Electron Capture in ¹⁶³Ho experiment – ECHo and discussion of recent results

MI

MI

Loredana Gastaldo

NI

NII

Kirchhoff Institute for Physics, Heidelberg University

Outline

- Introduction
- Electron capture in ¹⁶³Ho and neutrino mass
- Requirements to achieve sub-eV sensitivity on the electron neutrino mass
- ¹⁶³Ho-based experiments
- Conclusions and outlook

Massive Neutrinos

Knowing neutrino mass scale....

Neutrino mass determination

Cosmology

$$M_{\nu} = \sum m_i$$

- Model dependent
- Need of satellites
- Present limit 0.12 1 eV
- Next future 15-50 meV

Neutrino mass determination

Cosmology

Neutrinoless Double beta decay

- $M_{\nu} = \sum m_i$
- Model dependent
- Need of satellites
- Present limit 0.12 1 eV
- Next future 15-50 meV

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right|$$

- Model dependent
- Laboratory experiments
- Present limit 0.1 0.4 eV
- Next future 15-50 meV

Neutrino mass determination

Cosmology

Neutrinoless Double beta decay

- $M_{\nu} = \sum m_i$
- Model dependent
- Need of satellites
- Present limit 0.12 1 eV
- Next future 15-50 meV

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right|$$

- Model dependent
- Laboratory experiments
- Present limit 0.1 0.4 eV
- Next future 15-50 meV

Kinematics of β -decay and electron capture

$$m^2(v_e) = \sum_i \left| U_{ei} \right|^2 m^2_i$$

- Model independent
- Laboratory experiments

10m

3

• Present limit 2 eV

250 um

• Next future 200 meV

Direct neutrino mass determination

Kinematics of beta decay

$$m^2(v_e) = \sum_i |U_{ei}|^2 m_i^2$$

- Model independent
- Laboratory experiments

$$m(\overline{v_e}) < 2 \ eV$$

(1) Ch. Kraus *et al.,* Eur. Phys. J. C **40** (2005) 447 N. Aseev *et al.,* Phys. Rev D **84** (2011) 112003

Direct neutrino mass determination

Kinematics of beta decay

$$m^2(v_e) = \sum_i |U_{ei}|^2 m_i^2$$

- Model independent
- Laboratory experiments

$$m(\overline{v}_e) < 2 \ eV$$
 ³H (1)
 $m(v_e) < 225 \ eV$ ¹⁶³Ho (2)

(1) Ch. Kraus *et al.*, Eur. Phys. J. C **40** (2005) 447 N. Aseev *et al.*, Phys. Rev D **84** (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987)⁴679

Direct neutrino mass determination

Kinematics of beta decay

$$m^2(v_e) = \sum_i |U_{ei}|^2 m_i^2$$

- Model independent
- Laboratory experiments

$$m(\overline{v}_e) < 2 \ eV$$
 ³H (1)
 $m(v_e) < 225 \ eV$ ¹⁶³Ho (2)

• Next future 200 meV

(1) Ch. Kraus *et al.,* Eur. Phys. J. C **40** (2005) 447 N. Aseev *et al.,* Phys. Rev D **84** (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Beta decay and electron capture

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Beta decay and electron capture

• $\tau^{}_{1/2}\,\cong$ 12.3 years $\,$ (4*10^8 atoms for 1 Bq) $\,$

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

- $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Beta decay of ³H

m(v) = 0 eV

The KATRIN experiment

Main ideas:

- high activity source 10¹¹ e⁻/s
 - high resolution MAC-E* filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - → integral spectrum

*MAC-E: Magnetic Adiabatic Collimation with Electrostatic Filter

The KATRIN experiment: present status

The KATRIN experiment: present status

Photo K. Valerius

³H based experiments

KATRIN - Karlsruhe Tritium Neutrino Experiment

Main ideas:

- high activity source: 10¹¹ e⁻/s
 - high resolution MAC-E filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - \rightarrow integral spectrum

Project8

Main ideas:

- Source = detector: $10^{11} 10^{13} {}^{3}\text{H}_{2}$ molecules /cm³
- Use cyclotron frequency to extract electron energy
- Differential spectrum

PROJECT 8

PTOLEMY - Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield

Main ideas:

