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Overview

• Higher-order corrections to the Higgs mass: what is it used
for?

• State of the art for generic theories
• The Goldstone Boson Catastrophe ...
• ... how to avoid it ...
• ... how we can exploit the solution!
• Implementation in the public code SARAH



The Higgs mass as a precision electroweak
observable

Consider the current experimental accuracy of the Higgs mass measurement:

ATLAS + CMS (Moriond 2015) : mH = 125.09± 0.21(stat) ± 0.11 (syst.)

The uncertainty is tiny, of the order 0.2%!
This is smaller than e.g. the 0.5% uncertainty on the top mass and on the strong gauge
coupling; and compare to

1. ∼ 0.2% uncertainty onMW

2. 0.002% uncertainty onMZ!

3. ... but ∼ 1% uncertainty on sin2 θW

These three are known as “electroweak precision observables”: the Higgs mass
deserves to now be classed among them.



SM recap
The scalar part of the Standard Model Higgs potential can be written

VSM ⊃ µ2|H|2 + λ|H|4

The Higgs obtains a vev and we write

H =

(
G+

1√
2
(v+h) + i√

2
G0

)

→ V(0)
SM ⊃hv(µ

2 + λv2) +
1

2
(µ2 + λv2)[(G0)2 + 2|G+|2] +

1

2
(µ2 + 3λv2)h2

+ vλ(h3 +h(G0)2 + 2h|G+|2) +
λ

4
h4 + ...

We then need the potential to be at its minimum:
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This means that the Higgs mass parameter in the Lagrangian is given by

µ2 + 3λv2 = 2λv2 −
1

v

∂∆V

∂h
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.

The full loop corrected Higgs mass is then found by solving the on-shell condition

m2
h =2λv2 −

1

v

∂∆V

∂h
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+Πhh(m
2
h).



SM recap 2

We do not measure µ or λ directly:
• We measure v through the Fermi constant GF = 1√

2v2

• The Higgs mass then gives us λ through

λ =
m2
h

2v2
+ quantum corrections

• µ2 is obtained from the minimum condition

µ2 = −λv2 −
∂∆V

∂h

∣∣∣∣
h=0

It is an important test of the Standard Model to measure λ directly, but:
• It seems measuring four-higgs couplings is well beyond the reach of the LHC
• Much theoretial work has investigated testing the λvh3 term, which may be

possible to detect with enough luminosity.



What do we need λ for?
State-of-the-art computation includes all important two-loop effects (from [Butazzo et
al, 1307.3536]):

λ(µ =mt) = 0.12604+0.00206
(mh

GeV
− 125.15

)
−0.00004

(mt

GeV
− 173.34

)
±0.00030

There are now even some three-loop contributions known.

This is vital for stability analysis: check for
running of λ through solving RGEs up to
high scales

dλ

d logµ
=

2

16π2
[λ(12λ+6y2

t)−3y4
t+ ...]

i.e. to determine the fate of the Standard
Model!
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How well do we know λ?

We can solve the equation

m2
h = 2λv2 −

∂∆V

∂h

∣∣∣∣
h=0

+Πhh(m
2
h)

for λ once we knowmh, e.g. by iterating. This gives e.g.

Loop order Butazzo et al (on-shell) SARAH SMH (Landau gauge)
Tree level 0.12917 0.12786 0.12786
One loop 0.12774 0.12647 0.12580
Two loops 0.12604 0.12619 0.12541

These use three different schemes, and although the calculation in SARAH is missing
some subdominant corrections, we see the differences are small.
But these differences were indeed important for the stability analysis – since the RGEs
are with respect to logµ, changes in λ lead to exponential shifts of µ.



Even more important for BSM

It is even more important for BSM to predict scale of new physics. For
example, SUSY predicts:

λ =
1

8
(g2
Y + g2

2) cos
2 2β+ quantum corrections.

This comes from two Higgs doublets Hu,Hd which couple to up and
down quarks; only one remains light, and we define

H0
u = sinβ

1√
2
(v+ h) + ..., H0

d = cosβ
1√
2
(v+ h) + ...

For heavy SUSY, we can neglet v, and β becomes the mixing angle
between mass eigenstates.

