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Motivation
Quark-flavour and CP violation in the SM:

• CKM describes flavour and CP violation

• Extremely constraining, one phase

• Especially, K and B physics agree

• Only tensions so far
(RK ,K∗ ,P

′
5,B → D(∗)τν, gµ − 2, . . .)

Works well!
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Motivation
Quark-flavour and CP violation in the SM:

• CKM describes flavour and CP violation

• Extremely constraining, one phase

• Especially, K and B physics agree

• Only tensions so far
(RK ,K∗ ,P

′
5,B → D(∗)τν, gµ − 2, . . .)

Works too well!

We expect new physics (ideally at the (few-)TeV scale):

• Baryon asymmetry of the universe

• Hierarchy problem

• Dark matter and energy

• . . .

So where is it?
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The Quest for New Physics
Three of the main strategies (missing are e.g. ν, DM, astro,. . . ):

Direct search:

• Tevatron, LHC

• Maximal energy fixed

Indirect search, flavour violating:

• LHCb, Belle II, BES III, NA62, MEG, . . .

• Maximal reach flexible

Indirect search, flavour diagonal:

• EDM experiments, g-2, . . .

• Maximal reach flexible, complementary to
flavour-violating searches

A new era in
particle physics!
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The curious case of the One-Higgs-Doublet Model
EDMs are finite in the SM. . .
. . . but flavour-sector of the SM is special (→):

• Unique connection between Flavour- and
CP-violation

• FCNCs highly suppressed, ∼ ∆m2/M2
W

∆m2/M2
W ∼ 10−25 for ν in the loop!

• FConservingNCs with CPV as well:
dSM

e . 10−38e cm [Khriplovich/Pospelov ’91]

EDMs are quasi-nulltests of the SM!

NP models typically do not exhibit such strong cancellations

Background-free precision-laboratories for NP
(assuming dynamical solution for strong CP)

EDMs ∼ CPV /Λ2 (interference with SM, e.g. LFV ∼ 1/Λ4)

Here: focus as much as possible on model-independent statements
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Back to basics: EDMs

Classically: d =
∫
d3rρ(r)r, U = d · E

QM: non-degenerate ground state implies d ∼ j
d 6= 0 implies T- and P-violation!
CP-violation for conserved CPT
Search for linear shift U = d j · E

Non-relativistic neutral system of point-like particles:
Potential EDMs of constituents are shielded! [Schiff’63]

Sensitivity stems from violations of the assumptions

• Paramagnetic systems: relativistic enhancement

• Diamagnetic systems: finite-size effects

Shielding can be reversed, e.g. dpara
A ∼ O(100)× de !

[Sandars’65,’66]
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EDMs and New Physics: Generalities

Sakharov’s conditions (’67):
NP models necessarily involve new sources of CPV!

• This does not imply sizable EDMs

• However, typically (too) large EDMs in NP models

Generic one-loop contributions excluded
(→ SUSY CP-problem)

EDMs test combination of flavour- and CPV-structure

EDMs important on two levels:

• “Smoking-gun-level”: Visible EDMs proof for NP

• Quantitative level:
Setting limits/determining parameters

Theory uncertainties are important!
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Experimental approaches [K. Jungmann’13 in Annalen der Physik]
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Experimental status
Neutron EDM:

• |dn| ≤ 3.6×10−26e cm (95%CL)
[Pendlebury+’15,Baker+’06]

• Worldwide effort aiming at
(10→ 0.1)× 10−27e cm

• UCN sources critical problem [P.Schmidt-Wellenburg’16]

Paramagnetic systems:

• Atomic: |dTl| ≤ 9.6× 10−25e cm (95%CL) [Regan+’02]

• Molecular: |ωThO| ≤ 11.1mrad/s (90%CL) [Baron+’13]

Naive interpretation: |de | ≤ 8.7× 10−29e cm

• Ongoing: ThO, YbF, Cs, Fr, Rb, HfF+. . .
Diamagnetic systems:

• |dHg| ≤ 7.4× 10−30e cm (95%CL) [Graner+’16]

• Ongoing: exploit octupole deformation, e.g. Ra, Rn,. . .

