

Physics at the Compact Linear Collider

Ulrike Schnoor (CERN)

Institutsseminar IKTP TU Dresden 17 May 2018

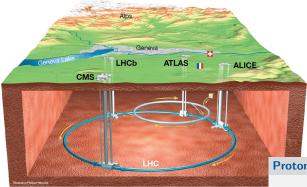
Outline

Present and future of particle physics at high-energy colliders

CLIC accelerator

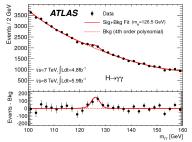
CLIC detector model

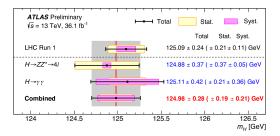
CLIC physics potential


Summary and Outlook

The Large Hadron Collider

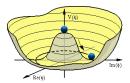
Proton-proton collider


 $\begin{array}{c} \text{CME} & 7...8...13 \text{ TeV} \\ \textbf{Taking data} & \text{since 2010} \\ \textbf{Luminosity} & 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \\ \textbf{4 experiments} & \text{ATLAS, ALICE,} \\ \text{CMS, LHCb} \end{array}$



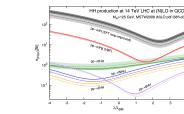
The Higgs boson

- Discovery of a Higgs boson (2012) at CMS & ATLAS
- Observed decays: WW, ZZ, γγ, ττ


Sparked investigation of the nature of electroweak symmetry breaking \Rightarrow far from completed!

Phys. Rev. Lett. 114 (2015) 191803

Open questions in Higgs physics



SM Higgs mechanism:

- $\blacktriangleright V = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$
- \blacktriangleright λ related to Higgs self-coupling

Self-couplings measurement \rightsquigarrow shape of the potential

Other open questions In the Higgs sector:

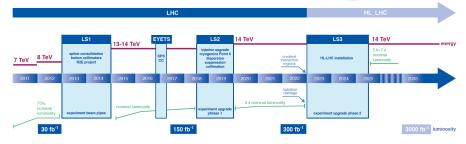
- Origin of Yukawa couplings
- Coupling to longitudinal EW gauge bosons
- CP property

Other areas:

►

- Dark matter
- Baryon-antibaryon asymmetry
- Hierarchy problem

► ...


Planned timeline of LHC, HL-LHC

High

Luminosity

LHC / HL-LHC Plan

https://cds.cern.ch/record/1975962

HL-LHC physics program

- Search for physics beyond the SM
- ► Continuation of top, Higgs, electroweak physics program of the LHC

Proposed electron-positron colliders at the energy frontier

Linear e^+e^- colliders

Compact Linear Collider CLIC

CERN $\sqrt{s} = 380 \text{ GeV}, 1.5 \text{ TeV}, 3 \text{ TeV}$ $\ell = 11 \text{ km}, 29 \text{ km}, 50 \text{ km}$

International Linear Collider ILC

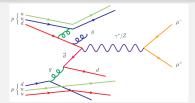
Japan $\sqrt{s} = 250 \text{ GeV} (500 \text{ GeV}, 1 \text{ TeV})$ $\ell = 17 \text{ km} (31 \text{ km}, 50 \text{ km})$

Circular e^+e^- colliders

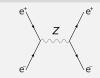
Future Circular Collider FCC-ee

CERN $\sqrt{s} = 90 - 350 \text{ GeV}$ $\ell = 98 \text{ km}$

Circular Electron Positron Collider



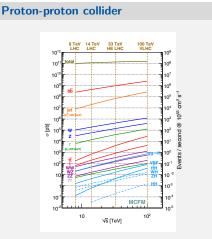
China $\sqrt{s} = 90 - 240 \text{ GeV}$ $\ell = 100 \text{ km}$



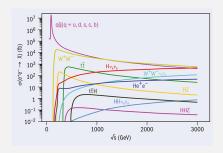
Proton-proton collider

- Proton is compound object
 - Initial state unknown
 - Limited achievable precision
- High-energy circular colliders possible
- High rates of QCD backgrounds
 - Complex triggers
 - High levels of radiation

Electron-positron collider



- e^+, e^- are pointlike
 - ► Initial state well-defined (√s, polarization)
 - High-precision measurements
- ► High energies (√s > 350 GeV) require linear colliders
- Clean experimental environment
 - Less/ no need for triggers
 - Lower radiation levels