By extracting λ and running it up to high scales, we can use this to
predict the scale of the strongly-coupled SUSY particles!

In particular, we find that there can be a maximum scale of new
physics when λ runs to zero ...



BSM examples
E.g. three different models taken from [ Benakli, Darmé, MDG, Slavich, 1312.5220 ]



Large corrections to λ

On the other hand, we can have models where the loop corrections to λ are huge! E.g.
consider a real singlet scalar with a Z2 symmetry extending the Standard Model:

L = LSM −
1

2
M2
SS

2 −
κ2

2
|H|2S2 −

1

4
S4

We find (using SARAH) for λS = 0.1,κ2 = 3,MS = 500 GeV (perfectly allowed by
unitarity etc) that

λ Loop order Q =mt Q =MS

Tree level 0.12914 0.12919
One loop 0.09634 0.09856
Two loops 0.09490 0.09541

We see that perturbativity is well under control, but the SM Higgs quartic is rather
different!



Classic BSM perspective on the Higgs mass
For many years the standard example has been the MSSM for ∼
TeV-scale SUSY:

• Quartic predicted to be determined entirely by gauge couplings
at tree level – in large MH limit have

λ =
1

8
(g2
Y + g2

2) cos
2 2β =

M2
Z

2v2
cos2 2β

• Hence→ mh(tree) 6MZ

• δm2
h(loops) > (125GeV)2 − (MZ)

2 > (86GeV)2 & m2
h(tree)

• Can have δmh(two loops) . 10 GeV
→ δm2

h(two loops) ∼ 15%m2
h!

• While at three-loop order, have δmh ∼ few hundred MeV,
→ δm2

h(three loops) . 1%m2
h

Much work has led to: full one-loop calculation, two loops full
diagrammatic calculation for αsαt only; effective potential
approximation and gaugeless limit for (Yukawa coupling)4 diagrams,
and three-loop α2

sαt.



Fixed order vs. EFT

So I have alluded to the two approaches to the Higgs mass
calculation:

1. Traditional “fixed-order:” include all of the states in the theory
and calculate the Higgs mass at e.g. MSUSY. This is still
appropriate if there are some light states or Higgs mixing with
other scalars.

2. Effective Field Theory approach: assume that the Standard
Model is valid up to some matching scale. This way large
logarithms are automatically resummed through RGEs (3 or
more loops in the Standard Model, 2 otherwise) and therefore
much more accurate when new physics states are heavy.

The precision available for both is almost identical now, but there are
technicalities still to resolve for matching the EFT calculation for a
general theory to the SM.



Conventional approach

  

UV conditions: GUT/string scale

Gravitino mass/moduli/mediator mass/etc

Sparticles etc

Electroweak scale

Calculate Yukawa/gauge
Couplings and scalar 
masses in ‘full’ theory

2 loop RGEs

Energy



EFT approach

  

UV conditions: GUT/string scale

Gravitino mass/moduli/mediator mass/etc

Sparticles etc

Standard Model

2 loop RGEs

Energy

3 loop SM RGEs
Extract λ, v, gauge 
couplings, top Yukawa
@ 2 loop level in SM

Match to high energy 
theory: in principle up to
two-loops 



State of the art for generic models

A summary of what can be done for the generic case:

Conventional approach SM EFT matching

λ/Scalar masses ‘Gaugeless EP’ ‘Full’ 2-loop/ ‘Gaugeless EP∗’
2-loop partial 3 loop 2-loop

Gauge couplings 1-loop 2-loop 1-loop
Yukawas 1-loop 2-loop 1-loop
v 1-loop 2-loop 1-loop

RGEs 2-loop 3 or 4 loops N/A

• Clearly the extraction of parameters is very important, e.g. in SM
m2
h = 2λv2 so two-loop extraction of v is technically necessary.

• I will elaborate more in the following on what ‘Gaugeless’ and
‘Gaugeless EP∗’ mean ...

• But corrections to λ or equivalently computing the scalar masses
are the most important – and the subject of this talk!



