
PHYSICAL REVIEW B 93, 235111 (2016)

Cotunneling into a Kondo lattice with odd hybridization

Pier Paolo Baruselli and Matthias Vojta
Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
(Received 2 March 2016; revised manuscript received 23 May 2016; published 7 June 2016)

Cotunneling into Kondo systems, where an electron enters an f -electron material via a cotunneling process
through the local-moment orbital, has been proposed to explain the characteristic line shapes observed in
scanning-tunneling-spectroscopy (STS) experiments. Here we extend the theory of electron cotunneling to
Kondo-lattice systems in which the bulk hybridization between conduction and f electrons is odd under inversion,
being particularly relevant to Kondo insulators. Compared to the case of even hybridization, we show that
the interference between normal tunneling and cotunneling processes is fundamentally altered: it is entirely
absent for layered, i.e., quasi-two-dimensional materials, while its energy dependence is strongly modified for
three-dimensional materials. We discuss implications for STS experiments.
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I. INTRODUCTION

Scanning tunneling spectroscopy has developed into a
powerful tool to investigate the surface electronic structure
of both bulk and thin-film materials. It provides a spatially
resolved map of the local single-particle density of states.
Moreover, it has been used to derive information on the
momentum-resolved band structure via so-called quasiparticle
interference (QPI), i.e., energy-dependent Friedel oscillations
caused by dilute impurities [1–3]. Recently, such QPI analysis
has been employed [4–9] to confirm the spin-momentum
locking of surface states of topological insulators [10–12].

In multiorbital systems, the proper interpretation of tunnel-
ing spectra requires knowledge about individual orbital tun-
neling matrix elements (or their ratios), which are determined
by the wave-function overlaps between electronic states in the
tip and Wannier states in the material. For Kondo systems
[13], involving both weakly correlated conduction electrons
and local-moment f electrons, it has been proposed [14,15]
that both contribute to scanning-tunneling-spectroscopy (STS)
spectra: In addition to direct tunneling into conduction states,
cotunneling processes via localized states can occur. Such
processes involve a magnetic interaction between the tunneling
electron and the local moment. The quantum-mechanical
interference between these two tunneling paths, together with
the particle-hole (p-h) asymmetry of the conduction band,
leads to a characteristic Fano-like line shape in the STS signal
[16–23]. The interference term itself is determined by the
effective coupling between f and conduction electrons.

Importantly, frequently used model Hamiltonians assume
a spatially local Kondo interaction or hybridization between
local moments and conduction electrons, such that, for
Kondo-lattice systems with inversion symmetry, the effec-
tive momentum-space hybridization function is even under
inversion. However, in real materials the Kondo interaction is
not local, with its spatial structure being determined by the
overlap of the relevant orbitals. In fact, in many inversion-
symmetric Kondo-lattice systems, the hybridization is odd
under inversion—this applies, in particular, to topological
Kondo insulators [24–27] (TKIs), which have been the focus
of intense activities recently. However, the interplay of odd
hybridization and cotunneling has not been studied before.

It is the purpose of this paper to study the effects of
odd hybridization for cotunneling and scanning-tunneling-

microscopy (STM) spectra of Kondo-lattice systems. As we
will show, odd hybridization forces the on-site propagator
connecting conduction and f electrons to vanish, which
implies that the interference between normal tunneling and
cotunneling is absent in the simplest tunneling models.
Complications arise from broken inversion symmetry near the
surface, as well as from nonlocal tunneling processes, and we
will discuss the consequences for STS spectra. We note that
the role of odd hybridization for isolated Kondo impurities has
been studied in a few papers in the past, e.g. in the context of
graphene [28].

