

EFFECTIVE FIELD THE®RY INTERPRETATI®NS ®F ATLAS HIGGS DATA

<u>MICHEL JANUS</u> <u>SEMINAR TU DRESDEN</u> 31TH ©F MAY 2018

Overview

- Introduction
- Reminder of CMS+ATLAS Run I Higgs results
- Interpretation using simple coupling modifiers
- Introduction to Effective Field Theory (EFT) approach
- Some ATLAS results from diphoton differential Run1 and Run2 measurements
- Projections for achievable precision of EFT fits with full ATLAS dataset
- EFT studies of CP mixing in tau and weak boson channels
- Some recent ATLAS results in ZZ*

disclaimer: not discussing simplified template cross sections scheme!

How we "see" Higgs Bosons

Production	Cross section [pb]				
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$			
<i>gg</i> F	15.0 ± 1.6	19.2 ± 2.0			
VBF	1.22 ± 0.03	1.58 ± 0.04			
WH	0.577 ± 0.016	0.703 ± 0.018			
ZH	0.334 ± 0.013	0.414 ± 0.016			
[ggZH]	0.023 ± 0.007	0.032 ± 0.010			
ttH	0.086 ± 0.009	0.129 ± 0.014			
tH	0.012 ± 0.001	0.018 ± 0.001			
bbH	0.156 ± 0.021	0.203 ± 0.028			
Total	17.4 ± 1.6	22.3 ± 2.0			

• Production modes:

- Main mode is gluon fusion
- Rare modes have characteristic signatures

|--|

- ZZ, $\gamma\gamma$: low branching fractions (BR), clean signal
- WW: good sensitivity, difficult backgrounds
- ττ, bb: medium-high BR, fermion couplings, very difficult backgrounds

Decay mode	Branching fraction [%]
$H \rightarrow bb$	57.5 ± 1.9
$H \rightarrow WW$	21.6 ± 0.9
$H \rightarrow gg$	8.56 ± 0.86
$H \to \tau \tau$	6.30 ± 0.36
$H \rightarrow cc$	2.90 ± 0.35
$H \rightarrow ZZ$	2.67 ± 0.11
$H \rightarrow \gamma \gamma$	0.228 ± 0.011
$H \rightarrow Z\gamma$	0.155 ± 0.014
$H \rightarrow \mu \mu$	0.022 ± 0.001

JHEP 1608 (2016) 045 Phys. Rev. Lett. 114, 191803

Basic Properties

- Confirmed scaling of coupling with mass
- Precise mass measurement in $\gamma\gamma$ and ZZ* channels

• **Results:** All hypotheses except 0⁺ excluded at >99.9% confidence level

Couplings: Fit Model

- Derive couplings from event yields n in the different analysis channels k
- Parameters of interest are the "signal strengths" $\mu_{i,f}$ for production and decay modes
- Defined such that $\mu_{i,f} = I$ represents signal strength consistent with the SM
- Other parameters need to be measured in each channel k for all production and decay modes

Fit Inputs

- Measured signal strength in units of SM cross section x branching ratio
- Not possible to measure either by itself without theory assumptions
- In all decay channels signal strength agrees with SM expectation within 1-2 σ