Interesting physics processes in pp and ee collisions

 $_{\rm https://mcfm.fnal.gov/mcfm-Edep.pdf}$ Interesting events suppressed by $\gtrsim 8$ orders of magnitude

Electron-positron collider

http://clicdp.web.cern.ch/sites/clicdp.web.cern.ch/files/

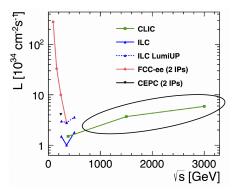
CCcli3_09_16.jpg

Circular and linear colliders

Circular colliders accelerating Beam circulates for a long time cavities Few accelerating cavities, many magnets ► High energy → need strong magnets • Synchrotron radiation $\sim \frac{E^4}{4}$ Linear colliders SOURCE main linac

- Beam passes only once
- Few magnets, many accelerating cavities
- \blacktriangleright High energy \rightarrow need high accelerating gradient
- High luminosity \rightarrow high beam power (high bunch repetition)

Electron-positron colliders



Linear e^+e^- colliders

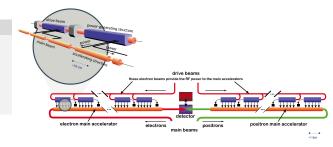
- Can reach highest energies
- Luminosity rises with energy
- Beam polarization possible at all energies

Circular e^+e^- colliders

- Energy limited by synchrotron radiation
- Large luminosity at lower energies
- Luminosity decreases with energy

Past colliders: LEP2 (209 GeV) peak luminosity $\mathcal{L} = 10^{32} \text{cm}^{-2} \text{s}^{-1}$

CLIC accelerator


Novel technology: radio-frequency devices and two-beam acceleration scheme

Goal High gradient, efficient energy transfer (wall-plug to beam) Means High-frequency RF maximizes field in cavities for given energy Challenge Standard RF sources inefficient at high frequencies

 \rightarrow Idea Use standard low-frequency RF sources to accelerate a drive beam, which is then brought to high frequency

Two-beam acceleration

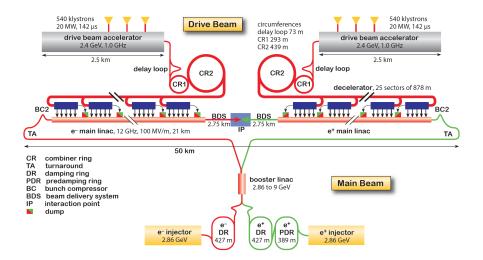
Scheme: Dense, low energy drive beam RF power extracted to accelerate less particles per bunch to higher energy per particle

Drive beam high current (100 A); lower energy (2.4 GeV) 12 GHz frequency after combiner rings/delay loops

Power Extraction and Transfer Structures (PETS): decelerate the beam \rightarrow extract its energy \rightarrow guide it via waveguides to the main beam accelerating structures

Main beam High energy up to 1.5 TeV; lower current 1.2 A

CLIC technology


RF cavities:

- Operated at room temparature
- Gradient 100 MV/m

Layout of the CLIC accelerator complex

CTF3, the CLIC Test Facility

Successful demonstration of

- Drive beam generation
- RF power extraction
- Gradient up to 145 MV/m

C-band facilities using CLIC technology (SwissFEL)

The two-beam module

Test module without beam for tests of

- thermo-mechanical effects
- ► engineering
- alignment and support
- vacuum, etc.

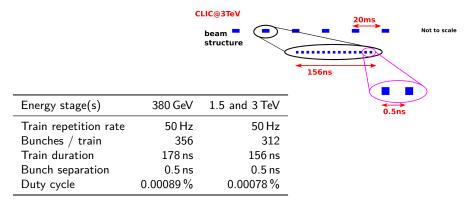
X-band test facility


test and development of high-gradient accelerating structures

CLIC staged implementation and map

Baseline: several energy stages			
Stage	\sqrt{s} [GeV]	$\mathcal{L}_{\mathrm{int}} \; [fb^{-1}]$	
1	380	500	
top scan	350	100	
2	1500	1500	
3	3000	3000	

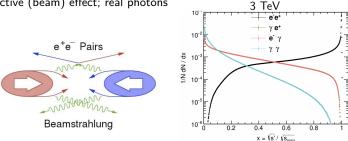
 \Rightarrow stages can be adapted to possible discoveries at the LHC


Even (much) further in the future: Upgrade with Plasma Wakefield technology possible