II. TUNNELING CONDUCTANCE FOR HEAVY-FERMION
MATERIALS

To set the stage, we review the cotunneling theory of
Refs. [14,15] (see Fig. 1). The bulk system is described by
operators for conduction electrons and f states, ciσ and f̄iσ ,
respectively; explicit Hamiltonians follow below. A spatially
local tunneling process between tip and surface is captured by a
Hamiltonian, HT = ∑

σ p†
σψ0σ + H.c., where p is an electron

operator for the tip, and ψ0 involves both c and f electrons at
site 0 below the tip. Importantly, Coulomb interactions on f

orbitals are strong and suppress charge fluctuations, leading to
cotunneling. In a Kondo-model description, f electrons form
local moments �Si , and ψ0 can be expressed as [14]

ψ0σ = vcc0σ + (1/2)
∑

i

v̄f,i(�τσσ ′ · �S0)ciσ ′ . (1)

Here, vc and v̄f are the amplitudes for direct tunneling and
cotunneling, respectively, �τ is a Pauli matrix, and i represents
the c electron site(s), which hybridize with the f orbital at 0.
In an alternative Anderson-model description, the f electrons
become renormalized by Coulomb interactions, which can
be captured by a constant renormalization factor b at the
mean-field level, fiσ = bf̄iσ , with fiσ being auxiliary fermion
operators [13]. As a result, the operator ψ0 takes the form [14]

ψ0σ = vcc0σ + vf f0σ . (2)

The same renormalized single-particle formulation can be
obtained from the Kondo description, employing an SU(N )
large-N limit and a mean-field decoupling of the Kondo
interaction [13], leading to vf = −∑

i〈f †
0σ ciσ 〉v̄f,i .
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FIG. 1. Schematic picture of cotunneling into a 3D heavy-
fermion material. Each site (yellow) consists of a conduction c (red)
and a localized f (blue) orbital. εc describes the on-site c energy, tc is
the NN c hopping, εf is the on-site f energy, tf is the NN f hopping,
and V is the NN c-f hybridization, which can be local (top right)
or nonlocal (bottom left). The STM tip is described by its DOS ρtip.
Electrons tunnel vertically from the tip into a c orbital with amplitude
vc or into a (renormalized) f orbital with amplitude vf .

Given HT , the tunneling conductance at voltage � is

g(e�) = −4e2

�
ρtipIm[Gψ (e�)], (3)

where e is the electron charge, � is Planck’s constant, ρtip is
the density of states of the tip, assumed energy-independent,
and Gψ is the local energy-dependent Green’s function for the
operator ψ0. Using Eq. (2), we have

Gψ (ω) = v2
cGc(ω) + v2

f Gf (ω) + vcvf [Gcf (ω) + Gf c(ω)],
(4)

where the propagators and tunneling amplitudes have been
assumed spin-independent, and the spin degeneracy is taken
into account in the prefactor of Eq. (3). Abbreviating
ρ(ω) = −ImG(ω)/π , the conductance is then given by

g(e�) = 4πe2

�
ρtip

[
v2

c ρc + vcvf (ρcf + ρf c) + v2
f ρf

]
. (5)

The mixed terms ρcf and ρf c, arising from the interference of
normal tunneling and cotunneling, typically induce a distinct
p-h asymmetry at low energies, leading to a Fano-like line
shape for a single Kondo impurity and to an asymmetric
double-peak structure surrounding the hybridization gap for
a Kondo lattice [14].

III. HYBRIDIZATION AND INTERFERENCE TERMS

Within the renormalized single-particle formulation [13],
minimal bulk Hamiltonians for heavy-fermion metals as well
as topological insulators involve four bands (i.e., two types
of spin-degenerate orbitals), and they can be written in Bloch
form,

H(k) =
(

εc(k) Vcf (k)
Vf c(k) εf (k)

)
, (6)

where all individual entries are 2 × 2 matrices in spin (or
pseudospin) space. Here, ε and V denote kinetic-energy and
hybridization terms, respectively, all of them representing
interaction-renormalized quantities [13].

Assuming inversion symmetry, we have εc(k) = εc(−k)
and εf (k) = εf (−k), while the hybridization can be even or
odd, Vcf (k) = ±Vcf (−k). In particular, TKIs with inversion
symmetry [24] are characterized by an odd hybridization
function, typically arising from conduction-electron orbitals,
which are even under inversion (s or d), and localized-electron
orbitals, which are odd (f ).

