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PAPER

Surface reconstruction in a tight-binding model for the topological
Kondo insulator SmB6
Pier Paolo Baruselli andMatthias Vojta
Institut für Theoretische Physik, TechnischeUniversität Dresden, 01062Dresden,Germany
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Abstract
For the strongly correlated topological insulator SmB6we discuss the influence of a 2× 1
reconstruction of the (001) surface on the topological surface states. Depending onmicroscopic
details, the reconstruction can be aweak or a strong perturbation to the electronic states.While the
former leads to aweak backfolding of the surface bands only, the latter canmodify the surface-state
dispersion and lead to a Lifshitz transition.We analyze the quasiparticle interference signal: while this
tends to beweak inmodels for SmB6 in the absence of surface reconstruction, wefind that the 2× 1
reconstruction can induce novel peaks.We discuss experimental implications.

1. Introduction

The material SmB6 has attracted significant attention
during recent years, as it has been proposed [1–3] to
realize a three-dimensional (3D) topological Kondo
insulator (TKI). In this fascinating class of materials, a
topologically non-trivial band structure emerges at
low energies and temperatures as a result of Kondo
screening of strongly correlated f electrons [4]. Similar
to weakly correlated topological insulators (TIs), the
surfaces of 3D TKIs display topological surface states
withDirac dispersion and spin-momentum locking.

Recent theory [5–7] suggests SmB6 to be also a
topological crystalline insulator (TCI), its band struc-
ture being characterized by three non-zero mirror
Chern numbers, ,k 0z

 =
+ ,kz

 p=
+ ,k kx y

 =
+ defined on

planes in the 3D Brillouin zone (BZ) which are invar-
iant undermirror operations. This allows us to further
classify topological surface states according to their
mirror-symmetry eigenvalues.

On the experimental front, a number of results
obtained on SmB6, e.g. from transport studies [8–10],
quantum oscillation measurements [11], angle-
resolved photoemission spectroscopy (ARPES)
[12–16] and spin-resolved ARPES [17], appear to be
consistent with the presence of Dirac-like surface
states. However, doubts have been raised about the
proper interpretation of ARPES data [18–20].

An important class of experiments, typically used
to verify the topological nature of TI surface states,
employ scanning tunneling spectroscopy (STS): the

surface-state quasiparticle interference (QPI) signal
allows one to deduce characteristic wavevectors for
spin-conserving elastic scattering due to defects and
thus directly probes the spin-momentum locking of
surface electrons. Unfortunately, to date, conclusive
QPI results on SmB6 are lacking. In fact, surface-sensi-
tive probes such as STS face the problem that SmB6
surfaces are hard to characterize experimentally: non-
reconstructed (001) surfaces are polar, such that sur-
faces typically reconstruct. A frequent case is the 2× 1
reconstructed (001) surface, as observed in large areas
in STS experiments [21, 22]. Such a surface is non-
polar, rendering it more favorable for the observation
of topologically non-trivial surface states. This
implies, however, that a proper theoretical modeling
must take into account the surface reconstruction, i.e.
the fact that one half of the top Sm rows are missing—
this has not been done in the theory literature to date.

It is the purpose of this paper to fill this gap: we
shall study the effects of surface reconstruction of the
electronic states of SmB6 on the level of tight-binding
models. In particular, we shall focus on the fate of the
topological surface states and on signatures in STS and
QPI experiments. Our main results can be summar-
ized as follows. Not unexpectedly, the importance of
the surface reconstruction depends strongly on the
effective strength of the electronic reconstruction
potential. The latter depends on various microscopic
details which cannot be reliably extracted from our
simplifiedmodeling, such that we rely on assumptions
here. In the case that the reconstruction potential is
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weak, its effects on QPI are minor despite the back-
folding of the surface bands, i.e. the effect of recon-
struction can—for most purposes—be ignored. If,
however, the reconstruction potential is sufficiently
strong, a Lifshitz transition—a change in the Fermi-
surface topology as a function of the Fermi energy—of
the surface states is expected. Its general properties can
be described by appealing to the presence of a mirror
plane which prevents band hybridization along certain
high-symmetry directions. This is analogous to other
TCI materials [23–25] (where a similar scenario
applies to non-reconstructed surfaces). Importantly,
such a 2 × 1 reconstruction can entirely modify the
tunneling signal, and new QPI peaks with a unidirec-
tional charactermay appear.

The remainder of the paper is organized as follows.
We will start with an introductory discussion about
SmB6 and its surfaces in section 2. Section 3 will then
qualitatively discuss the effect of surface reconstruc-
tion on the surface states. Concrete numerical results
for band structures as well as tunneling and QPI spec-
tra will be given in section 4. Section 5 summarizes the
results of ourwork.

2. SmB6: general remarks

To set the stage, we summarize the key aspects of SmB6
surfaces and the tight-binding modeling of both bulk
and surface electronic states, and we also highlight
general aspects of the surface reconstruction.

2.1. SmB6 (001) surface
(001) Surface terminations. SmB6 crystallizes into a
simple cubic lattice, with the lattice constant
a 4.130 = Å. Crystals cleave preferentially along the
(001) direction. This surface, however, presents many
challenges from both experimental and theoretical
points of view, since it can come with many different
terminations (Sm [21, 22, 26], B6 [21], Sm recon-
structed [21, 22], single B [26], six or eight B donut-
like [26], disordered [21, 22]). All of these have
different electronic properties, and are both difficult to
control experimentally and to describe in a coherent
fashion theoretically.

In particular, simple Sm and B6 terminated sur-
faces are polar, which has led to the suggestion that the
observed surface conductance might be carried by
non-topological surface states [18]. STS experiments
[21, 22], however, show that, while these nominally
polar surface regions can be observed, they are some-
what rare and small, being electrostatically unstable.
The most common situation is instead the one of a
reconstructed surface, in which, on average, one half
of the terminating atoms are missing, restoring the
electrostatic neutrality.

2× 1 reconstructed (001) surface. Even though this
reconstruction is most often disordered, large regions
of ordered, Sm terminated, 2 × 1 reconstructed (001)
surfaces can be observed [21, 22]. In these areas every
second Sm row on the top layer is missing, as shown in
figure 1. Due to the absence of macroscopic surface
charges, this is the experimental scenario which most
closely resembles the idealized (001) surface which is
usually described by tight-binding-based theoretical
models [1–3, 6, 27–29].