- large area tritium source: 100 g atomic ³H
 - MAC-E lter to select electrons close to the end point
 - RF tracking and time-of-flight systems
 - cryogenic calorimetry \rightarrow differential spectrum

Beta decay and electron capture

Electron capture in ¹⁶³Ho: Q_{EC} determination

- Calorimetric measurements
- Measurements of x-rays

★
$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Electron capture in ¹⁶³Ho: Q_{EC} determination

- Calorimetric measurements
- Measurements of x-rays

★
$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

Penning Trap Mass Spectroscopy @TRIGA TRAP (Uni-Mainz) (*) @SHIPTRAP (GSI – Darmstadt) (**)

$$v_c = \frac{qB}{m}$$

•
$$\tau_{1/2} \cong$$
 4570 years (2*10¹¹ atoms for 1 Bq)

- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
 - S. Eliseev et al., *Phys. Rev. Lett.* **115** (2015) 062501 (**) F. Schneider et al., Eur. Phys. J. A **51** (2015) 89 (*)

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

 V_{e} V_{e} V_{e} V_{e} V_{e} V_{e} V_{e} Detector

P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Volume 118B, number 4, 5, 6

PHYSICS LETTERS

9 December 1982

CALORIMETRIC MEASUREMENTS OF ¹⁶³HOLMIUM DECAY AS TOOLS TO DETERMINE THE ELECTRON NEUTRINO MASS

A. DE RÚJULA and M. LUSIGNOLI¹ CERN, Geneva, Switzerland

(a) F. Gatti et al., Physics Letters B 398 (1997) 415-419

(b) E. Laesgaard et al., Proceeding of 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7), (1984).

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

F. Gatti et al., Physics Letters B 398 (1997) 415-419

F. Gatti et al., Physics Letters B 398 (1997) 415-419

18

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

F. Gatti et al., Physics Letters B 398 (1997) 415-419

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

Description of the ¹⁶³Ho EC spectrum

(2) B. Alpert et al, Eur. Phys. J. C (2015) 75:112

(3) M. Croce et al., arXiv:1510.03874

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

 \geq

Fraction of events at endpoint regions

In the interval 2.832 -2.833 keV

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- $f_{\rm pu} < 10^{-5}$
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- *f*_{pu} < 10⁻⁵
- $\tau_r^{\prime} < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

• < 10⁻⁶ events/eV/det/day

Low temperature detectors for direct determination of the electron neutrino mass

MI

E

MI

NI

NII

Low temperature micro-calorimeters

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

Temperature sensors

Resistance at superconducting transition, TES

Magnetization of paramagnetic material, MMC

Temperature sensors

Resistance at superconducting transition, TES

Magnetization of paramagnetic material, MMC

• Paramagnetic Au:Er sensor Ag:Er

$$\Delta \Phi_{\rm s} \propto \frac{\partial M}{\partial T} \Delta T \quad \rightarrow \quad \Delta \Phi_{\rm s} \propto \frac{\partial M}{\partial T} \frac{E}{C_{\rm sens} + C_{\rm abs}}$$

Fast risetime

 \rightarrow Reduction un-resolved pile-up

MMC geometry and read-out

- Planar temperature sensor
- B-field generated by persistent current

MMC geometry and read-out

- Planar temperature sensor
- B-field generated by persistent current
- transformer coupled to SQUID

• Two-stage SQUID read-out

Multiplexing readout

Microwave SQUID multiplexing

Single HEMT amplifier and 2 coaxes to read out **100 - 1000** detectors

- Reliable fabrication of 64-pixel array
- Successful characterization of first prototypes
 → optimization of design parameters

*I*_{mod}

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters S.Kempf et al., J. Low. Temp. Phys. **175** (2014) 850-860

First detector prototype for ¹⁶³Ho – ECHo-0

- Absorber for calorimetric measurement

 → ion implantation @ ISOLDE-CERN in 2009
 on-line process
- About 0.01 Bq per pixel

Field and heater bondpads

Heatsink

SQUIDbondpads

• Operated over more than 4 years

L. Gastaldo et al., Nucl. Inst. Meth. A, 711 (2013) 150 P. C.-O. Ranitzsch et al., http://arxiv.org/abs/1409.0071v1

Calorimetric spectrum

- Rise Time ~ 130 ns
- $\Delta E_{\text{FWHM}} = 7.6 \text{ eV} @ 6 \text{ keV} (2013)$
- Non-Linearity < 1% @ 6keV