In all cases, the orbital-off-diagonal propagators obey

Gcf (k) = G0
c(k)Vcf (k)Gf (k), (7)

Gf c(k) = Gf (k)Vf c(k)G0
c(k), (8)

where G0
c(k) is the Green’s function for c electrons when V =

0, and all propagators are taken at the same fixed frequency ω.
Given that G0

c and Gf are even under inversion, Gcf and Gf c

inherit the inversion eigenvalues of Vcf and Vf c, i.e., odd (even)
hybridization implies odd (even) off-diagonal propagators.

The interference term in the tunneling conductance (5)
is determined by the local off-diagonal propagator Gcf ≡
Gcf (r = r′) where translation invariance has been assumed.
For an inversion-symmetric system with odd hybridization,
this vanishes:

Gcf ≡
∫

Gcf (k)dk = 0, (9)

as a consequence of the integrand being odd in k—this
observation is central for the rest of the paper. Obviously
Gcf = 0 implies the absence of the interference term in Eq. (5),
and the tunneling line shape needs to be reconsidered. While
this analysis strictly applies to a layered, i.e., effectively
two-dimensional (2D), system in which the surface layer
probed by STS displays bulk properties, it must be modified
for three-dimensional (3D) systems: Here, translation and
inversion symmetries are broken by the surface, and an
effective local Gcf �= 0 is created as a consequence, such
that the interference term of Eq. (5) reappears. However, its
energy dependence is distinct from that in the case of even
hybridization.

IV. NUMERICAL EXAMPLES

To confirm and illustrate this reasoning, we have numeri-
cally studied a number of 2D and 3D Kondo-lattice models,
the latter in a (001) slab configuration, to study the surface
tunneling spectrum. In all cases, we work in a single-particle
formulation with fixed renormalized parameters (i.e., ignoring
self-consistency [13]). This implies that we neglect material-
dependent surface effects, i.e., reduced Kondo temperature or
Kondo breakdown [29], as well as surface reconstruction [30]
and dangling bonds, polar charges, passivation, etc.

The examples include topologically trivial and nontrivial
band structures, the latter corresponding to TKIs. Given the
noninteracting character of the effective models, different
electron concentrations can simply be achieved by tuning
the overall chemical potential, and we will explicitly display
figures for the Kondo-insulating cases. For simplicity, we work
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FIG. 2. Numerical results for a 2D NKI with even hybridization (11) at p-h symmetry, εc = εf . (a) Imaginary parts of the Green’s functions,
ρc, ρf , and ρcf = ρf c. (b) Conductance g (in arbitrary units) for both signs of vf /vc. The hybridization is V = 0.011Dc, where Dc = 8tc
is the c-bandwidth. The vertical dashed lines denote the bulk gap 
/Dc = 0.012, and the small weight inside it is due to finite broadening,
δ/Dc = 2.5 × 10−4, used in the calculation.

on square (2D) or cubic (3D) lattices, with kinetic-energy
matrices of the form

εc,f (k) =
⎛
⎝εc,f − 2tc,f

∑
j

cos kj

⎞
⎠1, (10)

where j = x,y in two dimensions and j = x,y,z in three
dimensions. The nearest-neighbor (NN) hopping is taken as
tc > 0, tf < 0; in the examples we will use tf /tc = −0.1.
Numerical values for εc,f and V are chosen to ensure
comparable bandwidths and hybridization gaps in all cases.

A. 2D model, even hybridization

We start with simple 2D models representative of layered
heavy-fermion materials. For the case of even hybridization,
we choose a local, spin-independent version,

Vcf (k) = V1 (11)

with V < 0; we similarly take spin-independent tunneling
amplitudes, vc ≡ v

↑
c = v

↓
c , vf ≡ v

↑
f = v

↓
f . If the chemical

potential is placed inside the hybridization gap, this yields
a topologically trivial (or normal) Kondo insulator (NKI). In
this case, ρcf = ρf c is in general nonzero, peaked where most
of the f states live, i.e., just above and below the gap, and
zero in the gap. The sign of ρcf is related to the fact that below
(above) the gap, the (anti)bonding linear combination of c and
f states is created; in particular, at p-h symmetry, ρcf is odd in
ω: ρcf (−ω) = −ρcf (ω). Concrete results are shown in Fig. 2,

which illustrates an asymmetric tunneling signal arising from
the interference term ρcf .