Beam properties and experimental conditions

CLIC bunch structure and experimental conditions

- Linear colliders operate in bunch trains
- Bunch separation drives timing requirements of the detector
 - 10 ns hit time-stamping in tracking
 - 1 ns accuracy for calorimeter hits
- \blacktriangleright Low duty cycle \rightarrow power pulsing of detectors possible



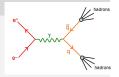
Beam-beam interaction

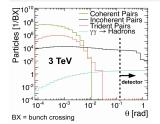
High luminosities achieved by using extremely small beam sizes

- At 3 TeV: bunch size $\sigma_x = 40$ nm, $\sigma_y = 1$ nm, $\sigma_z = 44 \,\mu\text{m}$
- Flat beams: high luminosity while minimizing electromagnetic fields
- Electromagnetic interaction of e^+ and e^- beams → synchrotron radiation: *beamstrahlung*
- Collective (beam) effect; real photons

Beamstrahlung:

- ... modifies energy spectrum of the colliding e^+e^- pairs
- ... produces $e^{\pm}\gamma$ and $\gamma\gamma$ collisions
- ... drives detector requirements to a large extend


Coherent and incoherent e^+e^- pairs


19k particles per bunch train (3 TeV) High occupancies \rightarrow impact on detector granularity and design

$\gamma\gamma ightarrow$ hadrons

17k particles per bunch train (3 TeV) Main background in calorimeters and trackers \rightarrow impact on detector granularity, design and physics measurements

- ▶ Bunch trains with 312 bunches every 0.5 ns
- $\blacktriangleright~\gamma\gamma \rightarrow$ hadrons suppressed with timing cuts

CLIC detector

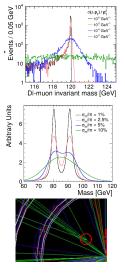
Detector requirements

+ Momentum resolution:

Higgs recoil mass, $H \rightarrow \mu \mu$, leptons from BSM processes

$$\frac{\sigma(p_T)}{p_T^2}\approx 2\times 10^{-5} {\rm GeV}^{-1}$$

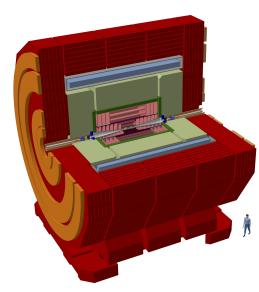
+ Energy resolution for light quarks: W/Z/H separation


$$\frac{\sigma(E)}{E} \approx 3.5 - 5\% \text{ for } E = 50...1000 \,\text{GeV}$$

+ **Impact parameter resolution:** b/c tagging, e.g. Higgs couplings

$$\sigma(d_0) = \sqrt{a^2 + b^2 \text{GeV}^2/(p^2 \sin^3 \theta)},$$

 $a\approx 5\mu\mathrm{m}, b\approx 15\mu\mathrm{m}$


+ Lepton identification, very forward e/ γ tagging + Requirements from beam-induced backgrounds

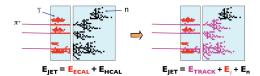
Overview of the detector

Designed for Particle Flow Analysis and optimized for CLIC environment

- 4 T B-field
- Vertex detector (3 double layers)
- Large Silicon tracker R=1.5m
- Highly granular calorimeters:
 - Si-W-ECAL
 40 layers (22 X₀)
 - Scint-Fe-HCAL
 60 layers (7.5 λ_I)

Precise timing for background suppression

Particle Flow Calorimetry


Particle Flow principle

Average jet composition

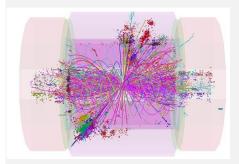
- ▶ 60 % charged particles
- ► 30 % photons
- 10 % neutral hadrons

Always use the best information

- charged particles \rightarrow tracker
- ▶ photons → ECAL
- neutral hadrons \rightarrow HCAL

http://www.hep.phy.cam.ac.uk/linearcollider/calorimetry/

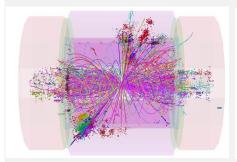
- Traditional approach: jet energy measured in ECAL and HCAL
- ► Particle Flow: Need very good spacial resolution to avoid confusion ⇒ highly granular calorimeters
- \Rightarrow Hardware + Software

