
IKTP Dresden Seminar, 2017-12-13

Data Analysis with ROOT,
Now and in the Future

Axel Naumann axel@cern.ch

Content

❖ Short intro to ROOT

❖ Vision for ROOT in 2020

❖ Main development areas

❖ News from v6.12

2

What is ROOT?

❖ The data analysis tool for High Energy Physics

❖ Efficient storing and reading of data, analysis, statistical tools, graphics

❖ About 20,000 users around the globe

❖ Started 20 years ago, now +/- 3 million lines of code (mostly C++), LGPL’ed

❖ C++ interpreter with unique, dynamic Python binding PyROOT

❖ Used in HEP, astronomy, industry,…

3

ROOT In Numbers
❖ 15 team members

❖ ROOT forum: 11’000 users, >100 new users / month,
1’300 posts / month

❖ Fixing about 600 bugs a year…

❖ https://github.com/root-project/

❖ 👉 Alive and rocking

4

Source: https://www.openhub.net/p/ROOT

https://github.com/root-project/
https://www.openhub.net/p/ROOT

ROOT Features

❖ About 1 Exabyte (i.e. 1’000’000 TB) of data in ROOT files

❖ takes your C++ classes and dumps them to disk

❖ again proven to be number 1 in performance for HEP data [link]

❖ “Proper” scientific modeling, statistics, minimization / fitting

❖ High-quality, highly customizable graphics

❖ Analysis interfaces for physicists, not computer scientists

5

https://indico.cern.ch/event/567550/contributions/2628878/attachments/1511966/2358123/hep-file-formats.pdf

Graphics Examples

Graphics Examples

ROOT in 2020

Context

❖ ROOT is at the center of data analysis since +/- 15 years

❖ today, the world offers lots of open source tools for big data

❖ ROOT provides expertise to the community by the community

❖ many solutions specific and optimized for HEP

❖ alternatives are often not direct solutions

❖ And yet: 20 years of success is not a guarantee for the future!

9

The Future

❖ ROOT’s main goals:

❖ simplicity

❖ robustness

❖ speed

10

Simplicity

❖ Focus on physics, reduce time spent on coding (and debugging!)

❖ clear, consistent C++ interfaces

❖ excellent Python support (more pythonic ROOT a la rootpy)

❖ do things perfectly by default, but allow for customization

❖ Modern C++ helps write simple, clear interfaces

❖ Separation of concerns (e.g. histograms from graphics from I/O)

11

Robustness

❖ ROOT’s memory model based on PAW:

❖ directories own named objects etc

❖ causes crashes due to raw pointers and implicit ownership

❖ Arrays are pointers, configuration through strings

❖ Instead: let the compiler check where possible instead of runtime errors

12

Speed

❖ C++ from 1995 was all about object oriented code

❖ has proven to incur a performance cost

❖ Instead: modern design, bulk operations where possible, less virtual
functions / more vectorization and cache locality

❖ Thread-safe, context-free objects

13

“ROOT 7”

❖ New interfaces, using modern C++ for simplicity, robustness and speed

❖ change interfaces after 20 years, and then freeze them again

❖ Keep interfaces readable for current ROOT users

❖ canv->cd(); hist->Draw(); becomes canv->Draw(hist);

❖ Expose new interfaces early, release gradually

❖ see ROOT::Experimental [link], available with -Dcxx14=On

14

https://root.cern.ch/doc/master/namespaceROOT_1_1Experimental.html

Main Development Areas

Parallelization

❖ Implicit multi-threading:

❖ you ask ROOT to do something, and it does it using all your cores

❖ Declarative programming for analysis:

❖ you tell ROOT what to do but not how. It knows how, does it in parallel.

❖ Vectorization:

❖ we run hot, numerical loops on multiple data, targeted to your CPU

16

Math
❖ TMVA

❖ fast data connections to external tools (TensorFlow etc)

❖ machine learning implementations targeted to HEP

❖ RooFit will not be forgotten, either ;-)

❖ The HEP Common Math Library

❖ e.g. random numbers: efficient, also for multi-threaded environments

❖ vectorized functions

17

I/O, TTree

❖ Want to to be extremely performant:

❖ 0-copy where possible

❖ I/O using all cores, best compression algorithms

❖ multi-thread-friendly: one tree, many entries analyzed by multiple threads

❖ Robust interfaces: type-safe (no void*), explicit memory ownership

❖ Optimized for I/O devices of 2020: SSD, 3D XPoint, network

18

Histograms

❖ Fast and simple

❖ shield advanced features  
from basic ones: offer both high-performance interface and usability layer

❖ Composable and configurable, enabling histogram algorithm library,
operating on “any” histogram

❖ Transform embedded histogram concepts into first-class citizens:

❖ axis definition, histogram range, iteration, bin index, bin content storage

19

// Create a 2D histogram with an X axis with
// equidistant bins, and a y axis with irregular
// binning.
Experimental::TH2D hist({100, 0., 1.},
 {{0., 1., 2., 3., 10.}});

// Fill weight 1. at the coordinate 0.01, 1.02.
hist.Fill({0.01, 1.02});

Parallel, Simple Analysis
❖ Currently: you specify reading, looping, selections, output / slimming /

skimming (= caching), histogramming; always run everything and on one
core - or have smart code and spend time on infrastructure (or TSelector)

❖ What we want:

❖ you focus on the selection, projections, algorithms

❖ ROOT takes care of the boring stuff: reading, looping, scheduling,
parallelizing - as efficiently as possible

❖ with beautiful and efficient Python interfaces

20

WebGUI Graphics

❖ WebGUI Graphics = HTML + JavaScript +
CSS + OpenUI5 + three.js plus D3.js

❖ Replace custom GUI with Win32 GDK,
X11, Cocoa and GL back-ends (and what
about Wayland?!)

❖ Local and remote interaction, extensible
painters, future-proof, beautiful graphics

21

PyROOT
❖ It’s unique - the world is jealous.  

Move from maintaining it to growing it!

❖ Expand it beyond “C++ to Python”:

❖ add “pythonic” interfaces a la rootpy

❖ Enable fast-path interfaces, e.g. to numpy arrays

❖ Design C++ interfaces such that they play nicely with Python

❖ ownership, type-safety, compact code

22

Build and Install

❖ Make binary installs simple for users

❖ easy install means happy physicists

❖ install core parts, build extensions as needed, on demand

❖ Make it simple to build

❖ allow for e.g. experiment’s of physics group’s extensions

❖ ROOT “package manager”

23

Summary: ROOT @ 2020

❖ New histograms, new TTree: simpler and
more robust

❖ Web-based graphics, with new TCanvas etc

❖ Simple, efficient and composable analysis
using all your cores

❖ Passing data efficiently into machine learning
tools, be it TMVA or external

24

ROOT v6.12
(and a bit of v6.10)

Parallelization

❖ Implemented parallel reading, writing,  
and fitting

❖ ROOT::EnableImplicitMT() switches ROOT to parallel mode

❖ root -t is a shortcut

❖ If ROOT is configured for SSE4 or AVX2, fitting is vectorized!

❖ next, we’ll fix the “if configured” part!

26

Math
❖ TMVA

❖ new Deep Neural Network (working in parallel in CPU or GPU)

❖ interfaces to Keras (PyKeras) which can use Theano or Tensorflow

❖ improved support for multi-class classification

❖ Nicer TF1 construction

27

// Composition:
TF1 comp("sin(f1(x))");
// Sum of normalized functions:
TF1 nsum("NSUM([A]*gaus, [B]*expo)",  
 xmin, xmax);
// Convolution:
TF1 conv("CONV(expo, gaus)”, xmin, xmax);

I/O

❖ LZ4 compression: super-fast reading,  
approx 15% larger files

❖ default for v6.14?

❖ TTreeReader has support for TEntryLists

❖ TTreeReader became the way to read trees (if not TDataFrame!)

28

TDataFrame
❖ From tutorials/dataframe/tdf001_introduction.C:

29

ROOT::Experimental::TDataFrame d(treeName, fileName, {“b1"});
auto cutb1 = [](double b1) { return b1 < 5.; };
auto cutb1b2 = [](int b2, double b1) { return b2 % 2 && b1 < 4.; };
auto entries1 = d.Filter(cutb1) // <- no column name specified here!
 .Filter(cutb1b2, {"b2", "b1"})
 .Count();
auto b1b2_cut = d.Filter(cutb1b2, {"b2", "b1"});
auto minVal = b1b2_cut.Min();
auto maxVal = b1b2_cut.Max();
auto meanVal = b1b2_cut.Mean();
auto nonDefmeanVal = b1b2_cut.Mean("b2"); // <- Column is not the default
auto hist = d.Filter(cutb1).Histo1D();