B. 2D model, odd hybridization

To demonstrate the effect of odd hybridization in a planar
geometry, we choose a nonlocal, spin-dependent hybridization
of the form

Vcf (k) = −2iV (σx sin kx + σy sin ky), (12)

and Vf c(k) ≡ [Vcf (k)]† = −Vcf (k) is anti-Hermitian. This
model realizes a 2D TKI. Our specific choice of the relative
phase between conduction and localized states (easily gen-
eralizable to three dimensions; see below) implies a factor
of i occurring in Vcf (12). This choice also leads to the
tunneling between f orbitals and the tip along z occurring
with amplitudes vf ≡ v

↑
f = −v

↓
f with vf being real, while

vc ≡ v
↑
c = v

↓
c . The Green’s functions remain diagonal in

(pseudo-)spin space, ρ↑↓ = ρ↓↑ = 0, and Eq. (5) for the
tunneling conductance continues to apply, with ρc ≡ ρ

↑↑
c =

ρ
↓↓
c , ρf ≡ ρ

↑↑
f = ρ

↓↓
f , and ρcf,f c ≡ ρ

↑↑
cf,f c = −ρ

↓↓
cf,f c.

As emphasized above, ρcf is strictly zero here, as demon-
strated in Eq. (9), while ρc and ρf are not qualitatively different
from the even-hybridization case; compare Figs. 2(a) and 3(a).
In the case of strong p-h asymmetry, Fig. 4(a), the two peaks
below and above the gap are strongly asymmetric. For weakly
coupled layers, ρcf will be nonzero but very small, such that
the main conclusions remain unchanged.
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FIG. 3. Same as Fig. 2, but for a 2D TKI with odd hybridization (12) close to p-h symmetry (exactly at p-h symmetry the system is metallic).
Since ρcf is always zero, the line shape here is independent of the sign of vf /vc. Parameters are εc − εf = −0.125Dc and V = 0.026Dc.
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FIG. 4. Same as Fig. 3 for a 2D TKI, but with strong p-h asymmetry. This causes an asymmetric line shape without the need for an
interference term (ρcf = 0). Parameters are V = 0.04Dc and εc − εf = −0.5Dc.

C. 3D model, even hybridization

For the 3D case, in which STS can probe the surface but not
the bulk, we start again with the case of even hybridization,

Vcf (k) = V1. (13)

We assume that the tip only probes the topmost layer, i.e.,
in a slab calculation that yields ρ(z) we take ρ(z=0) when
evaluating the tunneling signal according to Eq. (5). As in the
2D case, we have vf ≡ v

↑
f = v

↓
f and vc ≡ v

↑
c = v

↓
c .

The results from the slab calculation with even hybridiza-
tion, Fig. 5, show that the relevant quantities ρc, ρf , and ρcf

display a very weak dependence on the layer index z; moreover,
they are similar to the 2D case, Fig. 2. As a consequence,
neglect of surface effects is a reasonable approximation in this
case, and a bulk theory is still appropriate to approximately
describe the surface. We recall that self-consistency has been
neglected: this would take into account that Kondo screening
is modified near the surface compared to the bulk, but it would
not change our conclusions concerning p-h asymmetries.

D. 3D model, odd hybridization

We now turn to the case of odd hybridization in three
dimensions. The simplest model [24,31] for a TKI in three
dimensions is obtained using a hybridization matrix,

Vcf (k) = −2iV (σx sin kx + σy sin ky + σz sin kz), (14)

and Vf c(k) ≡ [Vcf (k)]† = −Vcf (k); we will take V < 0.
The choice of relative phases of Wannier states yields real
hybridization terms in real space along the z direction. As in
the 2D case, the tunneling matrix elements involving the STM
tip obey vf ≡ v

↑
f = −v

↓
f and vc ≡ v

↑
c = v

↓
c ; we stress that our

choice of the relative sign of v
↑
f and v

↓
f is linked to the form

of the hybridization along z that is proportional to σz: quali-
tatively, the tip state resembles a conduction orbital in that it
features weak spin-orbit coupling and weak correlations. Upon
modeling STS, we restrict our attention to a (001) surface.