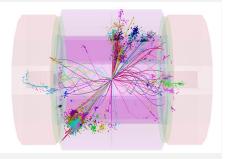


Timing resolution to suppress backgrounds

 $\gamma\gamma \rightarrow$ hadrons background: uniformly distributed in bunch train (unlike signal) \sim can be efficiently suppressed with pT-dependent timing cuts on reconstructed particles (= particle flow objects)

 $tar{t}$ event at 3 TeV with background from $\gamma\gamma
ightarrow$ hadrons from bunch train

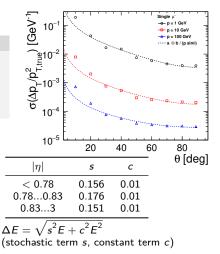



Timing resolution to suppress backgrounds

 $\gamma\gamma \rightarrow$ hadrons background: uniformly distributed in bunch train (unlike signal) \sim can be efficiently suppressed with pT-dependent timing cuts on reconstructed particles (= particle flow objects)

 $tar{t}$ event at 3 TeV with background from $\gamma\gamma
ightarrow$ hadrons from bunch train

1.2 TeV background in the reconstruction window $\geq 10 \text{ ns}$ around physics event


100 GeV background after timing cuts

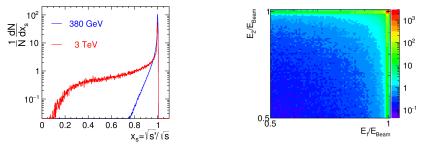
Detector performance in full simulation

Tracking performance: Momentum resolution

Full detector simulation

- Simulation based on Geant4
- Reconstruction chain including tracking, particle flow, identification, flavor tagging

CLIC physics


Simulation

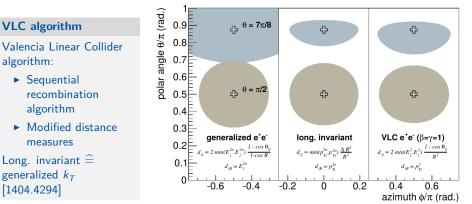
Ingredients specific to linear collider Monte Carlo generation

- Beam polarization
- Hard processes for e^+e^- , $e^\pm\gamma$, $\gamma\gamma$
- Simulation of ISR
- Capabilities to include beamstrahlung from parametrization (e.g. CIRCE2) or beam-beam event files

Main generator: Whizard+Pythia

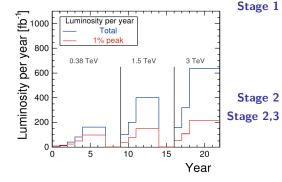
- Correlations between beams are important
- Impact on cross section measurements and lab-frame observables
- Simulation with beam-beam interactions tool GUINEAPIG

[1309.0372]



Jet reconstruction at CLIC

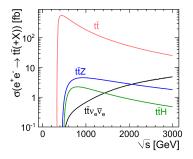
Collider	hadron	lepton
Avoid contamination from	pile-up	beam-induced backgrounds
Boost w.r.t. detector frame	yes	no/less


- Lepton colliders: $[E, \theta]$; hadron colliders: $[p_T, y]$
- $\blacktriangleright~\gamma\gamma \rightarrow$ hadrons is forward peaked, reduce forward size for background robustness

CLIC physics in three stages

- 1 ► Higgs physics: single Higgs production in HZ and VBF
 - Top physics: tt
 tproduction and threshold scan
 - \Rightarrow precision far beyond that of the HL-LHC
- - Searches for new particles
 - Precision EW measurements providing indirect sensitivity to new physics at higher scales
 - Higgs self-coupling
 - BSM Searches

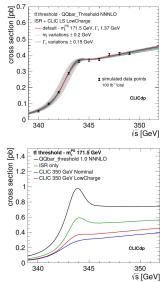
Top physics


Stage 1: 380 GeV close to production maximum \rightarrow large event samples

$t\bar{t}H$ production

 $\begin{array}{l} {\rm Maximum} \ \sigma \ {\rm near} \ 800 \ {\rm GeV} \\ {\rm LC} \ {\rm lumi} \ {\rm higher} \ {\rm at} \ {\rm higher} \ {\rm energy} \\ \rightarrow {\rm CLIC} \ {\rm Stage} \ 2 \ {\rm close} \ {\rm to} \ {\rm maximum} \\ {\rm ttH} \ {\rm rate} \end{array}$

- Rare top decays
- Top mass
- Top electroweak couplings
- Top Yukawa coupling
- CP properties of $t \to H$ coupling
- BSM in H/t sectors