TDataFrame
❖ From tutorials/dataframe/tdf001_introduction.C:

30

ROOT::Experimental::TDataFrame d(treeName, fileName, {“b1"});
auto cutb1 = [](double b1) { return b1 < 5.; };
auto cutb1b2 = [](int b2, double b1) { return b2 % 2 && b1 < 4.; };
auto entries1 = d.Filter(cutb1) // <- no column name specified here!
 .Filter(cutb1b2, {"b2", "b1"})
 .Count();
auto b1b2_cut = d.Filter(cutb1b2, {"b2", "b1"});
auto minVal = b1b2_cut.Min();
auto maxVal = b1b2_cut.Max();
auto meanVal = b1b2_cut.Mean();
auto nonDefmeanVal = b1b2_cut.Mean("b2"); // <- Column is not the default
auto hist = d.Filter(cutb1).Histo1D();

TDataFrame
❖ From tutorials/dataframe/tdf001_introduction.C:

31

ROOT::Experimental::TDataFrame d(treeName, fileName, {“b1"});
auto cutb1 = [](double b1) { return b1 < 5.; };
auto cutb1b2 = [](int b2, double b1) { return b2 % 2 && b1 < 4.; };
auto entries1 = d.Filter(cutb1) // <- no column name specified here!
 .Filter(cutb1b2, {"b2", "b1"})
 .Count();
auto b1b2_cut = d.Filter(cutb1b2, {"b2", "b1"});
auto minVal = b1b2_cut.Min();
auto maxVal = b1b2_cut.Max();
auto meanVal = b1b2_cut.Mean();
auto nonDefmeanVal = b1b2_cut.Mean("b2"); // <- Column is not the default
auto hist = d.Filter(cutb1).Histo1D();

TDataFrame
❖ From tutorials/dataframe/tdf001_introduction.C:

32

ROOT::Experimental::TDataFrame d(treeName, fileName, {“b1"});
auto cutb1 = [](double b1) { return b1 < 5.; };
auto cutb1b2 = [](int b2, double b1) { return b2 % 2 && b1 < 4.; };
auto entries1 = d.Filter(cutb1) // <- no column name specified here!
 .Filter(cutb1b2, {"b2", "b1"})
 .Count();
auto b1b2_cut = d.Filter(cutb1b2, {"b2", "b1"});
auto minVal = b1b2_cut.Min();
auto maxVal = b1b2_cut.Max();
auto meanVal = b1b2_cut.Mean();
auto nonDefmeanVal = b1b2_cut.Mean("b2"); // <- Column is not the default
auto hist = d.Filter(cutb1).Histo1D();

TDataFrame
❖ From tutorials/dataframe/tdf001_introduction.C:

33

ROOT::Experimental::TDataFrame d(treeName, fileName, {“b1"});
auto cutb1 = [](double b1) { return b1 < 5.; };
auto cutb1b2 = [](int b2, double b1) { return b2 % 2 && b1 < 4.; };
auto entries1 = d.Filter(cutb1) // <- no column name specified here!
 .Filter(cutb1b2, {"b2", "b1"})
 .Count();
auto b1b2_cut = d.Filter(cutb1b2, {"b2", "b1"});
auto minVal = b1b2_cut.Min();
auto maxVal = b1b2_cut.Max();
auto meanVal = b1b2_cut.Mean();
auto nonDefmeanVal = b1b2_cut.Mean("b2"); // <- Column is not the default
auto hist = d.Filter(cutb1).Histo1D();

TDataFrame
❖ From tutorials/dataframe/tdf007_snapshot.C:

34

ROOT::Experimental::TDataFrame d(treeName, fileName);
auto d_cut = d.Filter("b1 % 2 == 0");
auto d2 = d_cut.Define("b1_square", "b1 * b1")
 .Define("b2_vector",
 [](float b2) {
 std::vector<float> v;
 for (int i = 0; i < 3; i++)
 v.push_back(b2 * i);
 return v;
 },
 {"b2"});
d2.Snapshot(treeName, outFileName,
 {"b1", "b1_square", "b2_vector"});

TDataFrame
❖ From tutorials/dataframe/tdf007_snapshot.C:

35

ROOT::Experimental::TDataFrame d(treeName, fileName);
auto d_cut = d.Filter("b1 % 2 == 0");
auto d2 = d_cut.Define("b1_square", "b1 * b1")
 .Define("b2_vector",
 [](float b2) {
 std::vector<float> v;
 for (int i = 0; i < 3; i++)
 v.push_back(b2 * i);
 return v;
 },
 {"b2"});
d2.Snapshot(treeName, outFileName,
 {"b1", "b1_square", "b2_vector"});

TDataFrame
❖ From tutorials/dataframe/tdf007_snapshot.C:

36

ROOT::Experimental::TDataFrame d(treeName, fileName);
auto d_cut = d.Filter("b1 % 2 == 0");
auto d2 = d_cut.Define("b1_square", "b1 * b1")
 .Define("b2_vector",
 [](float b2) {
 std::vector<float> v;
 for (int i = 0; i < 3; i++)
 v.push_back(b2 * i);
 return v;
 },
 {"b2"});
d2.Snapshot(treeName, outFileName,
 {"b1", "b1_square", "b2_vector"});

TDataFrame
❖ From tutorials/dataframe/tdf007_snapshot.C:

37

ROOT::Experimental::TDataFrame d(treeName, fileName);
auto d_cut = d.Filter("b1 % 2 == 0");
auto d2 = d_cut.Define("b1_square", "b1 * b1")
 .Define("b2_vector",
 [](float b2) {
 std::vector<float> v;
 for (int i = 0; i < 3; i++)
 v.push_back(b2 * i);
 return v;
 },
 {"b2"});
d2.Snapshot(treeName, outFileName,
 {"b1", "b1_square", "b2_vector"});

Graphics
❖ Two major feature requests implemented

❖ automatic palette colors, e.g. line:  
hist->Draw(“PLC”)

❖ auto-placement, e.g.  
canvas->BuildLegend()

❖ “do the right thing” options!

❖ Plus constant flow of smaller
improvements, e.g. “BOX1” TH3 option

38

ROOT std:: backports

❖ We loved std::string_view even before C++17. Same with std::make_unique,
std::span, etc (and soon likely std::variant)

❖ ROOT injects implementations of these into std::

❖ only if your stdlib does not have it

❖ once it does, uses std::experimental::XYZ or std::XYZ

❖ Allows us all to use current and near-future features with older compilers!

39

Current “v7” Features

❖ THist, TFile, TPad / TCanvas (new!)

❖ with explicit “pixel” / “normal” / “user” coordinates

❖ Decided on new interface personality: ownership, separation of simple /
advanced interfaces, safer code through array spans + unique_ptr +…

❖ Features added continuously

❖ Release from Experimental:: as use suggests and stabilization allow

40

Example: THist
❖ Fast: less virtual interfaces, more inlined, more bulk data operations

❖ Safe: 1D histogram has no hist->GetBinError(x, y)

❖ Simple: keeps most interface names TH1F::Fill(),
TH2D::GetEntries()

❖ Thread-safe: no directory registration, no raw pointers, explicit ownership

❖ Focused: no THist::SetLineColor()

❖ Yet composable and configurable for experts: statistics, storage

41

And It Works!

42

Conclusion

Bottom Line

❖ ROOT’s main goals:

❖ simplicity

❖ robustness

❖ speed

❖ Keep ROOT at the heart of physicists’ data analysis, and make it nice!

❖ Focus on physicists! Efficiency: brain / second, more than CPU / second

44

Conclusion

❖ New interfaces == new momentum

❖ plus several new team members

❖ TDataFrame!

45

Your Core ROOT Team
Xavi [1], Vassil [2], Sergei[3], Raphael [4], Philippe [5], Olivier [1], Oksana [6],
Lorenzo [1], Kim [1], Guilherme [1], Enrico [1], Enric [1], Danilo [1],  
Bertrand [1], Axel [1]  
 
1: CERN  
2: Princeton University  
3: GSI 
4: Chalmers University  
5: Fermilab  
6: University of Nebraska

46

Plus se
veral re

gular +  

essential contrib
utors!

@ROOT

❖ https://root.cern

❖ https://root-forum.cern.ch

❖ https://root.cern/bugs

47

https://root.cern
https://root-forum.cern.ch
https://root.cern/bugs

