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Certain nonuniform strain applied to graphene flakes has been shown to induce pseudo-Landau levels
in the single-particle spectrum, which can be rationalized in terms of a pseudomagnetic field for electrons
near the Dirac points. However, this Landau level structure is, in general, approximate and restricted to
low energies. Here, we introduce a family of strained bipartite tight-binding models in arbitrary spatial
dimension d and analytically prove that their entire spectrum consists of perfectly degenerate pseudo-
Landau levels. This construction generalizes the case of triaxial strain on graphene’s honeycomb lattice to
arbitrary d; in d ¼ 3, our model corresponds to tetraxial strain on the diamond lattice. We discuss general
aspects of pseudo-Landau levels in arbitrary d.
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Introduction.—The engineering of quantum phases and
their properties has become an important concept in
condensed matter physics. In this approach, one either
builds or influences a large quantum system in a controlled
fashion such that it displays properties not present in
naturally occurring systems. Prominent examples are arti-
ficial lattices of atoms or molecules absorbed on surfaces
[1], heterostructures made, e.g., from correlated-electron
materials [2,3], and coupled-wire constructions of topo-
logical states of matter [4].
A particularly interesting tool, applicable to bulk materi-

als, is lattice strain which—in a tight-binding description
of electron dynamics—induces inhomogeneous hopping
energies. In the context of graphene, it has been theoreti-
cally shown [5–7] that such inhomogeneous hopping
mimics the effect of a vector potential in Dirac-fermion
systems. If the resulting pseudomagnetic field is suffi-
ciently homogeneous—applying, e.g., to triaxial strain
patterns—it can induce single-particle pseudo-Landau
levels (PLLs) very similar to Landau levels in a physical
magnetic field. Such PLLs have indeed been observed in
strained graphene flakes [8] as well as in artificial molecu-
lar structures [1]. However, the resulting spectral quantiza-
tion is approximate and restricted to energies near the
Dirac point. Nonuniform strain has also been discussed for
Weyl semimetals, but controlled effects are again restricted
to the low-energy part of the spectrum [9–11].
In this Letter, we lay out a scheme for strain engin-

eering of single-particle levels which overcomes previous
restrictions. We introduce tight-binding models with
inhomogeneous hopping energies, defined on specific
d-dimensional bipartite finite-size lattices, which display
perfectly degenerate PLLs throughout their entire spectra.
In d ¼ 2, our model resembles triaxial strain applied to the
honeycomb lattice in the limit of strong electron-lattice
coupling [12], and we present the generalization to arbitrary

d. Using iterative constructions, we are able to obtain the
single-particle energies and their degeneracies in a closed
algebraic form. Most remarkably, our scheme paves the
way to Landau level physics in three dimensions, realizable
via tetraxial strain applied to the diamond lattice.
Model.—Our tight-binding models are defined on a

d-dimensional bipartite lattice, with sublattices A and B
and coordination number (dþ 1). The nearest-neighbor
vectors δ̂j connect the center of a (dþ 1) simplex to each

of its vertices and, in the absence of strain, satisfy δ̂2j ¼ 1,

δ̂j · δ̂j0 ¼ −ð1=dÞ for j≠ j0, and
Pdþ1

j¼1 δ̂j¼ 0. In d¼ 1, 2, 3,
the relevant simplices are line segment, triangle, and
tetrahedron, respectively. The nearest-neighbor hopping
Hamiltonian reads

H ¼
X

r∈B

Xdþ1

j¼1

tðNÞ
r;j c

†
rcrþδ̂j

þ H:c:; ð1Þ

whereN ¼ 1; 2; 3;… specifies the linear system size. In the
presence of strain, we continue to use the coordinates of the
unstrained lattice. Key ingredients are the inhomogeneous
hopping amplitudes

tðNÞ
r;j ¼ N − 1 − dr · δ̂j

dþ 1
; ð2Þ

these can be generated by specific nonuniform strain in
the limit of strong electron-lattice coupling [13]. In Eq. (2),
r ¼ 0 defines the center of the system, and B sites are

placed such that tðNÞ
r;j is integer. The scalar product leads to a

linear spatial variation of hopping amplitudes. The hopping

pattern (2) is such that a set of tðNÞ
r;j ’s vanish identically,

naturally cutting out a piece of size N, with the overall
shape of the d simplex, from a large lattice [12,13];
see Fig. 1.
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As proven below, the level spectrum of H reads

