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5. Übungsblatt

Gruppe A

Aufgabe 5.1: Pauli-Prinzip

a) Elektronen sind Fermionen und daher

• ... können sie in einem Atom nicht in allen Quantenzahlen übereinstimmen.

• ... werden sie durch eine Vielteilchenwellenfunktion beschrieben, die unter Vertauschung
symmetrisch ist.

• ... können sie in beliebiger Menge in ein Volumen bestimmter Größe gepackt werden.

Markieren Sie die richtige Antwort.

b) Photonen sind Bosonen und daher

• ... werden ihre Energiezustände nach der Fermi-Verteilung besetzt.

• ... werden sie durch eine Vielteilchenwellenfunktion beschrieben, die unter Vertauschung
antisymmetrisch ist.

• ... können sie in beliebiger Menge in ein Volumen bestimmter Größe gepackt werden.

Markieren Sie die richtige Antwort.

Aufgabe 5.2: Schwarzkörperstrahlung

In der Vorlesung wurde gezeigt, dass die spektrale Energiedichte (Energie pro Volumenelement)
eines schwarzen Körpers durch
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gegeben ist.

a) Berechnen Sie die Wellenlängendarstellung der spektralen Energiedichte ρ(λ)dλ.
(Hinweis: dν 6= dλ).

b) Bei welcher Wellenlänge ist die spektrale Energiedichte maximal? (Anleitung: Der entstehen-
de Ausdruck ist nicht analytisch lösbar. Benutzen Sie die numerische Lösung x=4.96511 für
die Gleichung xex

ex−1 − 5 = 0).

c) Bei welcher Wellenlänge ist die Abstrahlung der Sonne maximal (Oberflächentemperatur
∼5780 K)? Wie verhält es sich bei der kosmischen Hintergrundstrahlung (∼2,725 K)? Nehmen
Sie jeweils einen perfekten schwarzen Körper an. Welche Mindestemperatur brauchen Sie für
ein Maximum im Röntgenbereich (λ <1 nm)?



Aufgabe 5.3: Optische Falle

Lasergekühlte Atome können mit Hilfe einer geeigneten Anordnung von Laserstrahlen in sog. opti-
schen Fallen gefangen werden. In guter Näherung können dabei die Fallenpotentiale als harmonisch
angenommen werden, d.h.
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Betrachten Sie hier den eindimensionalen Fall, d.h.
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Die Wellenfunktion der Eigenzustände besitzt folgende Form:
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Hn(x) ist dabei das Hermite-Polynom n-ter Ordnung (H0(x) = 1, H1(x) = x, ...).

a) Zeigen Sie, dass die Wellenfunktion für den Grundzustand (n = 0) eine Lösung der stati-
onären Schrödingergleichung für ein Teilchen im Potential V (x) ist und bestimmen Sie ∆x.

b) Wie groß ist die Energie des Grundzustands (ψ0) und die des ersten angeregten Zustands
(ψ1)?

Aufgabe 5.4: Kastenpotential

Betrachten Sie eine Materiewelle der Energie E in einem unendlichen Kastenpotential

V (x) =


∞ für x ≤ 0

0 für x > 0 und x < d

∞ für x ≥ d.

a) Nehmen Sie ψ(x) = A sin(kx) als Ansatz für die Wellenfunktion innerhalb des Kastens und
finden Sie einen Ausdruck für alle möglichen Werte von k und der zugehörigen Gesamtenergie.

b) Zeigen Sie, dass für große n die relative Differenz der Energieniveaus im unendlichen Kas-
tenpotential durch

En+1 − En
En

≈ 2

n
(1)

gegeben ist. Wie deuten Sie dies im Vergleich zur klassischen Physik?

Aufgabe 5.5: Thermische De-Broglie-Wellenlänge

Quantenmechanische Ununterscheidbarkeit wird im Allgemeinen relevant, wenn die de-Broglie-
Wellenlänge des Teilchens größer als der Abstand zu anderen Teilchen ist. Betrachten Sie ein
ideales Gas, für das die mittlere kinetische Energie der Teilchen durch
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gegeben ist.

a) Wie lautet die De-Broglie-Wellenlänge für ein Teilchen mit dieser mittleren kinetischen Ener-
gie in Abhängigkeit von der Temperatur?

b) Ein typischer Gitterabstand in einem Festkörper beträgt d=0,3 nm. Betrachten Sie Natri-
um mit einem (freien) Leitungselektron pro Atom. Unterhalb welcher Temperatur werden
quantenmechanische Effekte für die Leitungselektronen relevant?

c) Unterhalb welcher Temperatur ist dies für die Atomkerne der Natriumatome der Fall?