Solid state systems: |de | ≤ 6.1× 10−24−25e cm [Eckel+’12,Kim+’15]

Storage rings: |dµ| ≤ 1.9× 10−19e cm [Bennett+’08]
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Experimental status
Neutron EDM:

• |dn| ≤ 3.6×10−26e cm (95%CL)
[Pendlebury+’15,Baker+’06]

• Worldwide effort aiming at
(10→ 0.1)× 10−27e cm

• UCN sources critical problem [P.Schmidt-Wellenburg’16]

Paramagnetic systems:

• Atomic: |dTl| ≤ 9.6× 10−25e cm (95%CL) [Regan+’02]

• Molecular: |ωThO| ≤ 11.1mrad/s (90%CL) [Baron+’13]

Naive interpretation: |de | ≤ 8.7× 10−29e cm

• New: HfF+ measurement [Cairncross+’17, arXiv: 1704.07928]

Diamagnetic systems:

• |dHg| ≤ 7.4× 10−30e cm (95%CL) [Graner+’16]

• Ongoing: exploit octupole deformation, e.g. Ra, Rn,. . .

Solid state systems: |de | ≤ 6.1× 10−24−25e cm [Eckel+’12,Kim+’15]

Storage rings: |dµ| ≤ 1.9× 10−19e cm [Bennett+’08]
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Relating NP parameters and experiment
• Most stringent constraints from neutron, atoms and molecules

Shielding typically applies

Atomic level
⇓

Nuclear Level
⇓

Hadronic level
⇓

Effective Theory with (C)EDMs of fermions, OW ,. . .
⇓

Parameters of your favourite NP model

• Each step potentially involves large uncertainties!
• 4/5 steps model-independent ⇒ series of EFTs [e.g. deVries+’11]

• Limits usually displayed as allowed regions
Conservative uncertainty estimates important
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Schematic EFT framework [Pospelov/Ritz’05,Hoecker’12]
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The EDM in heavy paramagnetic systems
Two main contributions, enhanced by Z 3: [Sandars’65, Flambaum’76]

A single measurement does not restrict de directly

• CS : CP-odd electron-nucleon interaction

• Atoms: typically polarized in external field

• Molecules: aligned in external field
Exploit huge internal field

For molecules: energy shift ∆E = ~ω with

ω = 2π
(

W M
d

2 de + W M
c

2 CS

)
.

Molecule WM
d /1025Hz/e cm WM

c /kHz
YbF −1.3± 0.1 −92± 9
ThO −3.67± 0.18 −598± 90

de

ēFµνσ
µνγ5e

CS

(ēiγ5e)(N̄N)

[Results entering: Nayak/Chaudhuri’07,’08,’09; Dzuba et al.’11, Meyer/Bohn’08,

Skripnikov et al.’13, Fleig/Nayak’14; Averages: MJ’13, MJ/Pich’14]
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Model-independent extraction of de and CS

In principle: two unknowns, three measurements (Tl,YbF,ThO)
Extract de ,CS model-independently [Dzuba et al.’11,MJ’13]

2016 Problem: Aligned constraints
weak limits
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Model-independent extraction of de and CS

In principle: two unknowns, three measurements (Tl,YbF,ThO)
Extract de ,CS model-independently [Dzuba et al.’11,MJ’13]

2017 Problem: Aligned constraints
weak limits

Partial resolution: HfF+ result
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Model-independent extraction of de and CS

In principle: two unknowns, three measurements (Tl,YbF,ThO)
Extract de ,CS model-independently [Dzuba et al.’11,MJ’13]

2017 Problem: Aligned constraints
weak limits

Partial resolution: HfF+ result
Mercury bound ∼ orthogonal!
Assumption: CS , de saturate dHg

Conservative

de ≤ 3.9× 10−28e cm
CS ≤ 3.2× 10−8

Yields model-independent limit
on every paramagnetic system!
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Model-independent extraction of de and CS

In principle: two unknowns, three measurements (Tl,YbF,ThO)
Extract de ,CS model-independently [Dzuba et al.’11,MJ’13]

2017 Problem: Aligned constraints
weak limits

Partial resolution: HfF+ result
Mercury bound ∼ orthogonal!
Assumption: CS , de saturate dHg

Conservative

de ≤ 3.9× 10−28e cm
CS ≤ 3.2× 10−8

Yields model-independent limit
on every paramagnetic system!