E�
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ d − 2Þ − nðnþ d − 2Þ

p
ð3Þ

for n ¼ 1;…; N − 1, and EN ¼ 0—this is the central
result of this Letter. For N ≫ 1 and m ¼ N − n ≪ N,
the spectrum can be approximated by ϵ�m ≡ E�

N−m ≈
� ffiffiffiffiffiffiffiffiffiffi

2Nm
p

. This corresponds to the low-energy spectrum
of Dirac electrons subject to a vector potential; i.e., the

ffiffiffiffi
m

p
behavior can be interpreted in terms of Dirac Landau levels
in d dimensions. The degeneracy of each energy E�

n is
given by

zd;n ¼
nðnþ 1Þðnþ 2Þ…ðnþ d − 2Þ

ðd − 1Þ! ; ð4Þ

which is Oðnd−1Þ; specifically, z1;n ¼ 1, z2;n ¼ n, and
z3;n ¼ nðnþ 1Þ=2. In Fig. 1, we display the corresponding
lattices as well as the level spectra for N ¼ 4.
We note that, to simplify expressions, Eq. (2) is scaled to

yield integer tðNÞ
r;j and E2

n; this results in a bandwidth ∝ N.
To obtain a spectrum with finite bandwidth for N → ∞
requires us to rescale t → t=N. Then, the low-energy levels
follow jϵ�mj ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=N

p
, corresponding to a pseudomagnetic

field which scales as 1=N.
We now discuss the three important cases d ¼ 1, 2, 3

separately; in the remainder of this Letter, we prove the
spectral properties for arbitrary d.
One-dimensional PLLs.—In d ¼ 1, the discrete energy

levels E�
n ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN − 1Þ − nðn − 1Þp
are nondegenerate,

Eq. (4). Nevertheless, the term “Landau level” appears
justified given that the low-energy spectrum emulates a
one-dimensional Dirac theory coupled to a vector potential
of a homogeneous magnetic field. The lattice, Fig. 1(a), is

that of a two-atomic chain with an inhomogeneous Peierls-
like distortion which increases away from the chain center.
In analogy to d ¼ 2, 3, one can interpret this hopping
modulation as arising from biaxial strain; however, such a
strain pattern cannot be realized using force fields in a solid.
The d ¼ 1 case is mainly interesting as a toy model.
Two-dimensional PLLs.—The d ¼ 2 case corresponds to

triaxial strain, Fig. 2(a), applied to graphene [1,6–8] in the
limit of strong electron-lattice coupling [12,13]. This limit,
together with the specific sample shape, yields perfectly
degenerate levels in the entire spectrum following the exact
expression (3), E�

n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − n2

p
, Fig. 1(b). This is to be

contrasted with PLLs for weak electron-lattice coupling
which are smeared and restricted to low energies [1,6,8,14].
In the Supplemental Material [13], we illustrate the
evolution between the two limits.
Three-dimensional PLLs.—The most interesting case is

d ¼ 3, which corresponds to tetraxial strain applied to a
diamond lattice. First, we recall that a tight-binding model
(of s orbitals, as opposed to the hybridized sp3 orbitals of
diamond) on the diamond lattice features a partial Dirac-type

FIG. 2. Schematic illustration of forces for (a) triaxial
strain applied to a triangle and (b) tetraxial strain applied
to a tetrahedron. The resulting displacement fields are
(a) u2D ¼ C̄ð2xy; x2 − y2ÞT and (b) u3D ¼ C̄ðyz; zx; xyÞT , where
C̄ is a constant.

(a) (b) (c)

FIG. 1. Finite-size lattices (top) and their spectra (bottom) for N ¼ 4 and (a) d ¼ 1, (b) d ¼ 2, and (c) d ¼ 3. The hopping amplitudes

tðNÞ
r;j , Eq. (2), are indicated via line thickness and color (see the inset). The next outer bonds have a vanishing amplitude, thus cutting out
(a) a line segment, (b) a triangle, and (c) a tetrahedron, each of linear size N. Note that unstrained lattices are shown; for finite
electron-lattice coupling, weak (strong) bonds would be elongated (compressed). The energy levels and their degeneracies are given in
Eqs. (3) and (4), respectively; for details, see the text.
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band touching at theX points [15]. Second, the displacement
vector for tetraxial strain, Fig. 2(b), is u3D ¼ C̄ðyz; zx; xyÞ.
In the limit of strong electron-lattice coupling, tetraxial strain
leads to hopping modulations, as in Eq. (2). The resulting
spectrum, E�

n ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ − nðnþ 1Þp

, is naturally
interpreted as that of Landau levels in three spatial dimen-
sions; see Fig. 1(c). The corresponding continuum theory and
its consequences will be published elsewhere [16]. We have
estimated that, for realistic electron-lattice coupling, 5%
strain should be sufficient to produce visible Landau levels
[13]. The construction of PLLs in d ¼ 3 is interesting on
fundamental grounds, given that the quantum Hall effect
exists only for an even d; hence, Landau levels in d ¼ 3
cannot be realized using physical magnetic fields.
Proof of the spectral properties.—In order to prove

Eqs. (3) and (4), we start with general properties of bipartite
graphs and their implications. Then, we use these properties
in combination with Eq. (2) to iteratively construct the full
spectrum. Further details of the proof are given in the
Supplemental Material [13].
Bipartite hopping and eigenmodes.—Consider an arbi-

trary lattice, with all sites distributed into two sets, called
the sublattices A and B. A hopping Hamiltonian whose
only nonzero matrix elements connect the A and B sites
defines a bipartite hopping problem. The corresponding
real Hamiltonian matrix H in a site basis, with A sites
arranged before B sites, consists of off-diagonal blocks. As
a result, the spectrum is particle-hole symmetric; i.e.,
nonzero eigenvalues always come in pairs involving E
and ð−EÞ.
If there is an imbalance of the number of sublattice sites,

i.e., nA ≠ nB, there must be jnA − nBj eigenvalues which
vanish (E ¼ 0), with eigenvectors localized on sublattice B
if nB > nA [17]. The existence of zero modes was first
noted by Sutherland [18] and Lieb [19]; a simple proof is
given in Ref. [20].
A further consequence of the bipartiteness is that the

matrixH2 decouples into two disconnected blocks for the A
and B sublattices. The eigenvalues of H2 are non-negative;
the positive ones must be twofold degenerate [17], with
one eigenvector solely defined on sublattice A and the other
one on sublattice B.
Notation.—We denote the Hamiltonian matrix of Eq. (1)

for linear size N as HN . To establish the spectrum (3), we
prove that H2

N possesses eigenvalues ðE�
n Þ2 ≡ E2

n that are
2zd;n-fold and E2

N ¼ 0 zd;N-fold degenerate. We denote the

eigenvectors ofHN as ψ ðn;μÞ
N and that ofH2

N as ϕðn;νÞ
N , where

μ, ν label degenerate eigenvectors. As noted, the positive-

energy eigenvectors of H2
N come in pairs, ϕðn;μÞ

N;A and ϕðn;μÞ
N;B ,

which have vanishing amplitudes on sublattices B and A,
respectively. Bipartite hopping implies that HN maps the
two eigenstates onto each other [21]:

HNϕ
ðn;μÞ
N;A ¼ Enϕ

ðn;μÞ
N;B and HNϕ

ðn;μÞ
N;B ¼ Enϕ

ðn;μÞ
N;A : ð5Þ

Note that Eq. (5) is true for arbitrary bipartite hopping
problems: It is a consequence ofHN connecting only the A

and B sites and the eigenvalue conditionH2
Nϕ

ðnÞ
N ¼ E2

nϕ
ðnÞ
N .

For future reference, we label the two nonzero blocks of
the matrix H2

N as AN and BN , H2
N ¼ AN ⊕ BN , corre-

sponding to its action on the A and B sublattices, respec-
tively. Also, the sublattice with excess sites will be denoted
B; the full expressions for the number of lattice sites
for given N’s and d’s are provided in the Supplemental
Material [13].
Iterative construction of the spectrum.—Step 1: For

N ¼ 1, the lattice consists of a single B site, and we have

H1 ¼ H2
1 ¼ B1 ¼ 0, E1 ¼ 0, and ϕðN¼1Þ

1 ¼ ψ ðN¼1Þ
1 ¼ 1.