Channel	Signal strength $[\mu]$ from results in this		Signal significance $[\sigma]$ paper (Section 5.2)		
	ATLAS	CMS	ATLAS	CMS	
$H \rightarrow \gamma \gamma$	$1.14^{+0.27}_{-0.25}$	$1.11^{+0.25}_{-0.23}$	5.0	5.6	
	$\begin{pmatrix} +0.26\\ -0.24 \end{pmatrix}$	$\begin{pmatrix} +0.23\\ -0.21 \end{pmatrix}$	(4.6)	(5.1)	
$H \rightarrow ZZ$	$1.52 \substack{+0.40 \\ -0.34}$	$1.04 \substack{+0.32 \\ -0.26}$	7.6	7.0	
	$\begin{pmatrix} +0.32\\ -0.27 \end{pmatrix}$	$\begin{pmatrix} +0.30\\ -0.25 \end{pmatrix}$	(5.6)	(6.8)	
$H \rightarrow WW$	$1.22^{+0.23}_{-0.21}$	$0.90 {}^{+0.23}_{-0.21}$	6.8	4.8	
	$\begin{pmatrix} +0.21\\ -0.20 \end{pmatrix}$	$\begin{pmatrix} +0.23\\ -0.20 \end{pmatrix}$	(5.8)	(5.6)	
$H \rightarrow \tau \tau$	$1.41^{+0.40}_{-0.36}$	$0.88^{+0.30}_{-0.28}$	4.4	3.4	
	$\begin{pmatrix} +0.37\\ -0.33 \end{pmatrix}$	$\begin{pmatrix} +0.31\\ -0.29 \end{pmatrix}$	(3.3)	(3.7)	
$H \rightarrow bb$	$0.62^{+0.37}_{-0.37}$	$0.81 {}^{+0.45}_{-0.43}$	1.7	2.0	
	$\begin{pmatrix} +0.39\\ -0.37 \end{pmatrix}$	$\binom{+0.45}{-0.43}$	(2.7)	(2.5)	
$H \rightarrow \mu \mu$	$-0.6^{+3.6}_{-3.6}$	$0.9^{+3.6}_{-3.5}$			
	$\binom{+3.6}{-3.6}$	$\binom{+3.3}{-3.2}$			
ttH production	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$	2.7	3.6	
	$\binom{+0.7}{-0.7}$	$\begin{pmatrix} +0.9\\ -0.8 \end{pmatrix}$	(1.6)	(1.3)	

The Kappa Framework

- First attempt to parametrize deviations of Higgs couplings from SM expectations
- In narrow width approximation production cross sections and branching ratios factorize

$$\sigma_i \cdot \mathbf{B}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_H}$$

• Then introduce kappa parameters to scale cross section or partial widths

$$\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}}$$
 or $\kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j$

- Can reduce complexity by correlating kappa parameters, e.g. one k for all fermions or bosons
- By construction only modifies event rates, not shapes
- Does not predict where deviations from SM could occur

Couplings: Kv vs. Kf

- Scale all vector boson couplings with k_V and fermion couplings with k_f
- New physics could change ratio and relative sign
- Measurement compatible with SM and positive sign preferred
- top and W loops in diphoton decay lift degeneracy of sign

Couplings: Kg vs. Ky

- gluon and photon coupling sensitive to new particles through loops
- Set all other couplings to SM values
- SM values for k_g and k_Y firmly within $I\sigma$ boundary
- P-value for SM case 82%

Couplings: 8D Fit

Effective Field Theory

- Kappa framework is useful to tell us where deviations from SM predictions occur
 - Only takes into account rate information
 - Assumptions on correlations in couplings need to be put into fit by hand
- Effective field theory (EFT) approach starts from:
 - Construct effective Lagrangian with all possible operators up to dimension six [JHEP 1010:085,2010]
 - Require lepton and baryon number conservation and Lorentz invariance
 - Wilson coefficients describe strength of effective coupling
- Directly gives coherent predictions of modified differential cross sections

The SILH Basis

 Many possible bases, popular example is "strongly interacting light higgs" (SILH) [JHEP 1307 (2013) 035]

brazenly stolen from here

CATS: ALL YOUR BASE ARE BELONG TO US.

Ingredients for EFT Fit

- Several groups provide predictions for EFT models for some operators natively (HAWK arXiv:0707.0381,1412.5390 VBFNLO arXiv:0811.4559,...)
- But also full EFT models available in so-called universal FeynRules output (UFO) format
- Can use this generate signal models using generators with UFO support (MadGraph, Sherpa) [JHEP 06 (2011) 128, Eur.Phys.J. C75 (2015) 135]
 - Usually renormalize partial widths to SM prediction from HDecay
- Using these signal predictions hypothesis tests can be done with fit framework of your choice (SFitter widely used in theory community)

Physics Letters B 753 (2016) 69-85

$H \rightarrow \gamma \gamma \ EFT \ Interpretation$

- Using Run I H→γγ differential measurements
- Interpretation in SILH basis
- EFT models formulated in universal FeynRules output (UFO) format
- Use this to produce signal predictions with Madgraph
- Information both from total and differential XS dependence on Wilson coefficients

