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OncoRay is situated on the Medical Campus and 
belongs to the Medical Faculty / University Hospital 

 
OncoRay structure 
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Director 
Prof. Dr. med. Mechthild Krause 
 
Personell 
I  8 ROs   (Strahlentherapeuten) 
I  10 MPEs  (Medizinphysikexperte) 
I  16 MTAs  (medizin-technische Assistent) 
I  25 KS   (Krankenschwester) 

Radiation treatments per year 
I  2400 oncological indications 
I    500 benign indications 

Expertise focus 
I  rectal cancer 
I  head and neck cancer 
I  lung cancer 

 
Department of Radiotherapy 
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Photon therapy using high-energy X-rays 
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Particle therapy using high-energy protons 
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University Proton Therapy Dresden 
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X-ray therapy vs. Proton therapy 

 
Proton beam stops inside the patient →  improved normal tissue sparing 

Density changes in beam path →  range (penetration depth) uncertainty 
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Treatment planning: dose distributions 
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  X-ray therapy   Proton therapy 

 

§  Head and neck tumour 



T4N1M0 laryngeal carcinoma 

  Computed Tomography (CT)   Magnetic Resonance Imaging (MRI) 

 
Image-guided target volume definition 
 

§  Head and neck tumour 
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T4N1M0 laryngeal carcinoma 

 
Image-guided target volume definition 
 

§  Head and neck tumour 

  Computed Tomography (CT)   Magnetic Resonance Imaging (MRI) 
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Technical developments in radiotherapy 
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Courtesy: dr. Brad Oborn (Univ. Wollongong) 
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Real-time MRI-guided radiotherapy 
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§  gantry with 60Co source heads   

§  split bore 0.35 T magnet 
 

MRIdian (ViewRay Inc.) 
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Integration of MRI and proton therapy 
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patent EP2376195 

Open MRI scanner Split-bore MRI scanner 

Vision:  treat what you see, track what you treat 
§  MRI scanner at beam isocenter 
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Rationale of MRiPT 
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1.  Image-guidance in proton therapy lags behind IGXT 

§  2D X-ray imaging   (throughout available) 

§  in-room CT    (only available in some centers) 

§  on-board CBCT   (recently released product) 

 

X-ray based systems: 

§  limited intra-fractional imaging capabilities 

§  limited soft-tissue contrast 
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Rationale of MRiPT 
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2.  Protons are more sensitive to anatomical variations than photons 
§  material composition in beam path determines Bragg peak location 

 

§  What happens if the air-filled cavity (ρ ≈ 0) is replaced by normal tissue (ρ ≈ 1)? 

spread-out Bragg peak (SOBP) 

perfectly covers tumour volume 
and maximally spares the  

normal tissue at distal end 
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Rationale of MRiPT 
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2.  Protons are more sensitive to anatomical variations than photons 
§  material composition in beam path determines Bragg peak location 

 

§  Protons:  SOBP will shift stream upwards  
§  Photons:  hardly any dosimetric effect between planned and applied dose 
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Rationale of MRiPT 
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changed ion range will cause 

§  overdose in normal tissue 
§  underdose in tumour 

2.  Protons are more sensitive to anatomical variations than photons 
§  material composition in beam path determines Bragg peak location 

Currently the dosimetric benefit of proton therapy is not fully exploited !! 

§  Because of these uncertainties, relatively large margins are still needed 
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§  MRI offers 

ü  Fast real-time imaging 

ü  Superior soft tissue contrast 

ü  Freedom from radiation dose 

2 

2D-cine MRI scan showing intrafractional 
motion in the abdomen  

  

 

§  Challenge 

Integration of MRI and PT for on-line 

image-guidance faces the challenge of 

their mutual interaction  
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Motivation for MRI 
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Technical challenges in MRiPT 
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§  MR image degradation from gantry  

§  MR image degradation during irradiation 

§  Radiation harness of magnet 

§  Beam interaction with RF antenna 

§  Planning on MR images 

§  Range detection 

§  Dosimetry in the presence of a magnetic field 

§  Beam deflection due to magnetic field of MR scanner 

Vision: integrate MR scanner at beam isocenter 
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Challenges in MRiPT 
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Why are moving protons deflected in a magnetic field? 

§  protons are charged particles 

§  charged particles experience the Lorentz force in a magnetic field 

Deflected beams have to be taken into account for treatment planning! 

