

Institut für Festkörper- und Materialphysik

IFMP Seminar

Monday, April 14, 2025, at 14:50 Date

REC/C213

Zoom: 688 4227 2214, Passcode: IFMP2024-5

Speaker Steven Gebel

IFMP, TU Dresden

Title X-ray diffraction and spectroscopy studies under high

pressure to clarify possible quantum spin-liquid states

in Na₃Co₂SbO₆

Abstract Honeycomb cobaltates with Co²⁺ (3d⁷) ions have been proposed as materials which can host Kitaev quantum spin-liquid (QSL) states. Specifically, Na₃Co₂SbO₆ has been predicted to exhibit a Kitaev QSL upon reduction of the trigonal ligand- and crystal-field splitting, which in turn might be possible via the elastic tuning of the lattice structure [1,2]. This compound hosts edge-sharing CoO₆ octahedra and exhibits antiferromagnetic zig-zag ordering below 8 K [3]. In this talk, I present a combination of x-ray diffraction (XRD) and spectroscopy (NIXS) in diamond anvil cells to explore the effect of hydrostatic pressure on the lattice and electronic structure of Na₃Co₂SbO₆. While XRD reveals the pressure dependence of the lattice structure, the high-pressure Co L edge dependence is probed by NIXS, yielding information about the pressure dependent configuration of the Co 3d shell. I present crystal structure data up to 17 GPa of the C2/m monoclinic structure. The NIXS results show significant changes of the Co L-edge line shape for hydrostatic pressures up to 5 GPa. This sets the basis for upcoming theoretical modeling with multiplet and density-functional calculations.

- [1] Liu, Huimei, et al., Phys. Rev. Lett. 15, 047201 (2020).
- [2] Liu, Huimei, et al., Phys. Rev. B 97, 014407 (2018).
- [3] Yan, J.-Q., et al., Phys. Rev. Mater. **3**, 074405 (2019).

Host: J. Geck