Physics Letters B 753 (2016) 69-85

H->yy EFT Interpretation

- Sensitive mainly to dim. 6 operators involving photons, gluons
- But also W and Z via vector boson fusion and associated production
- Both in CP even (bar) and odd (tilde) variants due to including $\Delta \Phi_{jj}$

$$\mathcal{L}_{\text{eff}} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB}$$

+ $\tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB},$

arxiv: 1802.04146

 $\sigma_{\rm fid}$ [fb]

10²

ATLAS

 $p_{\tau}^{\gamma\gamma}$ [GeV]

- H->yy:ATLAS strikes
 - ATLAS published the Run 2 version of this analysis in February 2018
 - Again sensitivity is obtained from simultaneous fit of differential cross sections in multiple observables
 - Limits in Wilson coefficients improve significantly
 - but again heavily dependent on rate information
 - sensitivity mostly from m_{jj} and $pT(\gamma\gamma)$

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

m_{ii} [GeV]

l∆φ_{jj}l

 $p_{\tau}^{J^1}$ [GeV]

CP Mixing in Higgs Sector

- ATLAS and CMS have published >99.9% confidence level (CL) exclusion limits on pure CP-odd behaviour of new scalar boson
- But CP mixing still possible
- Look for small admixtures of CP-odd state to discovered scalar boson
- Can look at HVV coupling in vector boson fusion (VBF) production
 - Using HTT decay mode due to relatively large VBF sample
- CP-mixing in HVV vertex also studied in H \rightarrow WW and ZZ decay
 - results of both will be compared here
- Disclaimer: won't be discussing CP mixing in HTT vertex

HVV in EffGeneral HVV vertex

• Most general, Lorentz-invar

$$T^{\mu\nu}(q_{1},q_{2}) = \begin{array}{c} T^{\mu\nu}(q_{1},q_{2}) = a_{1}(q_{1},q_{2}) g^{\mu\nu} & (SM: CP \text{ even}) \\ + a_{2}(q_{1},q_{2}) [q_{1} \cdot q_{2}g^{\mu\nu} - q_{2}^{\mu}q_{1}^{\nu}] \\ (CP \text{ even}) \end{array} \xrightarrow{} \mathbf{q}_{r} \\ + a_{3}(q_{1},q_{2}) \varepsilon^{\mu\nu\rho\sigma}q_{1\rho}q_{2\sigma} & (CP \text{ odd}) \\ + Pa^{Param}$$

- With a3 = 0 in SM and != 0 Standard model (SM)
- Yields effective Lagrangian: $a_1 = \frac{2m_V^2}{v}, a_2 = 0, a_3 = 0$ $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \tilde{g}_{HAA}H\tilde{A}_{\mu\nu}A^{\mu\nu} + \tilde{g}_{HAZ}H\tilde{A}_{\mu\nu}Z^{\mu\nu} + \tilde{g}_{HZZ}H\tilde{Z}_{\mu\nu}Z^{\mu\nu} + \tilde{g}_{HWW}H\tilde{W}^+_{\mu\nu}W^{-\mu\nu}$ Anomalous couplings
- Wilson coefficients g prope $a_1 = \frac{2m_V^2}{v}, a_2 = 0, a_3 \neq 0$ $\check{d}: \tilde{d}: ano$ Expressed in terms of the value

$$\tilde{g}_{HAA} = \tilde{g}_{HZZ} = \frac{1}{2}\tilde{g}_{HWW} = \frac{g}{2m_W}\tilde{d}$$
 and $\tilde{g}_{HAZ} = 0$

Expressed in terms of the parameters used for the HWW/HZZ CP analysis (E.P. J. C75 (2015) 476): $\tilde{d} = -\hat{\kappa}_Z = -\hat{\kappa}_W = -\tilde{\kappa}_W/\kappa_{SM} \tan \alpha$

Florian Kiss (Univ. Freiburg) Florian Kiss (Univ. Freiburg)

HVV Matrix Element in EFT

 Using the EFT Lagrangian from previous page, the VBF matrix element can be written as:

$$\mathcal{M} = \mathcal{M}_{\rm SM} + \tilde{d} \cdot \mathcal{M}_{\rm CP-odd}$$