B 
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Developments in MRiPT 

Beam deflection simulation studies: 
 

§  2008  Dose to phantom in uniform B⊥ field 
 Raaymakers et al., Phys. Med. Biol. 53(20), 2008 
 Wolf & Bortfeld, Phys. Med. Biol. 57(17), 2012 

 

§  2014  Dose to patient in uniform B⊥ field 
  Moteabbed et al., Med. Phys. 41(11), 2014 
  Hartman et al., Phys. Med. Biol. 60(11), 2015 

 

§  2015  Dosimetric effects of MRI fringe field 
  Oborn et al., Med. Phys. 42(5), 2015 

Experimental proof-of-principle: 

§  2016  First „in magnet“ film dosimetry in slab phantom 
  Hoffmann et al., OncoRay (Dresden) 
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1.  Develop fast and accurate beam trajectory prediction model 
§  use to design experimental setup with real magnet and phantom 
§  facilitate non-uniform B  fields and inhomogeneous media 
§  compare with existing analytical and numerical methods 

 
 
2.  Develop a Monte Carlo model for full dose simulations 

§  quantify magnetic field induced dose distortions 
§  estimate demagnetization and radioactivation effects 

3.  Realize measurement setup for „in magnet“ experiments 
§  show dosimetric proof-of-principle with proton pencil beams 

 
Goals 
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1.  Moving proton is deflected in magnetic field through Lorentz force 

 
 

2.  Protons loose energy while interacting with matter 
§  protons have a finite range (Bragg-Kleeman rule):  R0 = α E0

p 

2 

 
Fast beam trajectory prediction method 
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"  

least-square fit based on ICRU 49: 
 
    p = 1.75, α = 2.43×10-3 cm/MeVp  for E0 ≤ 250 MeV    (Bortfeld, 1997) 
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Fast beam trajectory prediction method 
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Gyroradius can be expressed in terms of kinetic energy 

In vacuo: orbit of charged particle is spiral trajectory parallel to B field  
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Fast beam trajectory prediction method 
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CSDA: remaining energy of proton as function of depth s in water: 
 

   E(s) = α -1/p (R0 − s)1/p = α -1/p (R0 - s)1/p 
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Fast beam trajectory prediction method 
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Subsitute remaining energy formula into the gyroradius formula 
 

to obtain the gyroradius as function of depth 
 

    

TU Dresden | 22.06.2017 | Dresden 



§  Iterative reconstruction of proton beam 
trajectory in water 

 
§  Discretization in steps of constant energy 

§  Radius of gyration depends on energy: 

2 

 
Fast beam trajectory prediction method 

T  = intended Bragg peak spot  
U = actual Bragg peak spot  
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Fast beam trajectory prediction method 

no energy loss new model 
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§  Lateral deflection depends on B and E0 (proportional to 3rd power)  

§  Lateral deflection dominates over longitudinal retraction  

§  Relativistic corrections are small, but non-negligible at higher E0 
 

 
Beam trajectory prediction: in water 
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§  Altered entrance angle γ  corrects for 

lateral deflection 

§  Altered initial energy ΔE corrects for 
longitudinal retraction 

§  Numerical optimization minimizes 
distance to intended Bragg peak position 
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Can the deflection be corrected for? 
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How about heterogeneous media? 

Air  Water Bone Water 

Fast beam trajectory prediction in heterogeneous media 

§  200 MeV mono-energetic proton pencil beam 
§  transverse magnetic field: B = 0 T vs. B = 3 T 

Optimized beam correction parameters 

§  angle adjustment: Δγ  = 20.1 deg 
§  energy adjustment (due to increased pathlength):  ΔE0 = +3.23 MeV 

Δγ B = 3 T 

B = 0 T 

Bragg peak 
position 
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Fast beam trajectory prediction method 
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Beam trajectory prediction 

Limitations of our current model: 
 

1.  range straggling effect due to proton scattering and nuclear 
reactions has been neglected 

2.  energy dispersion has not been included 

3.  no realistic magnetic field considered so far 

4.  no experimental validation performed so far 
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Experimental validation at UPTD 

University Proton Therapy Dresden 

 
§  isochronous cyclotron (IBA) 
§  beam energy: 70−230 MeV 
§  passive scattering + active scanning 
§  first patient treated: 2014 

 
§  15×20 m2 experimental room 
§  static beam line 
§  intelligent beam switching system 
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Experimental room 
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Experimental validation 

Permanent Nd2Fe14B dipole magnet 
 

§  0.95 T 
§  15 × 20 cm2 field >0.5 T 
§  transverse magnetic field 
§  yoke: steel grade 1008 
§  magnets: NdFeB grade 764 TP 