Top threshold scan

- Goal: Highest precision top mass measurement
- Dedicated runs of CLIC in several steps around 350 GeV (tt threshold), total 100 fb⁻¹
- \blacktriangleright Expected measurement precision on 1S mass : $\approx 50 \, \text{MeV}$
 - Theoretical uncertainties: parametric uncertainties from α_s, perturbative QCD uncertainty (dominant)
 - Experimental uncertainties: beam energy and luminosity spectrum, remaining background predictions
 - Statistical uncertainty: 20 MeV
- CLIC beam parameters optimised for lower beamstrahlung

CLICdp work in progress

- Make use of the c-tagging capabilities of CLICdet to search for $t \rightarrow c$ FCNC
- FCNC strongly suppressed in the SM \Rightarrow measurement would reveal new physics
- Analysis performed for 380 GeV (production maximum)
- Search in 3 channels $t \rightarrow cH$, $t \rightarrow c\gamma$, and $t \rightarrow c+MET$ decays
- ▶ Select events with $t\bar{t}$ signature with "spectator top" (SM) and "signal top" (FCNC)
- Combinatorics of final state: minimize χ^2 measure, e.g.

$$\chi^{2} = \frac{(M_{t1}^{rec} - m_{top})^{2}}{\sigma_{t}} + \frac{(M_{t2}^{rec} - m_{top})^{2}}{\sigma_{t}} + \frac{(M_{W1}^{rec} - m_{W})^{2}}{\sigma_{W}} + \frac{(M_{W2}^{rec} - m_{W})^{2}}{\sigma_{W}}$$

$$t \rightarrow c\gamma$$

$$t \rightarrow c\gamma$$

$$\downarrow b \text{ Solated photon with } E \geq 50 \text{ GeV required}$$

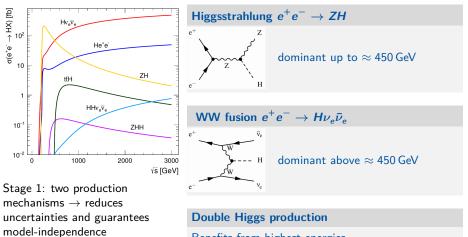
$$\text{Limit:} BR(t \rightarrow c\gamma) < 4.7 \times 10^{-5}$$

$$R(t \rightarrow cH) < 1.2 \times 10^{-4}$$

$$\frac{t \rightarrow cH}{\sigma_{W}}$$

$$\frac{t \rightarrow c$$

t


BI

mpy [GeV]

Higgs physics at CLIC

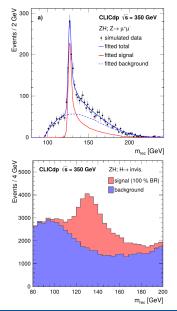
Benefits from highest energies

Higgsstrahlung

$Z ightarrow ee, \mu \mu$

► Identify HZ events from the Z recoil mass

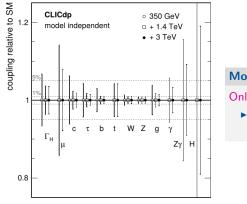
$$M^2 = s - 2E_{q\bar{q}}\sqrt{s} + M_{q\bar{q}}^2$$


 \Rightarrow model-independent measurement of the g_{HZZ} coupling

Z ightarrow q ar q

Measurement of $g_{HZZ} \sim substantial$ improvement in precision possible

$H \rightarrow invisible$

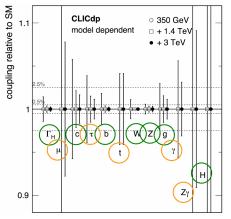

Find invisible Higgs decays in a model-independent way BR(H $\!\to\!inv.)\!<\!0.97\,\%$ at 90 % C.L. for CLIC at 350 GeV

▶ Global fits to $\sigma \times BR$ measurements in HZ and VBF production in various channels → model-independent and model-dependent

Model-independent fit

Only possible at lepton colliders

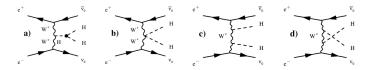
 11 free parameters including the total width



Model-dependent global fit

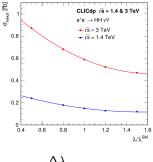
Model-dependent:

- 10 free parameters
- Total width is sum of partial widths \Rightarrow No decays to non-SM particles
- Comparison to LHC results



 significantly better than HL-LHC or not possible at hadron colliders
 similar to HL-LHC

