

Institut für Festkörper- und Materialphysik



## IFMP Seminar

Monday, September 27, 2025, at 14:50 **Date** 

REC/C213

**Zoom:** 633 2801 2201, Passcode: IFMP2025-6

Speaker Seunghyun Khim

**MPI-CPfS** 

Title **Locally Noncentrosymmetric Heavy-Fermion Systems** 

Abstract CeRh<sub>2</sub>As<sub>2</sub> has been attracting attention due to its unusual multiphase superconductivity. While the superconducting transition temperature  $(T_c)$  is relatively low,  $T_c = 0.35$  K, the upper critical field  $(H_{c2})$  is as high as 15 T when the field is applied along the c axis. This field-resilient superconductivity evidences spin-triplet pairing. Indeed, clear thermodynamic anomalies within the superconducting (SC) state indicate a fieldinduced transition between a spin-singlet even- to a spin-triplet odd-parity SC phase. CeRh<sub>2</sub>As<sub>2</sub> crystallizes in the centrosymmetric CaBe<sub>2</sub>Ge<sub>2</sub>type structure. The lack of local inversion symmetry at the Ce site gives rise to staggering antisymmetric spin-orbit couplings within the unit cell. This allows sublayer degrees of freedom for the SC order parameter to realize spin-triplet superconductivity. The lesson from the study of Ce-Rh<sub>2</sub>As<sub>2</sub> encourages us to explore further locally noncentrosymmetric heavy-fermion materials. In this talk, I will briefly summarize recent progress in understanding CeRh<sub>2</sub>As<sub>2</sub> and discuss a strategy to search for further new materials with exotic spin-orbit-related phases.

Host: D. Peets