The model described by Eqs. (6), (10), and (14) ad-
mits different phases depending on the energy difference
εc − εf [24,31]: when |εc − εf | > 6(|tc| + tf ), it realizes a
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FIG. 5. Numerical results for a 3D NKI with even hybridization (13) at p-h symmetry, εc = εf , calculated in a slab geometry with N =30
layers. (a) Imaginary part of the Green’s functions, ρc(z,ω), ρf (z,ω), and ρcf (z,ω) = ρf c(z,ω) on the top layer z=0. (b) Conductance g for both
signs of vf /vc. (c) ρcf (z,ω) in different layers z, with ρcf (z,ω) = −ρcf (z, − ω). (d) ρf (z,ω) for different z. Here Dc = 12tc and V = 0.01Dc.
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FIG. 6. Same as Fig. 5, but for a weak TKI with odd hybridization (14) and two identical surface Dirac cones at p-h symmetry, εc = εf ;
V = 0.021Dc. We note that here ρcf (z,ω) = ρcf (z,−ω), and ρcf depends strongly on the layer index, being zero in the bulk, showing that a
bulk description of the surface is inadequate.

topologically trivial insulator, when |εc − εf | < 2(|tc| + tf ), it
realizes a weak topological insulator, and otherwise, it realizes
a strong topological insulator.

In Fig. 6 we present results in the weak topological phase
with two surface Dirac cones at the p-h–symmetric point
(εc = εf ), and in Fig. 7 we present results in the strong
topological phase with one surface Dirac cone away from
p-h symmetry. In both cases, in-gap spectral weight appears
due to the presence of topological surface states. We find in
general ρcf (z,ω) = ρf c(z,ω) �= 0 unless ρcf is measured deep

in the bulk, Figs. 6(c) and 7(c). This may be interpreted as
an effective local even-hybridization term that is generated
by the presence of the surface. Consequently, an interference
term now appears in the tunneling conductance. However,
its energy dependence is found to be completely different
from the even-hybridization case in Fig. 5. First, it has an
appreciable weight in the gap arising from the topological
surface states; secondly, it changes sign not in the gap, but for
energies corresponding to bulk f states: this happens twice for
ρcf (z = 0,ω), while ρcf (z > 0,ω) has in general more nodes.
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FIG. 7. Same as Fig. 5, but for a strong TKI with a single cone whose Dirac energy is in the bulk gap. Parameters are V = 0.021Dc and
εc − εf = 0.33Dc; the small wiggles in the energy dependence arise from the finite thickness of the slab (N = 30).
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FIG. 8. Same as Fig. 5, but for the odd-hybridization model (14) in the topologically trivial phase corresponding to a 3D NKI. In this case,
ρcf is nonzero on the surface, but extremely small when compared to Figs. 6 and 7. Moreover, in-gap surface states are absent. Parameters are
V = 0.021Dc and εc − εf = 0.56Dc. We note that the apparent steps in panels (a) and (b) arise from the finite size of the slab along z, i.e.,
they represent 2D band edges.

In particular, in the p-h–symmetric case of Fig. 6, ρcf (z,ω)
is an even function of energy here, ρcf (z,−ω) = ρcf (z,ω),
while with even hybridization, as remarked, it is odd. Even in
the absence of p-h symmetry, Fig. 7, the overall behavior of
ρcf (z,ω) does not change.

We have repeated the calculation in the topologically trivial
phase of the model [24]; note that in this case, an insulator
would be obtained even for zero hybridization, since the c and
f bands do not intersect when V = 0. As shown in Fig. 8, we
see that, given the same hybridization as in Fig. 7, ρcf (z,ω) is

much smaller here, and it is zero in the gap due to the absence
of surface states. However, ρcf (z = 0,ω) changes sign in the
f band and not in the gap, in analogy to what happens in the
topologically nontrivial phase, and in contrast to the case with
even hybridization.