Impact of reconstruction on the surface states. The
removal of one half of the atoms in the top layer can-
not be considered a harmless process; this is especially
true if we consider the surface states, whichmostly live
in the few top layers. Due to relaxation effects and the
removal of neighboring atoms, even layers below the
reconstructed one are expected to be influenced by the
process. Here, the penetration depth λ of the surface
states plays an important role: if a 1,0l  these
states live on many planes, and a strong perturbation
on one or a few of them has a weak impact; if instead

a 1,0l ~ they live on just a few top layers, and a
strong perturbation there can have a relevant effect.
Using a simple model [30], it has been found that the
penetration depth is of the order of a few atomic layers,
suggesting the second possibility to be relevant.

2.2.Modeling
Even though it is generally agreed that the destruction
of one or more of the top atomic layer(s) via disorder
simply shifts the topological surface states deeper in
the bulk [31, 32], not much is known about a strong
but periodic perturbation, as in the 2 × 1 reconstruc-
tion that we consider here. It is therefore the aim of

Figure 1.Pictorial view of the (a)non-reconstructed (001) surface and (b) of the 2× 1 reconstructed one; we only show Smatoms, and
in (b)wehighlight with two different colors the two sublattices a and b.
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this paper to discuss the effect of this scenario on the
electronic surface states. To this end, we shall employ
an eight-orbital tight-binding model, following
[3, 6, 29] (see the appendix for details).

Bulk mean-field approach.We recall that SmB6 is a
strongly interacting material, in which local f
moments are coherently screened by conduction d
electrons to lead to a Kondo insulating phase. At low
temperatures, this physics can be captured using a sin-
gle-particle description with renormalized parameters
[33]: in particular, the f kinetic energy is strongly sup-
pressed, by a factor that the dynamical mean-field the-
ory and the Gutzwiller approximation find to be ∼10
[2, 27, 28]. Simpler theories such as mean-field slave
bosons [33] can qualitatively reproduce this reduction,
but with a smaller renormalization factor of ∼2
[3, 29]. Instead of describing interaction-induced
renormalizations explicitly, here we will work directly
with renormalized parameters [34] that are designed
to match qualitatively the computed band structure
and themeasured ARPES dispersion.

Role of surfaces and Kondo breakdown. In the pre-
sence of spatial inhomogeneities, the interaction-
induced renormalizations will be position-dependent
[35]. In particular, Kondo screening can be appreci-
ably reduced on a surface, leading to an effective
decrease of the Kondo temperature. This can generate
a so-called ‘Kondo breakdown’ [36], in which surface
moments are no longer Kondo screened: they can be
free, order magnetically, or be possibly still screened
but with a Kondo temperature smaller than the bulk
one. Decoupled moments lead to an increase of the
Dirac velocity, and to a displacement of the Dirac
energy deep in the valence band, which resembles
experimental results indicating ‘light’ rather than
‘heavy’ surface states. In [36] the Kondo temperature
was estimated to drop by roughly a factor of 3, as a
consequence of the surface Sm atoms having one first
nearest neighbor (NN) Sm atom less than in the bulk.
In the presence of a 2× 1 reconstruction, atoms on the
top row will have three neighbors less: in this case, the
reduction of the hybridization, hence of the Kondo
temperature, at the surface would be even larger.

However, an analysis [6, 29] of tight-bindingmod-
els built to fit ab-initio calculations indicates that the
bulk gap is mostly generated by second NN hybridiza-
tion, and in [37] a model with third NN hybridization
only seemed to well reproduce neutron-scattering
data. This then leads to a more complex scenario,
where the reduction of the hybridization of the surface
atoms is less drastic. We summarize the count of dif-
ferent NNs in table 1. While we will not model Kondo
breakdown explicitly, we will return to this aspect in
the next paragraph.

Additional surface scattering potential. To for-
mally eliminate half of the atoms on layer 1, we
introduce a virtually infinite reconstruction poten-
tial Vrec acting on every second row (in practice we
take V 100rec = eV). With Vrec being active, we need

to introduce an additional surface scattering poten-
tial E E Ed fD = D = D of a few hundredmeV, acting
on the d and f orbitals of the remaining atoms in layer
1, in order to qualitatively reproduce the surface-
state dispersion as seen by ARPES (large Dirac velo-
city, Dirac energy in the valence band). For f elec-
trons, which have a bandwidth of a few meV, this
value turns out to be very close to the infinite scatter-
ing potential of the Kondo breakdown scenario

E ,fD = ¥ in which surface f electrons are no more
part of the coherent Fermi liquid. Even though
quantitative details might vary between our
approach and the Kondo breakdown one, most of
the features we are going to describe are general, and
independent of microscopic details. We also remark
that, while a large EfD is needed to reproduce light
surface states, EdD is introduced to further adjust
the position of the Dirac energy, hence the Fermi
momentum kF (that we try to obtain as close as possi-
ble to experiments), andmay not be needed for some
choices of the parameters (see section 4.3).

2.3.Qualitative effects of the reconstruction
In the following we choose a coordinate system as
shown in figure 2, with ẑ being perpendicular to the
surface and ŷ being parallel to the surface rows.

Surface BZ.A 2× 1 reconstruction doubles the size
of the primitive surface unit cell in the x̂ direction and
introduces two sublattices, a and b with and without a
top row, respectively, as shown in figures 2(a)–(d). The
2D surface BZ, originally a square for the (001) surface,
shrinks by one half in the x̂ direction according to the
reconstructionwavevector Q , 0 ,( )p= as indicated in
figures 2(e)–(f). Here we will use the term ‘2nd BZ’ for
the difference between the original (‘large’) and the
folded (‘small’)BZ.

Spectral weights. A (weak) reconstruction causes a
backfolding of bands which leads to replicas (or sha-
dow bands) shifted by Q w.r.t. the original bands and
with reduced spectral weight. Experimentally, a weak
replica of the X̄ cone has been observed at Ḡ [13, 14] in
ARPES, even though the origin of this signal is not
totally clear (for example, having polycrystalline sam-
ples, one would expect to observe the replica of the X̄ ¢
cone at ,Ḡ too).

Within our model calculations, we can quantita-
tively define the spectral weights in the following way.

Table 1.Number of Smneighbors for Sm atoms (A) in the bulk, (B)
on the (001)non-reconstructed surface, (C) in thefirst [(D, E):
second] rowon the 2× 1 reconstructed (001) surface; different
positionsA–E are illustrated in figures 2(a)–(d).

