos θ cos φ, − sin φ), (G6)

k̄X′′ = π (cos θ sin φ, cos φ) (G7)

[see Eqs. (92) and (93)], which are the positions of the two
other Dirac cones in the BZ when ω = 0.

However, we do not want to describe these two other
cones by projecting X′ and X′′, but, instead, always projecting
X since this allows to safely neglect subspace 2. As a
consequence, we now require X to be projected at k̄X′

with angles ω′,θ ′,φ′, and at k̄X′′ with angles ω′′,θ ′′,φ′′;
from Eq. (G1) we find that, when ω �= 0,X is projected at
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π (− cos ω sin θ, sin ω sin θ ). So, for k̄X′ we get

− cos ω′ sin θ ′ = cos θ cos φ,

sin ω′ sin θ ′ = − sin φ, (G8)

which gives

tan2 ω′ = tan2 φ(tan2 θ+1) = m2(l2 + m2 + n2)

l2n2
, (G9)

tan2 θ ′ = tan2 φ cot2 θ + tan2 φ + cot2 θ = m2 + n2

l2
(G10)

with −π � ω′ � −π/2, 0 � θ ′ � π/2. Using our notation,
this corresponds to a (mn/l) triplet.

For k̄X′′ we get

− cos ω′′ sin θ ′′ = cos θ sin φ, (G11)

sin ω′′ sin θ ′′ = cos φ, (G12)

which gives

tan2 ω′′ = cot2 φ(tan2 θ + 1) = l2(l2 + m2 + n2)

m2n2
,

tan2 θ ′′ = cot2 φ cot2 θ + cot2 φ + cot2 θ = n2 + l2

m2
(G13)

with π/2 � ω′′ � π, 0 � θ ′′ � π/2. This corresponds to a
(nl/m) triplet. This means that we can then apply the theory
of the following subsection using θ to get the effective
Hamiltonian at k̄X, θ ′ for k̄X′ and θ ′′ for k̄X′′ .

Angles ω = 0, ω′, and ω′′ tell how we have to rotate our
system in the surface plane to get the same coordinate system
for all cones. If we ignore this, every cone will have its own
coordinates, with k̄x joining the position of the cone to the
center of the BZ.

2. Details of the calculation

In this section, we find the effective surface Hamiltonian
for a given (lm/n) triplet; this Hamiltonian is valid for small
momenta around the surface point k̄X on which the bulk X =
(0,0,π ) point is projected. We concentrate on subspace 1, so
ignoring any coupling to subspace 2, and use only �8 states,
so the bulk k · p Hamiltonian is 4 × 4, and in the |d1 ↑〉,|d1 ↓
〉,|f 1+〉,|f 1−〉 basis reads as

H =
(

εd
1 (k)σ0 −iV Hh

iV H
†
h ε

f

1 (k)σ0

)
, (G14)

Hh = hv
1(kxσx + kyσy) + f v

1 kzσz. (G15)

When we perform the rotation from k to k̄ the kinetic energy
becomes

εa
1 [k(k̄)] = εa

1 − ta
[
ga

1k2
z (k̄) + la1 k2

‖(k̄)
]
, a = d/f (G16)

and the hybridization

Hh = hv
1[kx(k̄)σx + ky(k̄)σy] + f v

1 kz(k̄)σz, (G17)

where one has to express k as a function of k̄.

When we use Eq. (G4), for the kinetic energy we find

εa
1 [k(k̄)] = εa

1 − ta
{
ga

1 (k̄x sin θ − k̄z cos θ )2

+ la1
[
k̄2
y + (k̄x cos θ + k̄z sin θ )2

]}
. (G18)

Upon substitution of Eqs. (G4) into Eq. (G17), we see that
the hybridization term in k̄z contains terms in σx, σy , and σz.
However, we would like it to be proportional just to σz, so that
we can follow what we did in Appendix B. We see that this is
achieved if we perform a Wigner transformation in the pseu-
dospin space with angles ω,ω′

1 = arctan[tan θ (hv
1/f

v
1 )],ω′′ =

φ; we will denote this transformation matrix as U . This
corresponds to the same rotation that we did in the momentum
space, except for angle ω′

1, which now depends on f v
1 and hv

1,
and that we take between 0 and π . The total rotation matrix is

Ut =
(

U 0
0 U

)
, (G19)

with

U =
(

eiφ/2 cos(ω′
1/2) e−iφ/2 sin(ω′

1/2)
−eiφ/2 sin(ω′

1/2) e−iφ/2 cos(ω′
1/2)

)
. (G20)

In the new basis, the hybridization (G17) takes the simpler
form

Hh = (
h̄v

1xxσx + h̄v
1xzσz

)
k̄x + hv

1σyk̄y + f̄ v
1 σzk̄z (G21)

with

h̄v
1xx = f v

1 |hv
1|√(

f v
1

)2
cos2 θ + (

hv
1

)2
sin2 θ

, (G22)

h̄v
1xz =

[(
hv

1

)2 − (
f v

1

)2]
sin θ cos θ√(

f v
1

)2
cos2 θ + (

hv
1

)2
sin2 θ

sgn
(
hv

1

)
, (G23)

f̄ v
1 =

√(
f v

1

)2
cos2 θ + (

hv
1

)2
sin2 θ sgn

(
hv

1

)
(G24)

[see Eq. (98)], while the kinetic energy, being the identity in
the (pseudo)spin index, is left unchanged. In this way, when
we set k̄x = k̄y = 0, the only hybridization term left is in σz,
the Hamiltonian H0 splits into two 2 × 2 blocks, and we can
repeat the treatment of Appendix B.