First calorimetric measurement

	E _H bind.	E _H exp.	$arGamma_{ m H}$ lit.	Γ_{H} ехр
MI	2.047	2.040	13.2	13.7
MII	1.845	1.836	6.0	7.2
NI	0.420	0.411	5.4	5.3
NII	0.340	0.333	5.3	8.0
ΟΙ	0.050	0.048	5.0	4.3

$Q_{\rm EC}$ determination

P. C.-O. Ranitzsch et al., accepted for publication in PRL (2017)

$Q_{\rm EC}$ determination

P. C.-O. Ranitzsch et al., accepted for publication in PRL (2017)

P. C.-O. Ranitzsch et al., accepted for publication in PRL (2017)

Scaling up

ECHo-1k (2015 - 2018)

Background **b** < 10⁻⁵ /eV/det/day

Measuring time *t* **= 1 year**

 $m(v_{\rm e}) < 10 \ {\rm eV} \ 90\% \ {\rm C.L.}$

Supported by DFG through Research Unit FOR 2202/1³⁷

ECHo-1M (next future)

¹⁶³Ho activity: $A_t = 1 \text{ MBq}$

Detectors: Metallic Magnetic Calorimeters

→ Energy resolution $\Delta E_{FWHM} \leq 3 \text{ eV}$ → Time resolution $\tau \leq 0.1 \, \mu s$

Unresolved pile-up fraction	$f_{ m pu}$ \leq 10 ⁻⁶
\rightarrow activity per pixel:	A = 10 Bq
\rightarrow number of detectors	<i>N</i> = 10 ⁵

Read-out : Microwave SQUID Multiplexing

 \rightarrow 100 arrays with ~1000 single pixels

Background **b** < 10⁻⁶ /eV/det/day

Measuring time t = 1 - 3 year

 $m(v_{\rm e}) < 1 \ {\rm eV} \ 90\% \ {\rm C.L.}$

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow >10^{6} \text{ Bq} \rightarrow >10^{17} \text{ atoms}$

• •

Neutron irradiation
 (n,γ)-reaction on ¹⁶²Er

High cross-section

Radioactive contaminants

H. Dorrer et al, accepted for publication in Radiochim. Acta (2018)

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow >10^6 \text{ Bq} \rightarrow >10^{17} \text{ atoms}$

Energy

H. Dorrer et al, accepted for publication in Radiochim. Acta (2018)

Mass separation and ¹⁶³Ho ion-implantation

Mass separation and ¹⁶³Ho ion-implantation

ECHo-0 detector showed asymmetric detector response

- Loss of high energy phonons to the substrate
- full contact between sensor and absorber

ECHo-0 detector showed asymmetric detector response

- Loss of high energy phonons to the substrate
- full contact between sensor and absorber

→ New detector fabrication process reduced contact area between absorber and sensor

Definition of the implantation area by microstructuring a photoresist layer on overhanging absorbers

ECHo-0 detector showed asymmetric detector response

- Loss of high energy phonons to the substrate
- full contact between sensor and absorber

→ New detector fabrication process reduced contact area between absorber and sensor

ECHo-0 detector showed asymmetric detector response

- Loss of high energy phonons to the substrate
- full contact between sensor and absorber

→ New detector fabrication process reduced contact area between absorber and sensor

Definition of the implantation area by microstructuring a photoresist layer on overhanging absorbers

ECHo-1k array

3" wafer with 64 ECHo-1k chip

Suitable for parallel and multiplexed readout

64 pixels which can be loaded with ¹⁶³Ho + 4 detectors for diagnostics

Design performance:

 $\Delta E_{FWHM} \simeq 5 \text{ eV}$ $\tau_r \simeq 90 \text{ ns}$ (single channel readout) $\tau_r \simeq 300 \text{ ns}$ (multiplexed read-out)