Atom 1stNN 2ndNN 3rdNN

A (bulk) 6 12 8

B (non-rec. surface) 5 8 4

C (rec., top row) 3 4 4

D (rec., below themissing row) 5 10 8

E (rec., below the existing row) 6 10 4
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The wavefunction z mk, , ,n ( )y a of a single-particle
state with energy En for a system in slab geometry
depends on the momentum k kk ,x y( )º in the small
BZ ( k2 2,x p p- ky p p- ), on the layer
index z, on the orbital index α, and on the sublattice
index m a b0 , 1 .( ) ( )= Its spectral weight in the large
BZ is given by:

w n z e z mK k, , , , , , , 1
m

K m
n

0,1

i

2

x( ) ( ) ( )åa y a=
=

with K KK ,x y( )º from the large BZ
( K K,x y p p- ), and k its backfolded partner,
k K Qmod .= We can define a global (i.e. orbital-,
layer-, and momentum-integrated) energy-resolved
weight separately for the 1st or 2ndBZ:

w E w n z L E EK, , , ,

2

BZ

n z

st
n

K

1

, , ,

1

st1
( ) ( )( )

( )

å a= -
a

w E w n z L E EK, , , ,

3

BZ

n z

nd
n

K

2

, , ,

2

nd2
( ) ( )( )

( )

å a= -
a

where L is a Lorentzian kernel, and K st1 means
K 2,x∣ ∣  p while K nd2 means K 2.x∣ ∣ p> We can
also define a layer-resolvedweightwz,

w E w n z L E EK, , , , 4z
n

n
K, ,

( )( ) ( ) ( )å a= -
a

and decompose it into contribution from
the 1st and 2nd BZ by limiting the sum over K
accordingly, to yield w Ez

BZ1( ) and w E ,z
BZ2 ( )

with w E w E w E ,z
BZ

z
BZ

z
1 2( ) ( ) ( )+ = and w E

z z ( )å =
E w E w E ,BZ BZ1 2( ) ( ) ( )r = + where ρ (E)=

L
nå E En( )- is the density of states (DOS).
Effective reconstruction potential. To quantify the

effect of the reconstruction on the surface states, we
introduce the qualitative notion of ‘effective recon-
struction potential’ (ERP) strength which is based on
spectral weights. ERP is a dimensionless quantity

Figure 2. Sketch of the Sm sites for a (001) surface (a)–(c)without reconstruction and (b)–(d)with a 2× 1 reconstruction. In the first
case ofC4v symmetry, fourmirror planes are present (corresponding to operatorsMx,My, M ,x y- Mx y+ ), while in the second case, of
C2v symmetry, onlyMx andMy remain; in this second case we depict the two sublattices with different colors. Corresponding two-
dimensional (2D)BZs (e)without reconstruction (‘large’BZ) and (f)–(g)with reconstruction; in this second case the BZ is shrunk
along the x direction (‘small’BZ), and the X̄ cone is folded at Ḡ (f); however, forweak reconstruction, it is useful to use the original
large BZ (g), withweak band replicas appearing as a consequence of backfolding (dotted ellipses). In the non-reconstructed case high-
symmetry points are labeled as 0, 0 ,¯ ( )G = X , 0 ,¯ ( )p= X 0,¯ ( )p¢ = and M , ,¯ ( )p p= andmirror planes are k 0,x = k 0,y =
k ,x p= k ,y p= k k ,y x= + k k ,y x= - which are pairwise equivalent byC4v symmetry. In the reconstructed case, high-symmetry
points are labeled as 0, 0 ,¯ ( )G = X 2, 0 ,2̄ ( )p= Y 0,¯ ( )p= and M 2, ,2¯ ( )p p= andmirror planes are k 0,x = k 0,y = k 2,x p=
k .y p=

4
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between 0, implying no effect, and 1, implying max-
imal effect.

We start from an idealized situation, in
which the reconstruction potential only affects
wavefunctions in the first layer z = 1. On this
layer, the weight in the 1st and 2nd BZ are
equal, w n zK, , 1,st1( )a= = w n zK, , 1,nd2( )a= =
w n zK, , 1, 2,( )a= as only the m = 0 term in
equation (1) survives. In all other layers, the weight (of
a single state) will be totally either in the 1st or in the
2nd BZ, according to where it was without the recon-
struction. Hence, the ratio of the layer-integrated
weights in the 1st and 2nd BZ (i.e. the relative
weight of replicas) can be used to infer the weight of
the surface states on the top layer. Specifically, for a
band located in the 2nd BZ without reconstruction
(like the X̄ cone), with w n zK, , 1, 0,st1( )a> =
w n zK, , 1,nd2( )a> = w n zK, , 1, 0,( )a> ¹ the
normalizedweight on thefirst layer can bewritten as:

w
w w

w w
w

2
, 0 1. 5

BZ

BZ BZ1
1

1

1 2 1 ( ) 
r

¢ º =
+

¢

Wenote that the above assumption is not strictly valid:
we found that the weight of the X̄ cone can be non-
negligible in the 1st BZ even for deeper layers z 1,>
even though no explicit reconstruction potential is
present there, see section 4. Nevertheless, we shall use
w1¢ from equation (5), evaluated for a surface state at
the Fermi level, as a measure of the ERP.We will see in
section 4 that this value can also be cone-dependent.

How strong is the reconstruction? We now briefly
discuss whether existing experimental or theoretical
data are sufficient to infer the effective strength of the
reconstruction potential.