Extracting λ in the EFT

There is a standard way to calculate threshold corrections to the
Higgs quartic:

• Identify combination of scalars in high energy theory (HET) that
corresponds to the Higgs: H = Rijφj

• Calculate Veff(|H|
2) in HE theory

• Find ∂4Veff

∂|H|4
.

• Main problem is that generic expressions are painful and not
known beyond one loop. There are even subtleties at one loop.



Extracting λ in the EFT: alternative approach

The alternative method, (well known here – see e.g. [Athron, Stöckinger et al
1609.00371, 1710.03760]) – implemented in FlexibleSUSY and later SARAH is:
• CalculateM2

h(m
2
h) (i.e. pole mass) in SM and in HET at the matching scaleM:

M2
h,SM(p2) = 2λv2 +∆M2

h,SM(p2)

• Set them equal:

→ λ =
1

2v2

[
M2
h,HET (m

2
h) −∆M

2
h,SM(m2

h)

]
Here we only compute two-point diagrams→ computationally much easier.

• Hence a code (SARAH) that can compute the Higgs mass at two loops via the
conventional method can also calculate the λ thresholds ...

• However: there are subtleties involving subleading logs→ for general theories
the results available are not genuinely two-loop, and break down for large scales
→ work in progress.



Calculation of the Higgs mass
The Higgs mass is corrected order by order through two effects:

1. Self energy corrections
m2

pole =m2
0 +Π(m2

pole)

2. Shifts to the minimum conditions: we define the potential in terms of real scalars
with vevs v to be

V(v) =V tree +∆V ≡ 1

2
m2

runv
2 +V tree

λ +∆V

→ 0 =m2
runv+

(
∂V tree

λ

∂v
+
∂∆V

∂v

)
If we take v as fixed to all orders (which is convenient since couplings depend on v) we
must shiftm2

run so that

→m2
0 =

∂2V tree

∂v2
=m2

run +
∂2V tree

λ

∂v2
=

(
∂2V tree

λ

∂v2
−

1

v

∂V tree
λ

∂v

)
︸ ︷︷ ︸

tree−level mass

−
1

v

∂∆V

∂v
.

So we need the tadpole diagrams as well as self-energies to calculate the mass; note
that if we took the masses fixed instead of the vevs we would still have a shift in the
mass due to a shift in v (c.f. Higgs tree-level mass of 2λv2).



The effective potential approach

Now we turn to calculating two-loop corrections to the Higgs
mass/quartic.
One significant simplification to calculations is to take p2 = 0; this is
then equivalent to taking

Π(0) =
∂2∆V

∂v2
.

Hence the “effective potential limit.” When the scale of new physics is
above the electroweak scale this is a good approximation, and is
better than might be expected even for the Standard Model.



The gaugeless limit
The ‘gaugeless limit’ is a popular simlification in both SM and BSM:
• Set gY = g2 = 0 in two-loop calculation (and any other couplings of broken

gauge groups in BSM models) – but keep the important g3!

• Justified by smallness of α: even if
g2 is not very small,
α2 ≡ α/s2

W ' 0.03, c.f.
αt ' 0.08,αs ' 0.12

• ... and also by lack of large logs
involving weak bosons. The
approximation works very well –
typical correction to the Higgs mass
of O(10 − 100) MeV.

• On the other hand, it dramatically
simplifies calculations.

• Has a special place in the MSSM
because λ ∝ g2

Y + g2
2 at tree level

→ kills Higgs self-couplings in the
loops.



Generic calculations

• Some contributions of the effective potential are known for the
Standard Model up to three and four loop order ...

• Otherwise it is only known in Landau gauge up to two loops.
[S. Martin, 01] gave the expression in dimensional regularisation
(DR and MS) for generic theories.

• [Martin, ’03] gave the two-loop scalar self-energies up to O(g2) in
gauge couplings (don’t need g4 in the gaugeless limit).

• In [MDG, Nickel, Staub 1503.03098] we calculated the tadpoles,
and substantial simplifications for massless gauge fields.

• We have implemented in SARAH a diagrammatic calculation for
self-energies and tadpoles in a “generalised effective potential
and gaugeless limit.”