S.Kempf et al., J. Low. Temp. Phys. **176** (2014) 426

ECHo-1k array

100% of the chips selected at RT have good performance at low temperature

ECHo-1k array

high geometrical efficiency for ¹⁶³Ho implantation

presence of non-implanted chips for in-situ background determination

10 mm

Background sources:

- Radioactivity in the detector
- Environmental radioactivity Material screening ٠ Underground labs Cosmic rays Induced secondary radiation μ-Veto e X-ray Study of background sources through: Monte Carlo simulations Screening facilities

Uni-Tübingen

Felsenkeller

Dedicated experiments

Background sources:

 Radioactivity in the detector presence of ^{166m}Ho in Ho samples for implantation

RISIKO @ Physics Institute, Mainz University

→ ^{166m}Ho/¹⁶³Ho < 10⁻⁸

Background sources:

 Radioactivity in the detector presence of ^{166m}Ho in Ho samples for implantation

RISIKO @ Physics Institute, Mainz University

→ ^{166m}Ho/¹⁶³Ho < 10⁻⁸

Background sources:

 Radioactivity in the detector presence of ^{166m}Ho in Ho samples for implantation

RISIKO @ Physics Institute, Mainz University

→ ^{166m}Ho/¹⁶³Ho < 10⁻⁸

Accelerator Mass Spectrometry (AMS)

is a very powerful technique for measuring the corresponding very low isotopic ratio

Background sources:

 Radioactivity in the detector presence of ^{166m}Ho in Ho samples for implantation

RISIKO @ Physics Institute, Mainz University

→ ^{166m}Ho/¹⁶³Ho < 10⁻⁸

Accelerator Mass Spectrometry (AMS)

is a very powerful technique for measuring the corresponding very low isotopic ratio

e

X-ray

First tests at the DREsden AMS facility (DREAMS) at Helmholtz-Zentrum Dresden-Rossendorf for experimental determination of the ratio ¹⁶³Ho/^{166m}Ho in ECHo samples
Background in ECHo

Background sources:

- Radioactivity in the detector
- Environmental radioactivity
- Cosmic rays Induced secondary radiation

Sample	⁴⁰ K	²⁰⁸ TI	²¹² Pb	²¹⁴ Bi	²¹⁴ Pb	²²⁶ Ra
Cryostat copper [mBq/kg]	<480	<80	<190		<96	<600
Cryoperm [mBq/kg]	<335	<25	<45	<170	<40	<200
Connectors [mBq/kg]	5600	1600	10800	10800	10800	8000
Connectors [mBq] p.p.	3	1	6	6	6	4
Circuit board [mBq/kg]	625	4800	16300	8700	8000	5300
Circuit board [mBq/cm ²]	0.45	1.39	4.75	2.53	2.33	1.54
Cables [mBq/cm²]	0.49					

e

X-ray

47

100

α

Background in ECHo

Background sources:

Circuit

- Radioactivity in the detector
- Environmental radioactivity
- Cosmic rays Induced secondary radiation

							X-1
Sample	⁴⁰ K	²⁰⁸ TI	²¹² Pb	²¹⁴ Bi	²¹⁴ Pb	²²⁶ Ra	
	(190	<00	<100		-00	4600	
[mBq/kg]	<480	<80	<190		<90	<600	
Cryoperm [mBq/kg]	<335	<25	<45	<170	<40	<200	
Connectors [mBq/kg]	5600	1600	10800	10800	10800	8000	
Connectors [mBq] p.p.		1	6	6	6	1	

After comparison with MC simulations none of these item would lead to background above the unresolved pile up limit e

α

Background in ECHo

Background sources:

- Radioactivity in the detector
- Environmental radioactivity
- Cosmic rays Induced secondary radiation

ECHo cryogenic platform

- Large space at MXC enough for several ECHo phases
- cooling power: 15µW @ 20 mK
 - Possibility to load 200kg for passive shielding

ECHo cryogenic platform

- Large space at MXC enough for several ECHo phases
- cooling power: 15µW @ 20 mK
- Possibility to load 200kg for passive shielding
- Presently equipped with:

2 RF lines for microwave multiplexing readour of 2 MMC arrays

12 ribbons each with 30 Cu98Ni2 0.2 mm,
1.56 Ohm/m, cables from RT to mK
→ allows for parallel readout of 36 two-stage SQUID set-up