• Squaring M gives three terms. Only term linear in d-tilde is cp-violating:

$$\mathcal{M}|^{2} = |\mathcal{M}_{SM}|^{2} + \tilde{d} \cdot 2\operatorname{Re}(\mathcal{M}_{SM}^{*}\mathcal{M}_{CP\text{-}odd}) + \tilde{d}^{2} \cdot |\mathcal{M}_{CP\text{-}odd}|^{2}$$

- Quadratic term only affects total yield, but no contribution to CP violation
- Not exploiting yield information in this analysis
- In principle can also have CP-violation other Higgs coupling
 - here assume SM couplings (also for gluon fusion production), but could have additional interpretation with additional non-SM couplings

- - Reconstructed 4-vectors of tagging jets and Higgs

• Bjorken
$$x_{1/2}^{\text{reco}} = \frac{m_{Hjj}}{\sqrt{s}} e^{\pm y_{Hjj}}$$

Combine into ratio of matrix elements

$$OO = \frac{2 \operatorname{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-}odd})}{|\mathcal{M}_{SM}|^2}$$

Matrix elements calculated at leading order using HAWK 2.0

Η W, Zq

 \tilde{g}_{HW}

arxiv: 1602.04516

VBF $H \rightarrow \tau \tau$ Fit Model

- Signal strength fitted in binned, maximum likelihood fit
- No constraint on signal strength from CP-odd signal predictions
- Control regions enter to constrain nuisance parameters (NPs)
 - Top (and Z->II) CR as single bin to constrain normalization
 - Low-BDT CR binned in BDT score: constrain shape NP's

Process	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$
Data	54	68
$VBF \ H \to \tau \tau / WW$	$9.8{\pm}2.1$	16.7 ± 4.1
$Z \to \tau \tau$	19.6 ± 1.0	19.1 ± 2.2
Fake lepton/ $ au$	$2.3{\pm}0.3$	24.1 ± 1.5
$t\bar{t}$ +single-top	$3.8{\pm}1.0$	$4.8 {\pm} 0.7$
Others	11.5 ± 1.7	5.3 ± 1.6
$ggH/VH, H \to \tau\tau/WW$	1.6 ± 0.2	$2.5{\pm}0.7$
Sum of backgrounds	38.9 ± 2.3	55.8 ± 3.3

involvement by Freiburg, Göttingen

arxiv: 1602.04516

VBF $H \rightarrow \tau \tau$ Fit Interpretation

- Reminder pure CP-odd already excluded and high mixing therefore also unlikely
 - Focus on small values of d-tilde
- Mean of OO consistent with zero
 - \rightarrow No sign of CP-violation
- Perform signal strength fit for various d-tilde values
- d-tilde outside [-0.11,0.05] excluded at 68% CL

EPJC 75 (2015) 476

Comparison with H→Bosons

- Limits on CP-mixing also extracted from combination of WW and ZZ channels
 - EFT model predictions derived from MadGraph
- Approach for WW analogous to analysis used to exclude spin I,2 hypotheses
- In ZZ a matrix element method is used also based on ratios of CP-odd and even matrix elements

$$\frac{2 \operatorname{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-}odd})}{|\mathcal{M}_{SM}|^2}$$

 Main difference is inclusion of second order term that grows quadratically with CP-mixing parameter

$$\frac{|\mathcal{M}_{\text{CP-odd}}|^2}{|\mathcal{M}_{\text{SM}}|^2}$$

EPJC 75 (2015) 476

CP-Mixing limits from $H \rightarrow Bosons$

- Extraction of limits from DNLL curves
- 95% CL limits given, also on additional CP even coupling
- At 95% CL these limits naturally exceed the VBF production analysis
 - Though 68% CL interval for VBF analysis more narrow
- Production and decay information complementary \rightarrow combine