The Goldstone Boson Catastrophe
But there is a technical barrier for any theory other than the gaugeless limit of the
MSSM: the Goldstone Boson Catastrophe. Note that this includes the Standard Model
where it was studied by [Martin, ’14], [Elias-Miro, Espinosa, Konstandin, ’14]!
• Consider for simplicity the Abelian Goldstone Model of one complex scalar
Φ = 1√

2
(v+h+ iG) and tree-level potential

V = µ2|Φ|2 + λ|Φ|4.

• This is a nice prototype for the Standard Model in Landau gauge – but a subtle
difference is that the Goldstone boson is physical!

• At tree level, the tadpole equation gives µ2 + λv2 = 0, and the masses are
m2
G = µ2 + λv2,M2

h = µ2 + 3λv2.

• Recall the potential from earlier:

V(0) ⊃ hv(µ2 + λv2) +
1

2
(µ2 + λv2)G2 +

1

2
(µ2 + 3λv2)h2 + ...

• But we usem2
G ≡ µ2 + λv2 to calculate loops, and once we include loop

corrections we have
0 = µ2 + λv2 +

1

v

∂∆V

∂v

• ... hencem2
G = O(1 − loop) and is of indefinite sign!



One loop

At one loop, this is benign enough:

• For tadpoles proportional to hGG coupling

T ∼ λv

∫
ddq

q2 −m2
G

∝ m2
G(logm2

G − 1)

• For masses, the self-energy diagrams give

Π ∼ λ2v2

∫
ddq

(q2 −m2
G)((q+ p)2 −m2

G

∝ (logp2 − 2)

• So we see that we need to include momentum at one loop for
this model (or the Standard Model in Landau gauge)



Beyond one loop

At two loops we find that the tadpole equations give (with
A(x) ≡ x(log x/Q2 − 1))

0 =m2
Gv+

λv

16π2

[
3A(m2

h) +A(m
2
G)

]
︸ ︷︷ ︸

1-loop

+
log

m2
G

Q2

(162)2

[
3λ2vA(m2

G) +
4λ3v3

M2
h

A(M2
h)

]
+

regular form2
G→0︷︸︸︷· · ·︸ ︷︷ ︸

2-loop

The problem then extends to two-loop self energies, and becomes
even worse for three-loop tadpoles etc.



GB Catastrophe in the MSSM
The problem was identified early on when trying to use the effective potential approach
on the full MSSM potential – From S. Martin [hep-ph/0211366]:
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Solid line: including EW effects, dashed line without

This shows both the GB catastrophe nearQ = 568 GeV and the ‘Higgs boson
catastrophe’ near 463 GeV.



The special case of the MSSM

So what happened after 2002?
• Martin’s calculation was in any case not publically available, nor were there

closed-form expressions.
• Instead, until recently almost all spectrum generators for the MSSM (SPheno,

SoftSUSY, FeynHiggs) used routines from P. Slavich for αsαt and (Yukawa4)
corrections – performed in the gaugeless limit at two loops.

• But: in the MSSM the quartic coupling is given at tree-level by the gauge
couplings:

L ⊃ −
g2
Y + g2

2

8
(|Hu|

2 − |Hd|
2)2 −→

gY ,g2→0
0.

• This means that the Goldstone boson does not couple to the Higgs, so the
dangerous terms are absent!

• For a long time the problem remained neglected.



Ways out

When we implemented the two-loop calculation in SARAH, we had to
confront the problem. What to do?

• Calculations in the Standard Model have used Feynman gauge.
In general this is much more complicated, the generic
expressions are not available – and it anyway does not actually
completely solve the problem!

• Otherwise we could simply ignore the phases introduced in the
potential and try to find a renormalisation scale Q where
m2
G > 0. But the masses will have a huge sensitivity to the IR

effects so we can no longer trust the calculation, because of the
way that spectrum generators implement the corrections.

• Indeed, the problem is more serious, because all loop
computations were performed using the tree-level masses,
which would give exactly massless Goldstones in Landau gauge
→ everywhere divergent tadpoles and self-energies.