(It will become clear below that ϕðNÞ
N ¼ ψ ðNÞ

N for an
arbitrary N.)
Step 2: We now show that the matrix BN−1 is identical to

AN up to a constant shift,

AN ¼ BN−1 þ λðNÞ · 1; ð6Þ

where λðNÞ ¼ 2N þ d − 3 and 1 is the corresponding unit
matrix; the matrix dimensions of AN and BN are given in
the Supplemental Material [13]. As a result of Eq. (6), the
eigenvectors of BN−1 and AN are identical.
To prove Eq. (6), we first note that the positions of the B

sites for system size N correspond to that of the A sites for
the size (N þ 1). Second, B sites have neighboring sites
in the (dþ 1) δ̂j directions, while A sites have neighbors

in the ð−δ̂jÞ directions. Therefore, the network of bonds
between the A and B sites has been locally inverted when
switching from system size N to (N þ 1); see Fig. 3.
Consider now a B site for sizeN which is connected to its

neighbors along the (dþ 1) δ̂j directions via the bonds of

amplitudes tðNÞ
r;j ∈ N. Then, the site with same coordinates

for size (N þ 1) (now belonging to sublattice A) is con-
nected to its neighbors along the corresponding ð−δ̂jÞ

FIG. 3. Illustration of the two different hopping paths (here,
exemplarily, d ¼ 2): (i) the amplitude from A1 to A2 via B3 along
the blue bonds (for size N) is identical to (ii) the amplitude from
B1 to B2 via A30 along the red bonds (for the size N − 1). Filled
(open) circles denote A (B) sites.
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directions via bonds of amplitude tðNþ1Þ
r0;j , where r0 ¼ r − δ̂j.

These hoppings obey tðNþ1Þ
r0;j ¼ tðNÞ

r;j þ 1 because

N − dr0 · δ̂j
dþ 1

−
N − 1 − dr · δ̂j

dþ 1
¼ 1: ð7Þ

Next, we determine the difference of the diagonal entries
of the matrices AN and BN−1. To that end, we abbreviate
the (dþ 1) hopping amplitudes surrounding an arbitrary A

site for size N as tðNÞ
1 ; tðNÞ

2 ;…; tðNÞ
dþ1. They satisfy the sum

rule
Pdþ1

j¼1 t
ðNÞ
j ¼ N þ d − 1 [13]. Furthermore, the site’s

diagonal entry into AN is given by
Pdþ1

j¼1 ðtðNÞ
j Þ2. As noted,

for the size (N − 1), the hopping amplitudes surrounding

the corresponding B satisfy tðN−1Þ
j ¼ tðNÞ

j − 1. Hence, the
desired difference of the diagonal entries is

Xdþ1

j¼1

½ðtðNÞ
j Þ2 − ðtðN−1Þ

j Þ2� ¼
Xdþ1

j¼1

½2tðNÞ
j − 1� ¼ 2N þ d − 3:

ð8Þ
It remains to show that all off-diagonal entries in AN and

BN−1 are identical. We consider two arbitrary adjacent B
sites for size (N − 1) and label them B1 and B2. For the size
N, the A sites with identical coordinates be A1 and A2; for
an explicit illustration of d ¼ 2, see Fig. 3. The hopping
from B1 to B2 is via an A site (A30) along the trajectory

δ̂j − δ̂j0 , and the amplitude is tðN−1Þ
r1;j

tðN−1Þ
r2;j0

. As the network

of δ̂j bonds between the sites has been locally inverted
when switching from size (N − 1) to N, the hopping from
A1 to A2 is via a B site (B3) along the trajectory −δ̂j0 þ δ̂j,

with the amplitude tðNÞ
r3;j0

tðNÞ
r3;j

. From Fig. 3, we see that

r1 ¼ r3 þ δ̂j0 and r2 ¼ r3 þ δ̂j. Using δ̂j · δ̂j0 ¼ −ð1=dÞ
and Eq. (3), we obtain tðN−1Þ

r1;j
¼ tðNÞ

r3;j
and tðN−1Þ

r2;j0
¼ tðNÞ

r3;j0
.