Double Higgs production

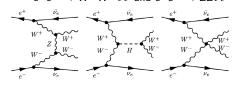


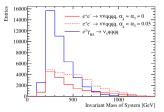
 \Rightarrow Measure Higgs trilinear self-coupling λ and quartic HHWW coupling

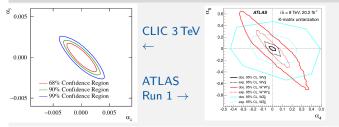
 Cross section precision at 3 TeV:

$$\frac{\Delta[\sigma(HH\nu\bar{\nu})]}{\sigma(HH\nu\bar{\nu})} = 20\%$$

- $\Rightarrow \text{ Extract limits on } \lambda \text{ from} \\ \text{cross-section variation}$
- ∼ Expected limits from Stage 2 (1.5 ab^{-1}) & 3 (3 ab^{-1}) with e^{-} beam polarisation:

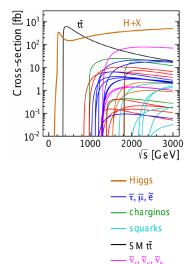

$$\frac{\Delta\lambda}{\lambda} = 16\%$$


Differential distributions Template fit to sensitive variables (e.g. M(HH)) improves sensitivity to $\Delta\lambda/\lambda \approx 10\%$


- Make use of fully hadronic final states (JER allows to separate W,Z)
- Example studies done in $e^+e^- \rightarrow W^+W^-\nu\bar{\nu}$ and $e^+e^- \rightarrow ZZ\nu\bar{\nu}$

Limits on anomalous quartic gauge couplings via χ^2 fit to sensitive observables: M_{VV} , $\cos{\theta^*}_{VV}$, $\cos{\theta^*}_{Jets}$

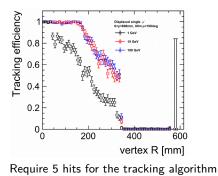
Limits on anomalous quartic gauge couplings



HL-LHC: Similar sensitivity as CLIC 3 TeV

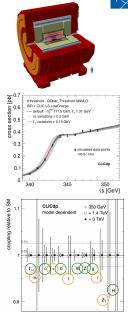
Beyond the Standard Model

- CLIC well suitable for direct searches/discoveries
- In case of a discovery at the LHC, CLIC could measure new particles properties (scrutinize the underlying theory using polarised e⁻ beam, threshold scans)
- Sensitivity of CLIC often extends up to the kinematic limit (pair production: M ≤ √s/2)
- CLIC is particularly suitable for electroweak states in very rare processes


— neutralinos

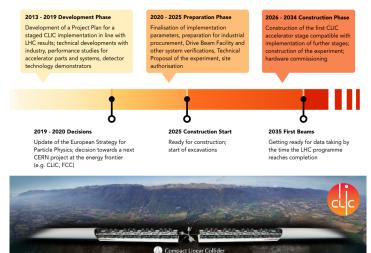
Displaced signatures

- Long-lived particles signatures: displaced or disappearing tracks
- Challenging at the LHC



Example model: Hidden valley particles Possible discovery channel $H \rightarrow \pi_{\nu}\pi_{\nu} \rightarrow b\bar{b}b\bar{b}$ (1 / N) * (dN / dR) HV pion $\tau = 1$ ps m, = 50 GeV HV pion $\tau = 10$ ps HV pion $\tau = 100$ ps CLIC 3 TeV 10 10 10-4 20 25 30 R_{xv} of EndVtx [mm]

Summary and Outlook


- CLIC: Compact Linear Collider = future electron-positron collider at the Terascale
- Accelerator scheme demonstrated in various test facilities
- CLICdet detector model adapted to CLIC high-energy beam environment
- Baseline energy stages optimised for physics cases
- CLIC physics: High-precision top, Higgs, and electroweak physics
- $\rightarrow\,$ e.g. Top threshold scan, Higgs self-coupling in HH production

Outlook

- December 2018 May 2020: European Strategy Update process
- CLIC timeline:

Additional material

Additional Material

References

Electron-positron vs. hadron collider

http://www.quantumdiaries.org/wp-content/uploads/2015/05/ feynmanDiagram_DrellYan_wRad.png https://upload.wikimedia.org/ wikipedia/en/thumb/e/ea/Electron-positron-z_boson.svg/ 1024px-Electron-positron-z_boson.svg.png

▶ Beam-induced backgrounds: $\gamma\gamma \rightarrow$ hadrons diagram http://cronodon.com/images/QCD_19.jpg