Experimentally, ARPES data indicates that band
replicas are weak and hence the ERP, as measured by
equation (5), is small [13, 14]. This is, however, diffi-
cult to reconcile with our model calculations which,
under essentially all circumstances, show that the
removal of every second Sm atom in the surface layer
is a strong perturbation to the surface states, with large
ERP (see section 4 for details). Possible reasons for this
discrepancy are: (i) only a fraction of the surface pro-
bed by ARPES features an ordered 2× 1 surface recon-
struction, thus reducing the ERP in the collected
ARPES signal, or (ii) the surface states in the real mate-
rial tend to be expelled from the first layer(s) by some
other mechanism, such as Kondo breakdown, or (iii)
the penetration length of the surface states is too small
in the model calculations. Issue (i)may be investigated
with small-spot ARPES experiments, and we will not
discuss this further. For (ii), we found that the intro-
duction of the surface scattering potential, EdD and

E ,fD to model this expulsion often enhances rather
than decreases the ERP, but this is a model-dependent
statement.We note that ARPESmay not probe the full
weight of the surface states if their penetration length
is larger than that of the ARPES probe, but this is unli-
kely to explain the above discrepancy. The issue (iii) of

correctly modeling the surface-state penetration is
delicate. The problem of the excessive reduction of the
bulk gap using renormalized parameters (with respect
to density-functional theory ones, noted for example
in [38]) has a direct impact here: if one wants to match
the experimental ARPES gap ∼20 meV using renor-
malized parameters, one has to increase the value of
the hybridization, effectively decreasing the penetra-
tion length of the surface states, and, as a consequence,
enhancing the strength of the ERP. The problem is
further complicated by 7G states [6, 27–29], whose
inclusion would reduce the value of the bulk gap (in
our model, we will ignore these states, but a more
detailed analysis would need to include them).

We conclude that we are not in the position to fully
resolve this discrepancy, and further work—both the-
oretical and experimental—is needed to do so.
Instead, we will take a pragmatic point of view and
analyze the fate of the surface states provided that the
ERP is sufficiently strong enough to generate obser-
vable effects.

3. Surface stateswith reconstruction

In this section we qualitatively analyze the effect of
surface reconstruction on the in-gap surface states,
based mainly on symmetry arguments. Numerical
examples, taking into account details of microscopic
modeling and testing these predictions, will be pro-
vided in section 4.

3.1. Symmetries and dispersion
Energies close to the Dirac point. If the Dirac energies
were close to the Fermi level, the Fermi wavevector kF
of the cones was small, and essentially the only effect of
reconstruction would be the folding of bands into the
small BZ, as shown infigures 2(f)–(g) (the same applies
at all energies for weak ERP).

Overlap of X̄ cone with its replica. Away from the
Dirac energies, Dirac cones and their replicas will start
to overlapwith each other. ARPES data on SmB6 shows
that the only relevant overlap is the one of the X̄ cone
with its replica: k2 F of the X̄ cone along the X̄ ¯- G
direction is estimated to be [13] around 0.80Å−1, while
the original BZ has a halfwidth a 0.760p = Å−1.
Thus, we expect that, due to the reconstruction, the X̄
cone should overlap and hybridize with its replica for
energies close to the Fermi energy; we will ignore simi-
lar effects which might affect the X̄ ¢ (now Ȳ ) and Ḡ
cones at higher energies.

Hybridization, the role of mirror symmetry, and the
Lifshitz transition. We now discuss general aspects of
the coupling between the X̄ cone and its replica which
are largely independent of microscopic details; see
figure 3. A key ingredient is the reflection symmetry
with respect to the xz plane, described by operatorMy:
states with ky = 0 are invariant under My [5]. Along
this direction the two cones have the smallest distance,

5
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and the overlapping states have opposite mirror eigen-
values i (their exact value depends on the sign of the
mirror Chern number k 0z

 =
+ but is irrelevant to the

argument). Hence, the cones cannot hybridize for
ky = 0 (as long as mirror symmetry is preserved),
instead they cross at E E .cross=

In contrast, hybridization is allowed for k 0.y ¹
We observe that for energies Ek corresponding to
momenta k 2, p the X̄ cone deforms (E E1= in
figure 3) along the ky = 0 direction, until a Lifshitz
transition at E E Emerge cross= < is achieved: the X̄

cone and its replica merge at k2, ,y
0( )p where in gen-

eral k 0.y
0 ¹ As a consequence, a pocket centered at

X 2, 02¯ ( )p= is created; we note that the minimum
along X2¯ - M2¯ is actually a saddle point. When the two
cones cross at E Ecross= along the ky = 0 direction,
the X2¯ pocket area vanishes. At higher energies
E E ,cross> the X2¯ pocket grows again, such that a new
Dirac cone is created at the X2¯ pocket from the cross-
ing of the two original Dirac cones. We note that for
vanishing scattering potential, the two cones always
cross without hybridizing: this yields E E ,merge cross=
and the two branches along the X M2 2¯ ¯- direction
(k 2x p= ) are degenerate. Finally, for the case with
reconstruction and broken mirror symmetry, a gap is
opened at X .2¯

Analogy to TCIs. The hybridization behavior in
figure 3 is similar to what happens on the (001) surface
of face-centered cubic TCIs such as Pb x1- SnxSe [23],
Pb x1- SnxTe [24], and SnTe [25]. For these materials,
for which the standard 2 indices are zero and which
are not TIs in the usual sense, mirror Chern numbers
are non-zero, and predict two pairs of Dirac cones
along the kx = 0 and ky = 0 directions of the 2D BZ.
These cones are at , 0k( )p d and 0, ,k( )p d where
the BZ is defined by k k, .x yp p- < < Each pair of
conesmerge around , 0( )p or 0,( )p through the same

mechanism that we have described here, and which
has been also predicted [5] for the (110) surface of
SmB6. The similarity lies in the non-trivial topology of
the band structure and the presence of mirror planes,
which create states with different mirror eigenvalues
which cannot hybridize along specific directions.

However, in the TCI case, no surface reconstruc-
tion is needed to generate the pair of cones. Also, the
role of symmetries is reversed: in standard TCIs mir-
ror symmetry protects cones at 0, ,k( )p d while
parity invariants predict two Dirac cones at 0, .( )p In
our case we identify 0,( )p with X2¯ and 0, k( )p d
with Ḡ and X ,¯ but now mirror symmetry protects the
cones at X ,2¯ while parity invariants predict cones at Ḡ
and X .¯

ARPES experiments on TCIs have verified
[23, 24, 39] the surface-state behavior as depicted in
figure 3. While a similar verification might be possible
in SmB6, we note a few caveats: visible hybridization
effects require the ERP to be strong; as noted in the
previous section its magnitude is unknown. More-
over, the features might be beyond the present ARPES
energy and momentum resolution, and finally the
cone crossing might occur above the Fermi energy,
rendering ARPES ineffective.