Future measurements aim at precision beyond present constraints!
Help to resolve the alignment problem
Requires precision measurements of low-Z and high-Z elements
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EDMs of diamagnetic systems and nucleons
Situation more complicated than for paramagnetic systems:
• Potential SM contribution: θ̄ (→ strong CP puzzle)
• Contributions from θ̄, dq, d̃q,w ,CS ,P,T ,Cqq

Interpretation usually model-dependent
(for model-independent prospects: [Chupp/Ramsey-Musolf’14] )

Complementary measurements, different sources possible/likely

• |dHg | ≤ 7.4× 10−30e cm [Graner et al. ’16] , very constraining
Problem: QCD and nuclear theory uncertainties (x00%!)

No conservative constraint on CEDMs left! [MJ/Pich’13]

• |dn| ≤ 3.6× 10−26e cm [Pendlebury’15]

Theory in better shape, still O(100%) uncertainties
[Pospelov/Ritz’01,Hisano et al’12,Demir et al’03,’04,de Vries et al’11]

Progress in theory necessary to fully exploit these measurements
Unique: orders-of-magnitude improvement w/o new measurement!
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The role of Mercury in determining the electron EDM
Mercury is a diamagnetic system, many contributions

Why is it shown in the paramagnetic global fit? [MJ’13]

• Shielding of CS and de effective (even vanishing at LO)
Schiff moment contribution expected to be dominant
de ,CS only a fraction of the total EDM

Assuming de ,CS to saturate the exp. limit is conservative

New calculation of the CS coefficient [Fleig/MJ(’17)]

LO contribution vanishes
Triple perturbative expansion necessary:

1. External electric field (here: included in basis set)

2. Hyperfine splitting

3. de/CS
αCS

= −2.8(6)× 10−22 e cm

αde w.i.p., so far old calculation [Martensson-Pendrill/Oster’85] +
conservative error estimate
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The importance of multiple measurements

Only pattern of CPV observables allows for model-differentiation!
There is no single “best” measurement!

Paramagnetic systems:

• 1 significant measurement NP
• 2 determine ideally de and CS

• More for consistency (unless MQM is relevant)

Diamagnetic systems, nucleons, light nuclei:

• 1 significant measurement: θ̄ possible explanation
• 2 should tell θ̄ from other sources
• Many more to identify model-independently CPV strucuture

We need as many measurement as possible!
Ideally very different systems
Try to find P-,T-odd measurements besides EDMs
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EDMs in NP Models

EDM constraints forbid generic CPV contributions up to two loops
huge scales or highly specific structure!

• hardly testable elsewhere

• simple power-counting insufficient
(UV sensitivity)

Model-independent analyses difficult

EDMs unique, both blessing and curse

• some model-independent relations exist, e.g.
to β decay [Khriplovich’91]

• strong (model-dependent) constaints
of related observables

Remainder of this talk: 2HDMs as an example
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Why 2HDM?
Model-independent NP analysis: Too many parameters in general

EW symmetry breaking mechanism still not completely fixed:

• 1HDM minimal and elegant, but “unlikely” (SUSY,GUTs,. . . )

• 2HDM “next-to-minimal”:
• ρ-parameter “implies” doublets
• low-energy limit of more complete NP models

Model-independent element
• simple structure, but interesting phenomenology
• important effects in flavour observables

• Plethora of 2HDMs:
differ in their suppression mechanism for FCNCs

Could explain tensions in the flavour sector (e.g. B → D(∗)τν)

Not an attempt at a complete theory!
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Framework for 2HDM contributions

The CPV interactions of the 2nd doublet can generate EDMs

General parametrization for H± Yukawas, ςi complex matrices:

LH±
Y =−

√
2

v
H+

{
ū
[
V ςdMdPR − ςu M†uVPL

]
d + ν̄ςlMlPR l

}
+ h.c.

• Induce couplings like W -exchange, just with a charged Higgs
(MH± & mt)

• Easily matched on your favourite model
Mi only choice of normalization

• ςi → numbers: Aligned 2HDM [Pich/Tuzon’09,MJ/Pich/Tuzon’10]

Comparisons with flavour data in this model

Neutral Higgs exchanges: couplings y0
i (ςi ,V )

Additional CPV contributions from the potential
Analysis depends on many unknown parameters
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EDMs in 2HDMs
From necessary flavour suppression for a viable model:

• One-loop (C)EDMs: controlled (not tiny) [e.g. Buras et al. ’10]