Since the considered hoppings are identical, the pairwise
products entering the matrices AN and BN−1 are identical,
too. This concludes the proof of Eq. (6).
Step 3: A direct consequence of Eq. (5) and the Lieb-

Sutherland theorem is that the spectrum of BN is given by
the one involving AN plus zd;N zero eigenvalues, where zd;N
is the number of excess B sites. Specifically, we have
z1;N ¼ 1, z2;N ¼ N, and z3;N ¼ NðN þ 1Þ=2; the general
expression for zd;N, Eq. (4), is derived in the Supplemental
Material [13]. Note that the eigenvector structure of the null
space (i.e., the zero modes) is nontrivial and generally
not known.
Step 4: From Eq. (6), it follows that

E2
nðNÞ¼

XN

μ¼nþ1

λðμÞ¼NðNþd−2Þ−nðnþd−2Þ; ð9Þ

and we obtain the previously proposed spectrum of H2
N .

Step 5: Finally, we show that the degeneracies of the
levels at nonzero energy are indeed given by Eq. (4). This
follows from the iterative construction: The zd;N zero
modes of size N become, upon increasing the size to
(Nþ1), the 2zd;N states with energy E2

NðNþ1Þ¼ λðNþ1Þ
(zd;N states on both of the sublattices A and B), while there
are zd;Nþ1 zero modes, etc. As a cross-check, we determine
the total number of states for size N: This is
zd;N þP

N−1
n¼1 2zd;n, which equals the number of lattice

sites, Md;N , and thus the Hilbert space dimension [13].
Hence, there cannot be additional energy levels. This
completes the proof.
Dimensional hierarchy.—It is instructive to consider a

dimensional iteration, Fig. 4. A chain (d ¼ 1) of size N has
one zero mode and consists of (2N − 1) sites. A triangle
(d ¼ 2) of size N consists of N chains (all with different
length, but one excess B site); thus, there are N zero modes
and

P
N
j¼1ð2j − 1Þ ¼ N2 sites. Similarly, a tetrahedron

(d ¼ 3) of size N consists of N triangles (all with different
size), yielding

P
N
j¼1 j ¼ NðN þ 1Þ=2 zero modes and

P
N
j¼1 j

2 ¼ NðN þ 1Þð2N þ 1Þ=6 sites. This dimensional
iteration allows us to recover the general results for zd;N,
Eq. (4), and for Md;N, as detailed in the Supplemental
Material [13]. It also enables a hierarchical construction of
the lattices, i.e., of the vectors δ̂j. In d ¼ 1, the two nearest-

neighbor displacements are δ̂1;2 ¼ �x̂. In (d − 1) dimen-
sions, the d unit vectors δ̂j satisfy δ̂j · δ̂j0 ¼ −1=ðd − 1Þ
for j ≠ j0. Now define δ̂0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d−2

p
δ̂j − d−1êd and

δ̂0dþ1 ¼ êd, where êd is the unit vector in the dth dimension.
Then fδ̂0j;…; δ̂0dþ1g are the nearest-neighbor unit vectors in
d dimensions.
Conclusion.—We have introduced and analyzed a family

of tight-binding models for specific finite-size lattices
in an arbitrary dimension d where strain-induced inhomo-
geneous hopping leads to perfectly degenerate PLLs. This
is remarkable in two respects. (i) Degenerate Landau levels

FIG. 4. Dimensional iteration of the d-dimensional simplices.
The d-dimensional simplex is constructed from N (d − 1)-
dimensional simplices. For instance, the triangle (d ¼ 2) consists
of a chain (d ¼ 1) with N ¼ 4, one with N ¼ 3, one with N ¼ 2,
and one with N ¼ 1. Correspondingly, the tetrahedron (d ¼ 3)
consists of several triangles. This dimensional dependence
manifests itself in the expressions for degeneracies, Eq. (4),
and the number of lattice sites [13]; see the text.

PRL 117, 266801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

23 DECEMBER 2016

266801-4



usually only follow from (approximate) continuum theo-
ries, while lattice models yield only approximately degen-
erate Landau levels. In contrast, here we have a lattice
realization of perfect degeneracies. (ii) While Landau levels
in d ¼ 2 may be realized using either magnetic field or
strain, there is no magnetic-field route in d ¼ 3. Hence, our
PLL construction provides a unique way of obtaining
perfectly flat bands in three dimensions. Upon including
electron-electron interactions, flat bands open the exciting
possibility of studying fractionalization in three spatial
dimensions, similar to what has been done in d ¼ 2 for
strained graphene [22–24]. This will be the subject of future
work. We note that pseudomagnetic fields and the asso-
ciated pseudo-Landau levels in d ¼ 1, 2, 3 could, in
principle, be realized in cold-atom settings [25,26], which
also enable tunable interactions.
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