3.2.Direction of spin
So far, the analysis of crossing Dirac cones was based
on the presence of a mirror plane, but was otherwise
independent of microscopic details. We now take a
step further and compute themirror-symmetry eigen-
values and the expectation value of the electronic spin
operator. As shown in [6, 7, 40, 41], mirror-symmetry
eigenvalues are determined by the sign of mirror
Chern numbers (see appendix). While four TCI
phases with 2,k 0z

 = =
+ 1,kz

 = +p=
+ 1k kx y

 = =
+

are possible in principle, we restrict the analysis to
the 2,k 0z

 = +=
+ 1,kz

 = +p=
+ 1k kx y

 = -=
+ phase,

Figure 3. Lifshitz transition for the X̄ cone. (a)Dispersion along the X M2 2¯ ¯ ¯G - - lines (the Ḡ cone is a spectator). At E Emerge= the
X̄ conemerges at k k k, 2,x y y

0( ) ( )p=  with its own replica, centered at ,Ḡ giving rise to the Lifshitz transition, while at E Ecross=
the two cones cross along the ky = 0 line: along this direction they cannot hybridize, having differentmirror-symmetryMy

eigenvalues.We also reportmirror eigenvalues i, and draw the spin expectation value (SEV)with green arrows (for solid arrows the
relation tomirror eigenvalues is univocal, for the dotted ones it ismodel dependent). (b) Schematic evolution of the X̄ cone and of its
replica across the transition; with a dotted ellipsewe showhow the coneswould evolvewithout reconstruction potential V .rec
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which—as we have argued in [6]—is the one which
has experimental relevance for SmB6. In figure 4(a)we
report the mirror-symmetry eigenvalues for the non-
reconstructed surface [6].

Mirror-symmetry eigenvalues with reconstruction.
In the reconstructed case, there are four distinct mir-
ror planes in the 2D BZ, namely k 0, 2x p= and
k 0, ;y p= the former commute with Mx, the latter
with My (see figures 2(b), (d), and (f)). We can there-
fore assign mirror eigenvalues to the states crossing
these planes. For planes k 0,x = k 0,y = ky p=
everything is equivalent to the non-reconstructed case,
and we can transfer the eigenvalues directly from
figure 4(a) into figure 4(b). For energies below E ,merge

no states cross k 2,x p= and no further work is nee-
ded. Above E ,merge however, four states are crossing
the k 2x p= plane, two for k 0,y > and two for
k 0.y < Concentrating on k 0y > we find that below
Ecross both states have the eigenvalue i,- see
figure 4(c), simply because they belong to the same
band, see figure 3(a). In contrast, above E ,cross

figure 4(d), one of the k 0y > states has the eigenvalue
i,+ and the other i,- see figure 3(a), since they now

belong to different bands; the same happens for
k 0,y < see figures 4(c) and (d).

SEV. Since mirror-symmetry eigenvalues are not
directly measurable, we now concentrate on the SEV,
which depend on these eigenvalues and is accessible in
spin-resolved ARPES experiments. For atomic d and

8G states, that we consider here, the relation between
the mirror eigenvalues and the SEV is straightforward,
and it is the same one as for free spins [6]: if the eigen-
value is i,- the SEV points along x+ for Mx and y+
forMy, and vice versa for the eigenvalue i.+

This holds also for lattice states with a definite
momentum, when symmetry operations act like they
do in the non-reconstructed case. This applies to the
states k 0,x = k 0,y = or ky p= —hence, on these
planes, the SEV is identical to the non-reconstructed
case—but not for the states at k 2x p= because this is
not a BZ mirror plane in the absence of
reconstruction.

Let us analyze the latter case of k 2x p= in more
detail. For the two sublattices a and b we define the
mirror eigenstates according to M a ai ,x ∣ ∣ñ = + ñ+ +

M b bi ,x ∣ ∣ñ = + ñ+ + and we build Bloch states ka∣ ñ+

and kb∣ ñ+ with kk 2, .y( )p= When we act with the

mirror operatorMx on ka∣ ñ+ we get M k ki ,x a a∣ ∣ñ = + ñ+ +

but for states on sublattice b we pick up a minus sign:
M k kix b b∣ ∣ñ = - ñ+ + [the opposite would happen if we
took a mirror operator Mx centered on b rather than
on a in figures 2(b)–(d)]. This can be realized by obser-
ving that Mx, when centered on sublattice a, sends
states a in the n primitive cell into states a in cell n ,( )-
while b states at n are sent into b states at n 1 :( )- - so,
the effect of Mx on kb∣ ñ states carries an additional
e k2i x- factor, which is −1 for k 2.x p= As a con-
sequence, states k∣ ñ with M k kix ∣ ∣ñ = + ñ and

kk 2, y( )p= are composed by states a∣ ñ+ on the sub-
lattice a, and by states b∣ ñ- on sublattice b, so there is
no general rule for their SEV given the mirror
eigenvalues. We can however state that, if we restrict
the analysis to the top layer, where no b states are pre-
sent, the eigenvalue i- corresponds to a SEV pointing
along x,ˆ+ and vice versa for states with i.+ When
including all layers, however, we have to resort to
numerical diagonalization. In our model we find that,
close to the Lifshitz transition, the total contribution
fromother layers is opposite to the one from layer 1, so

Figure 4.Mirror-symmetry eigenvalues i and SEV for (a) the non-reconstructed and (b–d) the reconstructed BZ at different
energies, see figure 3.Mirror eigenvalues and SEVnot reported in panels (c) and (d) are the same as in panel (b).
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the SEV for i- states points along x;ˆ- at higher ener-
gies, however, we observe a transition to a situation
where the SEV for i- states points along x̂+ (see
figure 3(a)), in agreementwith the results from layer 1.

4.Numerical examples andQPI

In this section we provide numerical examples, using
explicit tight-binding calculations, of the scenario
depicted in the previous section, together with simu-
latedQPI patterns.

4.1. Introduction toQPI
Generalities. QPI can be used as a probe of the
topological character of surface states [42–44], owing
to their spin texture: non-magnetic impurities cannot
induce transitions between states which are Kramers
partners. Also, when mirror symmetries are present,
impurities which do not break these symmetries
cannot induce transitions between states with opposite
mirror eigenvalues [45]. In the following, we will
exclusively consider impurities which do not break
time-reversal and mirror symmetries; more compli-
cated impurities may induce additional QPI peaks
[44, 45]whichwewill not discuss here.

In general, peaks in the QPI signal are expected for
pairs of stationary states [46] (states which have the
same tangent in the BZ to the isoenergy contour), for
which no selection rule forbids an elastic scattering
process. For TI surface states, no peaks are expected
from intracone scattering as long as the dispersion is
linear, since pairs of stationary points are time-reversal
conjugates in the Dirac Hamiltonian [44]. Peaks can
arise when the dispersion deviates from linear, as it is
known to happen in TIs such as Bi2Ti3 due to
hexagonal warping [42].