• 4-quark operators small (no tan3β-enhancement)
Two-loop graphs dominant
[Weinberg ’89, Dicus ’90, Barr/Zee ’90, Gunion/Wyler ’90,. . . ]

• Weinberg diagram important for neutron EDM
• Barr-Zee(-like) diagrams dominate other EDMs

Paramagnetic systems: tree-level can be relevant (CS × Z 3)
(light-quark mass × tree) vs. (top mass × two-loop)
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Neutral Higgs contributions in general 2HDMs [MJ/Pich’13]

Contributions typically involve the following sum:
(f,f’: fermions, F(f): family of the fermion)

∑
i

Re
(
y
ϕ0

i
f

)
Im
(
y
ϕ0

i
f ′

)
= ± Im

[
(ς∗F (f ))ff (ςF (f ′))f ′f ′

]
• R.h.s. independent of the Higgs potential
• Vanishes for equal fermions (universality: equal family)
• Modified by mass-dependent weight factors. . .

but holds for degenerate masses and decoupling limit

CPV in the potential tends to have smaller impact

Approximation for phenomenological analysis:∑
i

f (Mϕ0
i
)Re

(
y
ϕ0

i
f

)
Im
(
y
ϕ0

i
f ′

)
→ ± f (Mϕ)Im

[
(ς∗F (f ))ff (ςF (f ′))f ′f ′

]
.
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Bounds from the electron EDM

• Contributions via Barr-Zee diagrams [Bowser-Chao et al.’97]

• Sensitivity to de ∼ Im(ς∗u,33ςl ,11)

• Bounds Im(ς∗u ςl ) . O(0.05)
Strong despite two-loop suppression and mass factors

• Implies Im(ςl ς
∗
u )/M2

H± ≤ ×10−5GeV−2 (universal ςi ’s)
A factor 1000 stronger than (semi)leptonic constraints!

100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

MH±
�GeV

ÈIm
HΖ uΖ

l*
LÈ

150 200 250 300 350 400 450 500
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0.1

0.2

0.3

0.4

0.5

M j�GeV

ÈIm
HΖ uΖ

l*
LÈ
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Bounds from the neutron EDM

• Size of Weinberg (charged) and Barr-Zee (neutral) similar

• So far no fine-tuning necessary

• Next-generation experiments will test critical parameter space

• Constraint from Hg potentially a few times stronger

• Comparison with b → sγ: large impact![MJ/Pich’14,MJ/Li/Pich’12]

EDMs restrict CPV in other modes

100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

MH±�GeV

ÈIm
HΖ u*

Ζ d
LÈ
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Conclusions
• EDMs unique tests of NP models
• Model-independent constraints on NP parameters difficult

Need (at least) as many experiments as (eff.) parameters
• Quantitative results require close look at theory uncertainties

Use conservative limits, allowing for cancellations
For e.g. dn, dHg bottleneck! Chance for nuclear theory

• Robust, model-independent limit on electron EDM
(CS not model-independently negligible):

|de | ≤ 3.9× 10−28e cm (95%CL)

• General discussion of 2HDM constraints possible
ςi key parameters, CPV from potential suppressed

• Interplay of EDMs with flavour physics
Flavour suppression just sufficient
CPV in other observables strongly restricted

• Plethora of new results to come
Might turn limits into determinations!
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Backup slides

• EDM EFT framework

• 2HDM Framework

• Limits on |de | and |CS |
• Expected limits from paramagnetic systems
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Framework

Effective Lagrangian at a hadronic scale:

L = −
∑

f =u,d ,e

[
dγf
2
Oγf +

dC
f

2
OC

f

]
+ CWOW +

∑
i ,j=(q,l)

CijO4f
ij ,

in the operator basis

Oγf = ieψ̄f F
µνσµνγ5ψf , OC

f = igs ψ̄f G
µνσµνγ5ψf ,

OW = +
1

3
f abcG a

µνG̃
νβ,bG µ,c

β , O4f
ij = (ψ̄iψi )(ψ̄j iγ5ψj )

Options for matrix elements:

• Naive dimensional analysis[Georgi/Manohar ’84] : only
order-of-magnitude estimates

• Baryon χPT : not applicable for all the operators

• QCD sum rules: used here [Pospelov et al.] , uncertainties large
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Framework for 2HDM contributions
In 2HDMs, CPV in new interactions can generate EDMs!