• ECHo-1k chip implanted at RISIKO Uni-Mainz

 \rightarrow ¹⁶³Ho activity A = 2 Bq

• 4 Front-end chips each with 8 dc-SQUIDs

• Circuit board designed for the ECHo-1k experiment

 \rightarrow Parallel read-out of 64 pixels

Aluminum superconducting shield

Towards high statistics ¹⁶³Ho spectrum

61

¹⁶³Ho spectral shape

No good agreement between experimental spectrum and theory

- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. De Rujula and M. Lusignoli
 JHEP 05 (2016) 015, arXiv:1601.04990v1
- A. Faessler et al.
 - J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C 91, 035504 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. Faessler et al. Phys. Rev. C 95, (2017) 045502

¹⁶³Ho spectral shape

Intensity a.u.

New approach

Ab inito calculation of the ¹⁶³Ho electron capture spectrum

Brass et al., https://arxiv.org/abs/1711.10309

Restricted to bound-states only, i.e. the spectrum is given by a finite number of resonances

- ightarrow Include decay to the continuum states
- ightarrow Study the effect of metallic host

Sterile neutrinos search in ECHo

L. Gastaldo, C. Giunti, E. Zavanin., *High Energ. Phys.* **06** (2016) 61. A White Paper on keV Sterile Neutrino Dark Matter, JCAP01(2017)025

Conclusions and outlook

The ECHo collaboration aims to reach sub-eV sensitivity on the electron neutrino mass analysing high statistics and high resolution ¹⁶³Ho spectra

- ➢ Independent ¹⁶³Ho Q_{EC} measurement
 Q_{EC} = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
 Q_{EC} = (2.858 ± 0.010^{stat} ± 0.05^{syst}) keV
- High purity ¹⁶³Ho sources have been produced
- ¹⁶³Ho ions can be successfully enclosed in microcalorimeter absorbers
- Large arrays have been tested and microwave SQUID multiplexing has been successfully proved
- A new limit on the electron neutrino mass is approaching

The ECHo Collaboration, EPJ-ST 226 8 (2017) 1623

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2-	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
5+	7/2-	1+	7/2-	1+	7/2-
EC	EC *	EC	EC *	EC,β-	100

Department of Nuclear Physics, Comenius University, Bratislava, Slovakia Fedor Simkovic

Department of Physics, Indian Institute of Technology Roorkee, India Moumita Maiti

Goethe Universität Frankfurt am Main

Udo Kebschull, Panagiotis Neroutsos

Institute for Nuclear Chemistry, Johannes Gutenberg University Mainz Christoph E. Düllmann, Klaus Eberhardt, Holger Dorrer, Fabian Schneider Institute of Nuclear Research of the Hungarian Academy of Sciences Zoltán Szúcs

Institute of Nuclear and Particle Physics, TU Dresden, Germany Alexnder Domula, Kai Zuber Institute for Physics, Humboldt-Universität zu Berlin

Alejandro Saenz

Institute for Physics, Johannes Gutenberg-Universität

Klaus Wendt, Sven Junck, Tom Kieck

Institute for Theoretical Physics, Heidelberg University

Martin Brass, Maurits Haverkort

Institute for Theoretical Physics, University of Tübingen, Germany Amand Fäßler

Institut Laue-Langevin, Grenoble, France

Ulli Köster

ISOLDE-CERN

Marsh Bruce, Day Goodacre Tom, Johnston Karl, Rothe Sebastian, Stora Thierry, Veinhard Matthieu

Kirchhoff-Institute for Physics, Heidelberg University, Germany

Christian Enss, Loredana Gastaldo, Andreas Fleischmann, Clemens Hassel, Sebastian Kempf, Federica Mantegazzini, Mathias Wegner Max-Planck Institute for Nuclear Physics Heidelberg, Germany Klaus Blaum, Andreas Dörr, Sergey Eliseev, Mikhail Goncharov, Yuri N. Novikov, Alexander Rischka, Rima Schüssler Petersburg Nuclear Physics Institute, Russia Yuri Novikov, Pavel Filianin Physics Institute, University of Tübingen, Germany Josef Jochum, Stephan Scholl Saha Institute of Nuclear Physics, Kolkata, India

Susanta Lahiri