Resummation
A solution for the Standard Model was proposed in [Martin, ’14], [Elias-Miro, Espinosa,
Konstandin, ’14]:

The daisy diagram contributes the most singular
term at any fixed loop order; it has the most soft
Goldstone propagators – each term looks like

∫
d4q

(ΠGG(q
2))n

(q2 −m2
G)
n

∼ (ΠGG(0))n
∂nf(m2

G)

∂(m2
G)
n

f(m2
G) = −

i

2
C

∫
ddq log(−q2 +m2

G)

• f(x) ≡ 1
4x

2(logx− 3
2 ).

• But if we sum it to all orders, then we will just
find f(m2

G +ΠGG(0))

Now, thanks to Goldstone’s theorem, we know that the Goldstone boson mass must
vanish on-shell, so

µ2 + λv2 +ΠGG(0) = 0 = −
1

v

∂∆V

∂v
+ΠGG(0)

and since f(0) = 0, f(m2
G +ΠGG(0)) is finite and has a vanishing first derivative.



Resummation 2

Both papers agree that we should use instead use the resummed potential

V̂eff ≡Veff +
1

16π2

[
f(m2

G +∆) −

l−1∑
n=0

∆n

n!

(
∂

∂m2
G

)n
f(m2

G)

]
.

The two potentials only differ by terms of order l+ 1. The two papers then differ in how
to define ∆ (it is not quite ΠGG(0)):
• [Martin, ’14] proposed to expand the potential at two loops as a series inm2

G,
and use this to define ∆1, usingA(x) = 2f′(x) = x(logx− 1) :

V(2) ≡ V(2)|m2
G=0 +

1

2
∆1A(m2

G) +
1

2
Ωm2

G +O(m4
G).

... so the first derivative is also free of divergences:

∂V̂eff

∂v
=
∂V(2)|m2

G=0

∂v
+

1

2
Ω
∂m2

G

∂v
+O(3 − loop)

• [Elias-Miro, Espinosa, Konstandin, ’14] proposed to use ∆1 ≡ Πg(0), defined in
terms of the self energy excluding “soft” Goldstones.



Generalising

If we want to apply this to general theories, however, we have two problems:

1. Identifying the Goldstone boson(s) among the scalars: in general the fields can
mix!

2. Taking derivatives of the potential as a function of masses and couplings
generally means taking derivatives of mixing matrices.

[Martin, Kumar ’16] applied this to the MSSM with CP conservation, where they could
use 2× 2 matrices and do all the derivatives explicitly.

We can do better by taking all of the derivatives implicitly.

We can do better still by adopting a different solution.



On-shell scheme

We saw that we can cure the IR divergences by resumming the Goldstone boson
propagators, so that the effective mass in the loop functions becamem2

G +∆ = 0.
But we can do this more directly by just putting the Goldstone boson on shell:

(m2
G)

run. ≡ (m2
G)

OS −ΠGG((m
2
G)

OS)

We can do this directly in the tadpole equations – and also the self-energies! So then
there should be no need to take derivatives of couplings ... exactly what we want.
For example, applying the above shift to the one loop tadpole gives a two-loop
correction:

∂V

∂v
⊃ λv

16π2
A(m2

G) =
λv

16π2

[
A((m2

G)
OS︸ ︷︷ ︸

→0

−ΠGG((m
2
G)

OS) log
(m2

G)
OS

Q2︸ ︷︷ ︸
cancels divergent part

+ ...︸︷︷︸
3−loop

]

We also see that ΠGG((m2
G)

OS) = Πg(0) (at least at this loop order) automatically!



Illustration
To see why this works, let us look at the scalar-only case. There are three classes of
tadpole diagrams:

We find that the divergences only come from the TSS and TSSSS topologies, and they
correspond to a Goldstone self-energy as a subdiagram and exactly cancel out against
the on-shell shift:



Mass diagrams

We also find that we can apply our on-shell scheme to the cancellation of divergences
in self-energies! This seemed hopeless in the former approaches ... We can divide the
topologies into three categories:



Mass diagram divergences

Again we find that the divergences inm2
G arise from Goldstone boson propagator

subdiagrams:

... and once more the one-loop shifts from our on-shell scheme exactly cancel the
divergences (but leave a finite momentum-dependent piece).