Taking the information from Figs. 6, 7, and 8 together, we
can therefore attribute the occurrence of nonzero in-gap weight
of ρcf (z,ω) to topological surface states, and we speculate that
its change of sign in the gap or in the f band is due to even
versus odd hybridization.
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FIG. 9. Same as Fig. 5, but for a strong TKI with three Dirac cones and parameters V = 0.031Dc, εc − εf = 0.167Dc, t ′
f /tf = −0.4, and

t ′
c/tc = −0.5.
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FIG. 10. For the same parameters as in Figs. 2 and 3, we show the nonlocal ρcf (r − r′) as a function of the position (r − r′) ≡ (x,y): (a) for
even hybridization, ρcf ≡ ρ

↑↑
cf = ρ

↓↓
cf is even in the position ρcf (x,y) = ρcf (−x,−y), has a maximum on-site, at (0,0), and decays for larger

distances; (b) for odd hybridization, ρcf ≡ ρ
↑↓
cf = ρ

↓↑
cf is odd in the position ρcf (x,y) = −ρcf (−x,−y), has a node on-site, at (0,0), a maximum

at (±1,0), (0,±1), and then decreases at larger distances (ρ↑↑
cf = ρ

↓↓
cf is always zero here).

E. Toy model for SmB6

As a final example, we provide results for a system with
three Dirac cones, which should mimic SmB6 [32]. To do
this, we modify the kinetic energy by introducing second NN
hopping:

ε′
c,f (k) = −4t ′c,f

∑
j �=l

cos kj cos kl1, (15)

in such a way as to have a band inversion at the three X points
[32]. Parenthetically, we note that this simplified model has a
surface spin structure, in disagreement with experiment [33]
due to incorrect mirror Chern numbers [34,35], but this is
largely irrelevant for the spin- and momentum-integrated STS
spectrum considered here. For this model, results are shown
in Fig. 9, where we can observe the same general features
that we described for a TKI with one or two cones. However,
here one of the cones is inequivalent to the other two, with
a different Dirac energy, hence we do not clearly observe
ρc,f,cf (z,ω) going to zero at the center of the cones.

V. STS LINE SHAPE

The above discussion has consequences for the energy
dependence of the STS spectrum, i.e., the line shape, and
the role of the tunneling paths in Kondo systems. In standard
models for heavy-fermion materials, the phenomenological
parameters vc and vf affect this line shape: their relative
magnitude weighs the contributions from ρc, ρf , and ρcf , and
their relative sign tells if ρcf enters with a plus or a minus sign
[see Eq. (5)], which in turn increases the strength of the peak
either at positive or negative energies; see Figs. 2(b) and 5(b).
In a TKI, instead, the relative sign enhances or depresses all
features related to surface states; see Figs. 6(b) and 7(b).

We note that, if the STM apex atom behaves like a c orbital
in the material, we can approximate vf ≈ V < 0, vc ≈ −tc <

0, leading to sgn(vf vc) = sgn(−tcV ) > 0. In the STS signal,
this situation enhances both features below the gap in a NKI
[Figs. 2(b) and 5(b)], and features from surface states in a TKI
[Figs. 6(b) and 7(b)].

When ρcf is small, for example in the case of the NKI with
odd hybridization [Fig. 8(b)], or for a TKI in two dimensions
[Figs. 3(b) and 4(b)], the STS signal is mostly independent
of the sign of vf /vc, and it is simply proportional to the sum

v2
c ρc + v2

f ρf , i.e., the interference term can be neglected. We
stress that ρcf = 0 does not always imply a symmetric line
shape, i.e., strongly p-h–asymmetric bands can lead alone to
an asymmetric line shape [Fig. 4(b)]. Conversely, in the 2D
case with odd hybridization, p-h asymmetry is the only source
of an asymmetric line shape (assuming point tunneling).

VI. EXTENSION TO MORE REALISTIC MODELS

In this paper we have employed simple four-band models,
while real materials, such as SmB6, are described by more
complicated models [27,36]. We expect, however, that the
main results of this paper will remain valid as long as cubic
(or tetragonal) symmetry is preserved.

Concerning SmB6, we remark that existing STS
measurements [37,38] find quite generally a Fano line shape
close to the Fermi energy. This appears well described [37,38]
by existing simplified bulk theories [14,21]—where the
asymmetry mainly arises from band-structure effects—except
for the residual conductance in the (pseudo)gap, which
is due to some other conduction channel. A topological
band-structure model, such as ours, naturally assigns this
residual conductance to topological surface states (but details
are beyond our simplified description).