In the kinetic energy part (G18), we obtain that the terms
multiplying k̄2

z are

ḡa
1 = ga

1 cos2 θ + la1 sin2 θ < 0, a = d/f (G25)

[see Eq. (97)], and the only information we needed is that they
are both negative, ḡa

1 < 0, since ga
1<0,la1 <0 (see Appendix B).

With the substitutions ga
1 → ḡa

1 ,f v
1 → f̄ v

1 , the basis at k̄‖ =
0 is

|ψ̄+〉 = α|d̄1 ↑〉 + β|f̄ 1+〉,
|ψ̄−〉 = α|d̄1 ↓〉 − β|f̄ 1−〉, (G26)

with |d̄〉 = U |d〉, |f̄ 〉 = U |f 〉. The effective Hamiltonian up
to the linear term in k̄‖ [Eq. (94)] is

H eff
θ = −2αβV hv

1

(
f v

1

f̄ v
1

k̄x ŝy − k̄y ŝx

)

≡ v1k̄x ŝy − v2k̄y ŝx = |v1|wk̄xŝy − |v2|k̄y ŝx (G27)

[see Eq. (94)].
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FIG. 20. Same as Fig. 17 but with η
f 2
x7 = 0, i.e., without any direct

coupling between the �7 and �8 subspaces, which leads to m78 = 0
in the k · p Hamiltonian. In this case, the gap closes at X.

There is now an additional term coming from k̄zk̄x of
the kinetic energy (G18): however, with the substitution
k̄z → −id/dz, it gives rise to an integral of the form∫ 0
−∞ ψ(z)ψ ′(z)dz ∝ ψ2(0) − ψ2(−∞) = 0 [see Eq. (C6)].

APPENDIX H: FURTHER TOPOLOGICAL
PHASE TRANSITIONS

In Figs. 20 and 21, we present the analogousness of Fig. 17
but with m78 = 0, and m78 < 0. It can be observed that this
parameter controls where the gap closes, i.e., along X-� for
m78 > 0, along X-R and X-M for m78 < 0, and at X for
m78 = 0.

APPENDIX I: REMARKS ON DFT RESULTS

As noted in the main text, the available ab initio results do
not appear fully consistent regarding the question of whether
the �7 and �8 multiplets, when taken alone, yield distinct topo-
logical phases. If true, varying the relative multiplet energy
drives a topological transition as discussed in Sec. VII B.

While this applies to the ab initio results obtained for PuB6

[30,31], the ab initio based k · p expansion for SmB6 from
Ref. [36] appears problematic. We have analyzed their results,
and upon varying the relative multiplet energy we do not find
topological phase transition. This is what we expect when both
multiplets, taken alone, realize the same topological phase,
i.e., sgn(f v

1 hv
1) = sgn(f v

7 hv
7), and m78 is such that w from

Eq. (62) never vanishes (if m78 has the opposite sign, a double
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FIG. 21. Same as Fig. 17 but with η
f 2
x7 = −0.16, which leads to

m78 < 0 in the k · p Hamiltonian. In this case, the gap closes along
X-M and X-R approximatively at the same energy, which is slightly
inaccurate in the k · p method.

transition w = ±1 ↔ w = ∓1 ↔ w = ±1 could be in
principle achieved). Which phase is exactly realized depends
on the exact knowledge of the basis used in Ref. [36] (including
phase factors); based on the reported spin structure (which
disagrees with experiment [14]) we guess it is the w = −1
phase.

Possible explanations are that hybridization terms in SmB6

and PuB6 are so different as to place the two materials into two
different topological phases when considering just one or both
multiplets; or that in particular cases the k · p expansion is
not good enough to describe the topological phase transition,
for example, because more terms must be kept in the small-
momentum expansion. It also possible that a particular choice
of complex phases of the basis states has led us to wrong
conclusions about that work.

For completeness, we quote numerical values which we
extracted from Ref. [36]: |f v

1 | = |c2 cos φ + c3 sin φ|/2πV =
0.79, |hv

1| = |c1 cos φ + c4 sin φ|/2πV = 0.73, |f v
7 | =

| − c2 sin φ + c3 cos φ|/2πV = 0.52, |hv
7| = | − c1 sin φ +

c4 cos φ|/2πV = 0.56 (cos φ = √
5/6, sin φ = √

1/6, ci’s
are given numerically there), when measured in units V =
0.1 eV. These are about one order of magnitude smaller
than our values for PuB6 given in Appendix A [Eqs.
(A43) and (A45)]. This difference in the absolute value is
most likely due to the renormalization by the Gutzwiller
method and the fact that PuB6 has a larger f kinetic
energy than SmB6, hence is likely to have also a larger
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hybridization. However, we stress that absolute values do
not affect the spin structure. The latter instead hinges on

signs, and this is where the above numbers would require a
crosscheck.
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