Parametrization for H± Yukawas, ςi complex:

LH±
Y =−

√
2

v
H+

{
ū
[
V ςdMdPR − ςu M†uVPL

]
d + ν̄ςlMlPR l

}
+ h.c.

• General for coupling matrices ςi (Mi choice of normalization)

• Numbers ςi : Aligned 2HDM [Pich/Tuzon’09,MJ/Pich/Tuzon’10]

• Easily matched on your favourite model

For mass eigenstates ϕ0
i = {h,H,A}, M2

diag = RM2RT , we have

Lϕ
0
i

Y = −1

v

∑
ϕ,f

ϕ0
i f̄ y

ϕ0
i

f MfPR f + h.c. ,

y
ϕ0

i
f = Ri1 + (Ri2 ± i Ri3)

(
ς

(∗)
F (f )

)
ff

for F (f ) = d , l(u) .

For neutrals: additional CPV contributions from the potential!
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Theory uncertainties and the EDM of Mercury
• Extremely precise atomic EDM limit:
|dHg | ≤ 3.1× 10−29e cm [Griffith et al. ’09]

• However: difficult diamagnetic system
• Shielding efficient → sensitivity ∼ dn, dTl

dHg
Atomic

= dHg (S ,CN
S,P )

Nuclear
= dHg (ḡπNN ,C

p,n
S,P )

QCD
= dHg (dC

f ,Cqq′ ,C q
S,P )

• Uncertainties:
Atomic∼ 20%, Nuclear∼ x00%, QCD sum rules∼ 100− 200%
No conservative constraint on CEDMs left! [MJ/Pich’13]

dHg =
{
−(1.0± 0.2)

(
(1.0± 0.9) ḡ

(0)
πNN + 1.1 (1.0± 1.8) ḡ

(1)
πNN

)
+ (1.0± 0.1)× 10−5 [−4.7CS + 0.49CP ]

}
× 10−17 e cm ,

Progress in theory necessary to fully exploit
precision measurements of diamagnetic EDMs
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The EDM of the Neutron

Explicit expressions for the neutron EDM [MJ/Pich’13 (refs therein)]

dn

(
dγq , d

C
q

)
/e =

(
1.0+0.5
−0.7

) [
1.4
(
dγd (µh)− 0.25 dγu (µh)

)
+ 1.1

(
dC

d (µh) + 0.5 dC
u (µh)

)] 〈q̄q〉(µh)

(225 MeV)3
,

|dn(CW )/e| =
(

1.0+1.0
−0.5

)
20 MeV CW ,

|dn(Cbd )/e| = 2.6
(

1.0+1.0
−0.5

)
× 10−3 GeV2

(
Cbd (µb)

mb(µb)
+ 0.75

Cdb(µb)

mb(µb)

)
.
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Chances and challenges for nuclear theory
Some more detail:
• Measurements with neutral atoms (now) or ions (future)
• Atomic theory relates dA to P-,T-odd nuclear moments

1. Schiff moment: typically dominant in diamagnetic systems
2. MQM: relevant in paramagnetic systems
3. EDM: typically shielded, but relevant for ions

•
Nuclear theory relates nuclear moments to hadronic operators

1. EDMs of neutron and proton dn,p

2. CP-violating pion-nucleon interactions ḡπNN

3. Four-nucleon contact terms (C4N )

• QCD relates hadronic operators to quark-level operators
Nuclear theory essential e.g. for world’s best EDM limit (Hg)

Challenge: calculate S ,M, dN(dn,p, ḡπNN ,C4N) for A ∼ 200

Hg: sign of ḡ
(1)
πNN unclear → no constraint

S(dn,p): 1. just dn 2. shell model → S(dn,p) 3. can we do better?

Unique chance: orders of magnitude without a new experiment!
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Turning the argument around

Other limits not relevant to global fit
Use results to conservatively bound their EDMs

System Indirect bound Present/Expected limit
Cs [−3.1, 2.2] 1400 [Murthy+’89] /1
Rb [−0.8, 0.5] 108 [Ensberg+’67] /0.1

unpublished: (1200) [Huang-Hellinger’87]

Fr [−3.2, 4.2] —/1

Bounds on |dX | in 10−26e cm

Several orders of magnitude below present limits!

Experiments aiming at even better sensitivity:
Important progress to be expected
In case of a violation of the above limits:
Highly-tuneed cancellations or experimental problem
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