The tunneling theory used in this paper assumed pointlike
tunneling between tip and surface. If the tip is larger, we
have to consider the nonlocal Green’s function G(r,r′), which
can be nonzero even when G(r,r) = 0; hence, our approach
is only a starting approximation of the phenomenon. As
a general rule, in the presence of translational symmetry,
Gcf (r − r′) will have a node when (r − r′) = 0, in contrast
to the even-hybridization case. In Fig. 10 we show how ρcf

depends on (r − r′) in two dimensions, with either even or
odd hybridization.

Finally, we note that a fully accurate description of the
tunneling signal requires the explicit use of the spatial shape
of the Wannier functions [39]. However, this implies more
complicated numerical work, which is beyond the scope of
this paper.

VII. CONCLUSIONS

For heavy-fermion systems with bulk inversion symmetry,
we have argued that a hybridization term that is odd under
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inversion leads to the vanishing of the local nondiagonal
term Gcf of the Green’s function. We have shown that
this strongly modifies considerations concerning the spectral
line shape as measured in STS experiments, because the
cotunneling interference term usually made responsible for
the appearance of a Fano-like line shape is either absent or
very different from that in the even-hybridization case. Sharp
conclusions can be drawn for p-h–symmetric bands, where
even hybridization generically leads to a p-h–asymmetric
STS signal, its asymmetry being entirely due to Gcf , and
odd hybridization to a strictly p-h–symmetric line shape.
In a general p-h–asymmetric situation, an asymmetric STS
line shape can arise from both band asymmetries and tun-
neling interference, and additional information (e.g., from
angle-resolved photoemission spectroscopy or band-structure
calculations) is required to deduce the properties of tunneling
paths or hybridizations from STS data.

We have provided concrete examples for tunneling spectra
in simple models of topological and nontopological Kondo
insulators, which we hope will be useful for the interpretation
of future tunneling experiments. We recall, however, that a
measurement of the local DOS alone cannot distinguish topo-
logical from nontopological states, whereas a QPI experiment
can do so by detecting the spin-momentum locking of surface
states.

ACKNOWLEDGMENTS

We thank J. E. Hoffman, L. Fritz, A. Mitchell, D. K. Morr,
and S. Wirth for discussions and collaborations on related
work. This research was supported by the DFG through SFB
1143 and GRK 1621 as well as by the Helmholtz Association
through VI-521.

[1] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature (London)
363, 524 (1993).

[2] J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki,
S. Uchida, and J. C. Davis, Science 297, 1148 (2002).

[3] J. Lee, K. Fujita, A. R. Schmidt, C. K. Kim, H. Eisaki, S. Uchida,
and J. C. Davis, Science 325, 1099 (2009).

[4] J. Seo, P. Roushan, H. Beidenkopf, Y. S. Hor, R. J. Cava, and A.
Yazdani, Nature (London) 466, 343 (2010).

[5] P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian,
A. Richardella, and M. Z. Hasan, Nature (London) 460, 1106
(2009).

[6] Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen,
Z. X. Shen, A. Fang, and A. Kapitulnik, Phys. Rev. Lett. 104,
016401 (2010).

[7] T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He, L. Wang,
H. Zhang, X. Dai, Z. Fang et al., Phys. Rev. Lett. 103, 266803
(2009).

[8] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, and A.
Bansil, Nat. Phys. 5, 398 (2009).

[9] H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y.
S. Hor, R. J. Cava, and A. Yazdani, Nat. Phys. 7, 939 (2011).

[10] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
(2007).

[11] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[12] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[13] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, 1993).
[14] M. Maltseva, M. Dzero, and P. Coleman, Phys. Rev. Lett. 103,

206402 (2009).
[15] J. Figgins and D. K. Morr, Phys. Rev. Lett. 104, 187202

(2010).
[16] J. Li, W.-D. Schneider, R. Berndt, and B. Delley, Phys. Rev.

Lett. 80, 2893 (1998).
[17] V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S.

Wingreen, Science 280, 567 (1998).
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