Intercone scattering and QPI on SmB6 non-recon-
structed (001) surfaces. Intercone scattering is less
restricted by selection rules and may hence give rise to
strong QPI peaks [35]. However, for the non-recon-
structed (001) SmB6 surface, we showed in [6, 29] that
the experimental spin pattern, corresponding to
the 2,k 0z

 = +=
+ 1,kz

 = +p=
+ 1k kx y

 = -=
+ mirror

Chern numbers and to a positive winding number
w sgn k k0z z

( ) º p=
+

=
+ on the X̄ cone, leads to a strong

suppression of the intercone scattering, implying vir-
tually no observable QPI peaks. This most likely
explains why STS experiments on SmB6 have not
found noticeableQPI signals to date [26, 47].

QPI in SmB6 with reconstruction. A key question is
whether QPI peaks can appear as a consequence of
surface reconstruction. As noted above, the question
makes sense only for sufficiently strong ERP, other-
wise the non-reconstructed picture, which shows no
peaks, still holds to be a good approximation. We can
expect new QPI scattering channels in the energy
region around the Lifshitz transition: first, because for
energies below the transition an appreciable warping

of the X̄ cone is achieved, second, because above the
transition the topology of the Fermi surface changes,
with the appearance of the new pocket at X .2¯ Concrete
calculations are required to see whether these pre-
requisites yield a noticeable QPI signal—these will be
presented inwhat follows.

4.2. Numerical results: significantwarping
We employ the model described in the appendix,
taken from [6, 29], which is designed to match as
closely as possible the calculated bulk band structure,
and to reproduce the experimentally observed surface-
state dispersion and spin pattern. Without surface
reconstruction it yields no sharp QPI peaks, and
consequently the appearance of any QPI peaks can be
traced to the reconstruction effects. For a specific set of
parameters which produces significant warping near
the cone crossing, we report the band dispersion for a
slab geometry in figure 5, the corresponding DOS in
figure 6, and constant energy cuts through the ARPES
andQPI signals in figure 7. Here, we define the ARPES
signal as the sum over the weights from all orbitals
[34], and add the signal from layers 1 and 2,

A E w n z L E EK K, , , , , 6
n z

n
, 1,2

( )( ) ( ) ( )å å a= -
a =

expressed using theweight defined in equation (1).
Dispersion and DOS. In the dispersion represented

in figure 5, we can see two cones at ,Ḡ and one cone at
Y .¯ For completeness, we present in figure 5(a)
the case without reconstruction, V 0,rec = and in
figure 5(b) the case with reconstruction but no surface
scattering potential, E 0.D = In what follows we
mainly concentrate on figure 5(c), which shows the
case with both reconstruction and surface scattering
potential.

The weight distribution in figures 7(a)–(d) shows
that the Ȳ cone is weakly affected by the reconstruc-
tion, and lives mostly in the 1st BZ: for this cone the
ERP is weak. In contrast, the two cones present at Ḡ
are strongly hybridized with each other, and have
appreciable weight both in the 1st and in the 2nd BZ
even when considering the signal from deeper layers:
for these cones the ERP is strong. Their origin is from
Ḡ and X̄ in the non-reconstructed BZ; in analogy to
the experimental situation we identify as ‘Ḡ’ the cone
with Dirac energy close to the top of the valence band
and a smaller Fermi momentum, and as ‘ X̄ ’ the cone
with lower Dirac energy and a larger Fermi momen-
tum (seefigure 3).

We can observe that the X̄ cone undergoes the Lif-
shitz transition that we described in the previous
section, while the Ḡ cone remains inert. The saddle
point at Emerge gives rise to a peak in the DOS (strictly
speaking, a logarithmic divergence), as shown in
figure 6. Parenthetically, we note that no cone crossing
is observed inside the gap for significantly smaller
values of the surface scattering potential ED (see for
example figure 5(b)).

8

2DMater. 2 (2015) 044011 PPBaruselli andMVojta



QPI. To illustrate the QPI effects, we consider a
single impurity (corresponding to the dilute limit) and
employ the standard T matrix technique to compute
the Fourier-transformed local DOS in the presence of
elastic scattering; for details see the appendix. We

report two sets of results: in figures 7(e)–(h) we show
the QPI signal from layer 1, which has equal weight in
the 1st and in the 2nd BZ due to the missing b atoms.
In contrast, in figures 7(i)–(l) the signal is constructed
from the sum of the local DOS in layers 1 and 2, the

Figure 5.Dispersion of a 15-layer slab along the X M Y2 2¯ ¯ ¯ ¯ ¯G G path for (a) V 0,rec = E 0;D = (b) V 100 eV,rec = E 0;D = (c)
V 100 eV,rec = E 0.5 eV.D = - The Fermi energy has been placed in themiddle of the bulk gap. Line colors encode the addedweight
on layers 1 and 2; for case (c)we also label the surface states withmirror-symmetry eigenvalues i. Wecan observe two cones at Ḡ and
one at Y .¯ In (c), E 4merge » meVand E 7cross » meV, the latter corresponding to theDirac cone crossing at X .2¯ Horizontal dashed
lines correspond to the energies of the cuts infigure 7.

Figure 6. Local DOS for d and f orbitals on atomsC andD fromfigure 2, for parameters as infigure 5(c). The peak at E 4merge » meV
(arrow) originates from the Lifshitz transition; the peak around−17 meV is the bulk f band.Dotted vertical lines around±9 meV
denote the bulk band gap. The fDOSon atomD is rescaled down by a factor of 200.
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latter scaled down by a factor of 10, to account for its
larger distance from the tip. A more refined analysis
might include interference contributions from the d
and f channels [29, 48] as well as from layers 1 and 2,
butwould lead to the same qualitative results.