Generalised effective potential limit
Since we see that there are classes of diagrams that are divergent when the
p2 ≡ s 6= 0 and the Goldstone bosons are on-shell, the obvious response is that we
cannot avoid using momentum dependence – but this is computationally expensive.
Instead, we can expand the self-energies as:

Π
(2)
ij (s) =

log(−s)
s

Π
(2)
−1 l,ij +

1

s
Π

(2)
−1,ij +Π

(2)

l2,ij
log

2
(−s) +Π

(2)
l,ij log(−s) +Π(2)

0,ij

+

∞∑
k=1

Π
(2)
k,ij

sk

k!

If we discard all terms O(s) and higher, we have a generalised effective potential
approximation! We can find closed forms for the singular terms, e.g.

U(0, 0, 0,u) = (logu− 1) log(−s) −
π2

6
+

5

2
− 2 logu−

1

2
log

2
u+O(s).

This turns out to be a very good approximation, e.g. even in the Standard Model:

SARAH/SPheno SMH (code by Martin & Robertson)
ξ 1 0.01 0

2` momentum partial partial full none
dependence s =m2

h|tree s =m2
h|tree iterative s = 0

m2`
h (GeV) 125.083 125.134 125.176 125.121



Alternative perspective
Another way to solve the problem is to instead expand the masses used in the loop
functions perturbatively. Originally, this appears as the need to solve the tadpole
equations consistently, because both sides depend on µ:

µ2 =− λv2 −
1

v

∂∆V(µ)

∂v

=(µ2)tree −
1

v

∂∆V(µ)

∂v
= (µ2)tree −

1

v

∆V((µ)tree))

∂v
+

1

v2

(
∂2∆V

∂v∂µ

)(
∂∆V(µtree)

∂v

)
+ ...

Fortunately, in our example onlymG andmh depend on µ, and it only enters the loop
functions through those masses, so writing T ≡ ∂∆V

∂v we have

µ2 =− λv2 −
1

v
T((µ)tree) −

λ

v
T

[
∂T

∂m2
G

+ 3
∂T

∂m2
h

]
((µ)tree)) + ...

This is termed “consistently solving the tadpole equations.” But it turns out to be almost
identical to our on-shell approach!

T ⊃ λv

16π2
A(m2

G) =
λv

16π2

[
A((m2

G)
tree︸ ︷︷ ︸

→0

−
1

v
T((µ)tree) log

(m2
G)

tree

Q2︸ ︷︷ ︸
cancels divergent part at two loops

+ ...︸︷︷︸
3−loop

]



Differences

So what is the difference?
• In our on-shell approach, we should solve the tadpole equations iteratively. This

is important for models where the vevs are small so that loop corrections to mass
terms would be large – e.g. in models with a triplet scalar.

• However, a crucial part of the above working is that there are no triple Goldstone
boson couplings aGGG – otherwise there would be a diagram

ΠGG ∼ (aGGG)2

∫
ddq

q2 − (m2
G)

OS
→∞.

• However, that these couplings are absent – even with CP violation – is a
consequence of a Ward Identity.

• BUT, when we have a general theory, we can induce these couplings at one loop
since only the full vacuum respects the broken symmetry→ we use an on-shell
condition in the Higgs mass calculation to set aGGG = 0 (if we allow CPV)

• In the “consistent solutions” approach we do not need to do this.
• Also no problem with the “gaugeless limit” – our implementation in SARAH uses

Feynman gauge at one-loop, gaugeless limit at two loops so it is not clear how to
consistently iterate the tadpole solutions

.... hence the implementation in SARAH uses the “consistent solutions” approach.



SARAH: a tool for BSM model builders
So what is SARAH ?

• Mathematica package created by F. Staub, with now many
contributions from MDG.

• Takes an input model file for any SUSY or non-SUSY model.

• Specify: gauge groups, matter content, superpotential/couplings
in Lagrangian.

• Relevant for this talk: spectrum generation with SPheno.
Produces fortran code which compiles against the SPheno
library to generate spectrum and precision observables etc for
the model.

• Can specify input parameters at any scale: TeV, SUSY scale,
GUT scale ...

• Will calculate two-loop RGEs, one-loop masses for all particles
in DR

′
(SUSY) or MS (non-SUSY) models, one-loop decays, ...