M 
Y 

A 

Y  = yoke 
M = magnets 
A = air gap 

M 

Y 

M M 

"  
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Magnetic field modelling 

FEM simulations  (COMSOL Multiphysics®) 
 

A 

Y 
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Magnetic field modelling 

Result: 3D map of magnetic flux density 
 

Y 

M 

M 

Y A 

Y 

sagittal view transversal view  
through center of air gap 

Bz profile along central x-axis 
x 

y 

x 
y 

z 
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Magnetic field measurements 

Automated magnetometry 
 

Bz 

Y  = yoke 
M = magnets 

H 

H  = Hall probe 
G  = Gauss meter 
R  = 3D robotic positioner 

Y 
M 

M 
R 

G 
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Bz component 
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Comparison of FEM simulations and magnetometry 

 
Magnetic modelling and measurements 

Bz on central x axis 
 

§  Max difference: 
§  40 mT (4%) in high gradient region 
§  23 mT (2.4%) in plateau region 

Bz on central y axis 
 

§  Max difference: 
§  19 mT  (2%) in high gradient region 
§  2 mT (0.2%) in plateau region 
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Monte Carlo simulation (Geant4) 

§  Beam  : E0 = 70−180 MeV, σr = 4 mm, d = 170 cm 
§  Collimator  : ∅ = 5, 10 mm, rout = 9 cm, l = 6.6 cm, d = 20 cm, brass 
§  Phantom  : 30 × 15 × 3 cm3 

§  Film   : 20 cm × 15 cm × 28 µm, tilted by 1°  
    Gafchromic® EBT3 material = polyester + LiPAD 

§  Magnets  : magnetic field extension: 50 × 50 × 50 cm3 
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proton beam 
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Results of MC simulation 

 

§  poly-energetic 140 MeV proton pencil beam (σE = 1 MeV) 
§  ∅10 mm collimated beam 
§  with and without magnetic field 
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Results of MC simulations 

 

§  Reconstruction of central beam path by Gaussian fit of lateral profile 
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§  Lateral beam deflection at Bragg peak: 5 mm 
 
§  Conclusion: these effects should be measurable with EBT3 film dosimetry 
 

140 MeV 

TU Dresden | 22.06.2017 | Dresden 



Measurement setup 

 
Transmission experiment 
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magnet EPID collimator beam snout 

beam 

collimators 
∅5 mm, ∅10 mm 

§  Purpose: measure in-plane and out-of-plane beam deflection 

pencil beam  
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Transmission experiment 
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In-plane beam deflection 

Out-of-plane beam deflection 
§  measured: <0.5 mm 
§  main component of B field is 

perpendicular to beam direction 
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47 

Proton beam 
§  Brass collimators with circular voids (∅10 mm) 

§  Pencil beams (blue arrow in figure) 

§  Energy: 80, 100, …, 180 MeV 

Tissue equivalent phantom 
§  2 horizontal PMMA slabs 

§  placed between magnet poles 

§  2D dose measurement with Gafchromic EBT3 
film placed in central plane (1° inclination) 

Magnetic field 
§  C-shaped 0.95 T permanent Nd2Fe14B dipole 

magnet (20 × 15 cm2) 

§  3D Hall probe magnetometry used to map out 
the main and fringe field 

magnet 

magnet 

ph
an
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 h
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r 

phantom 
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Measurement setup 
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§  All irradiations were conducted with and without magnetic field 
§  Data without magnetic field serve as intrinsic reference 

§  Depth-dose curves reconstructed by radial integration of dose distributions 

§  Central beam trajectory estimated from fitting lateral profile with Gaussian 
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Planar dose distributions of 180 MeV proton pencil beam in PMMA with and without magnetic field  

Central beam trajectory 
(dotted line) 

 
Irradiation experiment 
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Film dosimetry results 
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Measured proton pencil beam trajectories in magnetic field 

5 mm 

7 mm 
10 mm 

3 mm 2 mm 
1 mm 

§  Lateral beam deflection ranges from 1−10 mm for energies of 80−180 MeV  
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Conclusions 
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1.  FEM model accurately predicts the 3D magnetic field of our magnet 

measurement setup 

2.  Monte Carlo model 
§  B field induced dose distortions are significant and measurable 
§  deflected beam trajectory with high accuracy and precision 
§  beam deflection can be compensated for during treatment planning 

3.  „In magnet “ experiment 
§  a „nortolcyc“ was created with our 0.95 T magnet 
§  first dosimetric proof-of-principle with proton pencil beams 

4.  Detailed comparison of simulations and measurements is work in 
progress  
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