It can be observed that far from the Lifshitz transi-
tion no QPI signals, apart from an incoherent peak at

,Ḡ are present (figure 7(a)); this is the same result as
without reconstruction. At higher energies, slightly
below the Lifshitz transition a weak intracone scatter-
ing signal is generated as a consequence of cone warp-
ing (wavevector q1 in figure 7(b)), while above the
transition two scattering channels appear to be active,
both involving the newly formed X2¯ cone. In the first
one the scattering is towards the newly formed band
coming from the merging of the X̄ cone with its
replica, denoted q2 in figure 7(d), and which involves
states with the same mirror eigenvalue with respect to
Mx on the k 2x p= plane; this is analogous with the
results of [45] for Pb x1- SnxTe. The second one is
towards the Ȳ cone (q3); in some cases we also observe

a weak signal coming from the scattering to the Ḡ
cone. We stress, however, that the intensities (both
absolute and relative) of these new QPI peaks depend
on the exact choice of the model parameters, as well as
on the parameters used to simulate the tunneling pro-
cess from the tip to the surface.We also note that these
peaks arise primarily from the spectral weight in the
first layer, which is mostly of d character. Since d states
contribute a small fraction of the total weight of the
surface states, their QPI peaks may—depending on
details of the tunneling process—be masked by an
incoherent background arising from f states. This is
illustrated in figures 7(i)–(l) where we have included a
contribution from the second layer (which does carry f
weight); as a result, most QPI peaks dramatically lose

contrast. Even under these circumstances it is still pos-
sible to observe aweak signal from the q1 channel.

4.3. Numerical results: other cases
We have repeated the same calculations for various
other sets of parameters, and we describe a few
representative cases inwhat follows.

Kondo breakdown. To model the Kondo break-
down in the top layer, we take E 100 eV,fD = which
is much larger than all other energy scales. Combined
with the same E 0.5 eV,dD = - we obtained numer-
ical data (not shown) that is almost indistinguishable
from the example shownbefore infigure 7.We remark
that a finite EdD is needed in our set of parameters to
increase the kF and allow for the Lifshitz transition, but
is not needed for all sets of parameters (see below).

Reduced hybridization versus kinetic energy. If we
reduce the hybridization with respect to the f kinetic
energy, while keeping approximately the same gap
(t t1.9 ,f f v v0.5 ), the QPI signal strength is
strongly reduced, as shown in figure 8. In particular,
for energies below the Lifshitz transition, we observe
no sign of nesting. This can be reasonably linked to the
slightly increased penetration length of the surface
states, whichmakes reconstruction a weaker perturba-
tion. In general, the appearance of QPI peaks and in
particular their strength is found to be parameter-
dependent.

Surface scattering potential E 0.dD = For a similar
set of parameters (see appendix) we are able to get a kF
close to the experimental value and realize a Lifshitz
transition with E 100fD = eV and E 0.dD = The
resultingQPI signal (not shown) is similar to that indi-
cated infigure 8.

Small reconstruction potential. For a smaller recon-
struction potential V 0.2 eVrec = and V 0.5 eV,rec =
figures 9 and 10, the ARPES signal displays weak

Figure 7. (a–d)ARPES signal from layers 1 and 2, equation (6), (e–h)QPI signal from layer 1, and (i–l)QPI signal from layers 1 and 2
(divided by 10), all for parameters as infigure 5(c). Arrows illustrate scattering wavevectors. Different columns correspond to different
energies: (a, e, i): far below the Lifshitz transition, yielding no coherentQPI signal; (b, f, j): slightly below the transition, where aQPI
signal at q1 arises fromwarping (the solid and the dotted green arrows are equivalent up to an inverse lattice vector); (c, g, k): at the
transition; (d, h, l): above the transition, with new scattering channels q2,3 involving the newpocket at X .2¯ TheQPI signal is
normalized to the local DOS at the Fermi energy in the first layer.
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replicas of the cones appearing translated at the recon-
struction wavevector Q , 0 .( )p= In this case the QPI
signal is very weak and is almost indistinguishable from
the caseV 0,rec = which, as remarked, showsnopeaks.

5. Conclusions

In this paper we have studied the role of a periodic 2× 1
surface reconstruction on the topological surface states
of SmB6 using a simple tight-binding model. We
qualitatively distinguish two cases, according to whether
the ERP acting on the surface states is weak or strong. A
weak ERP only produces a backfolding of surface bands,
such thatweak replicas of the originalDirac cones appear
shifted by the reconstructionwavevector Q , 0 .( )p= In
contrast, a strong ERP induces a particular crossing of

Dirac cones, accompanied by a Lifshitz transition of in-
gap states and the formation of a new Dirac cone,
protected by mirror symmetry, at the edge of the small
BZ. We have provided a numerical example for the case
of strongERP, and shown thatnewQPIpeaks can appear
as a consequenceof this transition.

The ERP itself depends mostly on the weight of the
surface states on the first atomic layer(s), which in turn
depends onmicroscopic details such as the penetration
depthλ of the surface states, or the presence of a surface
scattering potential. Our tight-binding approach can-
not fully predict the strength of the ERP because
detailed information on the structure of the recon-
structed surface would be required. Ab-initio calcula-
tions could help, but to our knowledge no systematic
studies have been conducted on reconstructed SmB6

Figure 8. Same asfigures 7(a)–(h), but for a set of parameters with a reduced ratio between the hybridization and f kinetic energy, see
text for further details. This case yields no structuredQPI signal.

Figure 9. Same asfigures 7(a)–(h), but for aweak reconstruction potential V 0.2 eV,rec = E 0.4 eV.D = - Weak replicas of the cones
can be observed in the isoenergy contour (a)–(d), and no appreciableQPI signal is present (e)–(h), even though a signal corresponding
to q2 infigure 7 starts to be visible.

Figure 10. Same asfigures 7(a)–(h), but for amoderate reconstruction potential V 0.5 eV,rec = E 0.3 eV.D = -
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surfaces. Experimentally, existing ARPES data—show-
ing weak replicas only—suggests a weak ERP which,
however, is difficult to reconcile with our analysis: using
reasonable model assumptions, we tend to generically
obtain a strong ERP. Possibly, the ERP is stronger than
what appears from the ARPES experiments, for exam-
ple if the probed surface area contains large non-recon-
structed (or disordered) regions which in turn do not
contribute to band backfolding. We recall that some
other correlated materials with strong periodic mod-
ulations also fail to display strong bandfolding effects in
ARPES, presumably due to quenched disorder, one
examplebeing La x1.8- Eu 0.2SrxCuO4 [49].