• Have now implemented two-loop neutral scalar masses
including the above GBC solution, allowing Non-SUSY models
to be studied.



A web of codes from the top down

  

ℒ
Compute vertices:
SARAH, LanHEP, 
FeynRules

Spectrum generator
SARAH-SPheno
FlexibleSUSY/EFT/...

Calculate amplitudes/cross-
sections:
CalcHEP, MadGraph, 
AMC@NLO (with NLOCT) 
Whizzard

Calculate mass matrices, 
mixing, RGEs, loop 
corrections: 
SARAH

Analyse events:
(root), MadAnalysis, 
CheckMATE, SmodelS, 
FastLim, ... 

Create events & shower:
MadGraph, Pythia, 
Herwig,...

Dark matter: 
MicrOMEGAs,
MadDM

Low energy 
constraints: 
SARAH/SPheno

Decays:
SARAH-Spheno 
(Full 1L),
MadGraph

Select
Points

Make assumptions about
spectrum

Higgsbounds/
HiggsSignals

Stability:
Vevacious

String-derived 
model: spectrum 
and symmetries

Susy-breaking 
terms/non-
SUSY masses



First applications
There are a huge number of possible applications of these results – since we can now
study non-SUSY models for the first time – and we are only just starting.
We already saw the Standard Model itself and the Z2 singlet model
But we can also solve the problem beyond the MSSM, e.g. in the NMSSM:
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THDM
For a non-SUSY model, consider the Two-Higgs-Doublet-Model, taking as often done
the inputs

mh,mH,mH± ,m2
A,m2

12, tanα, tanβ

from which we determine λi, i = 1..5. If we enforce the alignment limit of
tanα = −1/ tanβ, we can scan over the other parameters. If we take all of the Heavy
Higgs masses to be 300 GeV and scan only over e.g. mA we find:
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EFT approaches

When matching a UV theory onto an EFT, there are several possible approaches:
• Use the path integral to integrate out the heavy fields to derive a Wilsonian

action: ∫
[dφH][dφL]e

iS[φL,φH]→
∫
[dφL]e

iS̃[φL]

This generates a large set of diagrams to compute
• Match pole masses/physical quantities in both theories→ can extract quartic

couplings from only two-point amplitudes!
• Match the effective actions of both theories using the equations of motion on the

full effective action to integrate out the heavy fields→ still need to compute
four-point diagrams, but takes care of combinatorics

... all should give the same results!



Pure diagrams

Matches against in both theories.



Infra-red catastrophes in the EFT approach

• So far, few computations have been done. But at one loop it is not hard to derive
the generic expressions. At one-loop, provided there are now couplings of the
form 1

2a
HLLφHφ

2
L, there are few subtleties (except for the mixing between

heavy and light states).
• But when we allow these couplings, we first see that they generate tree-level

contributions to the quartics:

L ⊃ −
1

24
λφ4

L→ δλ ⊃ −3
(aHLL)2

m2
H

• ... and we then find that the results at one loop are not infra-red safe! E.g.

∼

∫
d4q

1

q2 +m2
H

1

q4
∼

1

m2
H

∫
d4q

1

q4



IR divergent pieces

So the set of relevant terms are:



• The problem can of course be solved perturbatively, by writing
m2
H = (m2

H)
tree + ∆m2

h etc

• ... but there is also an elegant relation with the GBC and Πg,
which after all involves splitting the EFT into “heavy” and “light”
states in the loop!

• It will then be a challenge to extend this to two loops, to put the
EFT and conventional calculations on the same footing.
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Conclusions

• It is now possible to study the phenomenology of any
renormalisable BSM theory with high precision

• For example, SARAH now gives the most precise value of the
Higgs mass in the NMSSM, and even for the MSSM with CPV is
the only code appropriate for top-down analysis (DR ′ as
opposed to on-shell scheme inputs).

• From the top-down perspective, can potentially rule models out
based on field content, choices of couplings and mass scales.

• Ongoing work will further refine the precision: EFT approach,
including EW contributions, ...

• I haven’t talked about Higgs couplings, decays etc but these can
also be studied.
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