Based on our results, we suggest that small-spot
ARPES on 2× 1 reconstructed surfaces as well as careful
QPI studies, searching for additional peaks appearing
above the Lifshitz transition, could clarify and further
elucidate the surface-reconstruction effects in SmB6.
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AppendixA. Tight-bindingmodeling

A.1. Bulkmodel
To model SmB6, we only retain Sm atoms, and we
build a tight-binding model out of the dx y2 2- - dz

2

quadruplet in the d shell, and of the 8G quadruplet in

the f shell, where
5

6

5

2
8
1∣ ∣( )G  ñ =  ñ +

1

6

3

2
,∣ ñ 8

2∣ ( )G  ñ =
1

2
∣  ñ [1, 3, 6, 29]. We use

two kinetic energy terms for d states
(t d H d ,d

z z1 0012 2∣ ∣= á ñ t d H d ,d
z z2 1102 2∣ ∣= á ñ where

the suffix 001 or 110 denotes the direction alongwhich
the matrix element is considered), two kinetic energy
terms for f states (t H ,f

1 8
2

8
2

001∣ ∣( ) ( )= áG + G + ñ

t Hf
2 8

2
8
2

110∣ ∣( ) ( )= áG + G + ñ ), two hybridization terms
(v d H ,z1 8

2
0012 ∣ ∣ ( )= á  G + ñ v d Hz2 8

2
1102 ∣ ∣ ( )= á  G + ñ ),

and one on-site energy difference between the d and f
states .d f - The kinetic energy is fixed to give at the
three X 0, 0, 0, , 0 , 0, 0( ) ( ) ( )p p p= = = points a
minimum in the d shell, with dx y2 2- symmetry at
0, 0, ,( )p and a maximum in the f shell; this
leads to band inversion at the X points, and to the
topological 2 indices , , , 1, 1, 1, 1 .0 1 2 3( ) ( )n n n n =
The hybridization is chosen to be in the 2,k 0z

 = +=
+

1,kz
 = +p=
+ 1k kx y

 = -=
+ phase, where + are

mirror Chern numbers [5–7]:

d

u u
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k k

i

2

, A.1

BZ
a b

ab
n

N

BZ

a n b n

, 1

2

1

2

( )∣ ( ) ( )

 òå åp
=

´ á¶ ¶ ñ

+

= =
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where M u uk kin n∣ ( ) ∣ ( )ñ = + ñ+ + and k lying in the
plane BZ which is invariant under the symmetry
operator M (M = Mz when BZ is kz = 0 or k ,z p=
M Mx y= - when BZ is kx = ky). This leads to a
positive winding number on the X̄ cones [6] as
observed experimentally [17], and is relevant for the
QPI signal and the spin structure of the surface states,
but not for their dispersion.

TheHamiltonian

H H H A.2kin hybr ( )= +

is composed by the kinetic energy term:

H
H

H
0

0
, A.3

d

f
kin ( )

⎛
⎝⎜

⎞
⎠⎟=

and by the hybridization:
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H
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0 i

i 0
. A.4
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⎛
⎝
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⎞
⎠
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-

The kinetic energy Hi, i d f ,= is diagonal in the
(pseudo)spin index, with basis dx y2 2- and dz

2 when

i= d, and ,8
1( )G 8

2( )G when i= f; the hybridizationHdf is
nondiagonal in the (pseudo)spin index, with basis
d ,x y2 2- d ,x y2 2- dz2 and dz2 for rows, and ,8

1( )G +
,8

1( )G - 8
2( )G + 8

2( )G - for columns.
Their explicit form is as follows (c kcos ,x x=

c kcos ,y y= c kcos ,z z= s ksin ,x x= s ksin ,y y=
s ksin ,z z= s s si ,x y=  cs c s c siy x x y=  ) :
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Parameters are taken from the tight-binding
calculations of [28, 29], with a slave-boson-like
renormalization of the f kinetic energy by b2 and of
the hybridization by b, with b 0.08,2 ~ and fine
tuned to better match the ARPES experimental data.
For figures 5–7 we increased the value of the hybridi-
zation by roughly 50% with respect to this estimation
to better highlight the QPI features; this however
does not appreciably affect the ERP, which would be
in any case large. In particular we employ:

1.8eV,d f - = t 0.76 eV,d
1 = - t 0.2 eV,d

2 =
t 3.2f
1 = meV, t 1.6f

2 = - meV, v 841 = - meV,
v 242 = meV, which lead to a bulk gap 18D = meV,
to 10f = - meV with respect to the chemical
potential, and to a level occupation n 0.51,d =
n 3.49,f = which corresponds to a Sm 2.5+ valence;
the chemical potential is set in the middle of the bulk
gap. In figure 11 we show the dispersion for a slab
without reconstruction; the same data is shown in
figure 5(a) in the small BZ.

A.2. Surface reconstruction
We model the reconstruction by applying a large
scattering potential V 100 eVrec = on sites on every
second row of the top layer; we neglect any relaxation
effect that the removal of these top atoms can cause.
We also apply a surface scattering potential

E E E 0.5 eV,d fD = D = D = - which is set to align
the energies of the Dirac cones to approximately
reproduce a situation close to the experimental one,
allowing for the Lifshitz transition of the surface states.
The penetration length λ at the Fermi energy is about
two atomic layers for all cones.

In the Kondo breakdown scenario we set
E 100 eVfD = for the f states, but still retain a finite
E 0.5 eVdD = - for the d states; in this case no appre-

ciable modification of the dispersion or of the QPI sig-
nal is observed with respect to figures 5 and 7 of the
main text.

In figure 8 we use t 6f
1 = meV, t 3f

2 = - meV,
v 421 = - meV, v 122 = meV, E 0.1 eV,D = and
keep the other parameters fixed.

We are able to achieve the Lifshitz transition with
E 0,dD = when t 4.8f

1 = meV, t 1.8f
2 = - meV,

v 461 = - meV, v 132 = meV, and the other para-
meters are fixed. For this parameter set we do not show
results, but the QPI patterns are very similar to those
offigure 8.

A.3.QPI
The QPI figures are generated with a 400× 400 mesh
on a 15-layer slab, using the scattering matrix techni-
que (see [35] for technical details) with an artificial
broadening of 1d = meV (figures 9 and 10:

2d = meV). We take a 30meV scatterer in both the d
and the f channels in the first two layers in sublattice a,
but results were found to be qualitatively independent
of the choice of the scattering potential. As remarked
earlier, the quantitative results depend on the exact
choice of the parameters [34].

In the QPI figures, we only report the Fourier
transform of the impurity-induced piece of the LDOS,
i.e. the structural peaks at momenta 0, 0( ) and , 0( )p
(the reconstructionwavevector) are not shown.
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