-						25	- Observed	$Vs = 7 \text{ IeV}, 4.5 \text{ fb}^{-1}$
-	Coupling ratio	Best-fit value	959	% CL Excl	usion Regions		Expected:	$H \rightarrow WW^* \rightarrow ev\mu v$
	Combined	Observed	Expect	ed	Observed	20	Expected: SM	$\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{1}$
-	$\tilde{\kappa}_{HVV}/\kappa_{ m SM}$	-0.48	$(-\infty, -0.55]$	$J[4.80,\infty)$	$(-\infty, -0.73] \bigcup [0.63, \infty)$		·	
	$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM})\cdot \tan lpha$	-0.68	$(-\infty, -2.33]$	$J[2.30,\infty)$	$(-\infty, -2.18] \bigcup [0.83, \infty)$	15		
_						10-		
	q							
5	TTT 57	Expressed in	terms of the			5	in the second se	
2	\mathbf{W}, \mathbf{Z}	parameters	used for the					
	Ъ H	HWW/HZZ	CP analysis			0-8	-6 -4 -2 0	2 4 6 8
5		(E.P. J. C75	(2015) 476):					(κ̃ _{AVV} /κ _{SM}) · tai
2	W, Z	$\tilde{d} = -\hat{k}z = -\hat{k}w$	$= -\tilde{\kappa}_w / \kappa_{SM} \tan \alpha$					
				27	involvement	by Frei	burg, Muni	ch, Mainz
	4							

ટ

ATLAS

JHEP 03 (2018) 095

Run 2Update from $H \rightarrow ZZ^*$

arxiv: 1805.10197v1

 $d\sigma/d|y^{H}|$ [pb]

70

60F

50

40

30

20

10

1.4

1.2

0.8

0.6

0.4

0

ATLAS

 $H \rightarrow ZZ, H \rightarrow$

13 TeV, 36.1 fb⁻¹

0.3

what's up in Run 2?

- $d\sigma/dp_{T}^{H}$ [pb/GeV] A lot of effort went into "rediscovery" of H
- WW* published only recently on 2015+16
- ATLAS recently combined differential meas
- So far only stating combined differential crc
 - Theory/Data no combined interpretation w.r.t. BSM I

Summary

- (non-comprehensive and biased) review of Higgs measurements at LHC
- CMS and ATLAS provide fits of some well motivated coupling modifications
 - using only rate information, not considering predictions for correlations
- EFT approach provides complete set of possible modifications of rate and shapes
- Run I data has been also interpreted in EFT approach, but in uncoordinated way
- Several theorists using Run I inputs and even making predictions for Run 2
 - Should collaborate more closely to ensure valid systematics treatment
- First results appearing for EFT interpretation of Run2 data

Backup

"Tagging" Production Modes

- separating production modes by jet multiplicity
- 2-jet categories enriched with VBF
- Increase purity with selections on $\Delta \eta_{jj}$, m_{jj} and similar variables
- Third-Jet veto sometimes used, but introduces large theory uncertainties
- high Higgs-candidate p_T improves sensitivity
- Higgs from gluon fusion (ggF) has large theory uncertainties on pT spectrum
- QCD-scale uncertainties on ggF one of T_hT_h the dominant uncertainties in all channels

		0-jet	1-jet		2-	·jet
				p _T ^π > 100 GeV	m _{jj} > 500 GeV Δη _{jj} > 3.5	$p_T^{\tau\tau} > 100 \text{ GeV} \ m_{jj} > 700 \text{ GeV} \ \Delta n_{jj} > 4.0$
	$p_T^{\text{th}} > 45 \text{ GeV}$	$high-p_{T}^{\tau h}$	$high-p_{T}^{\tau h}$	high-p _T ^{τh} boosted	loose	tight VBE teg
μτ _h	baseline	low-p _T th	low-	-p _T th	VBF tag	(2012 only)
	_p _T ^{τh} > 45 GeV	high- p_T^{Th}	-high-p ₁ ^{τh} -	high-p _T th boosted	loose	tight VBE tag
eτ _h	baseline	$\text{low-}p_{T}^{\text{th}}$	low-	-p _T ^{τh}	VBF tag	(2012 only)
			$E_{\mathrm{T}}^{\mathrm{miss}} > 30$	GeV		
	p _T ^µ > 35 GeV	high-p _T ^µ	high	ι-p _T μ	loose	tight
eµ	baseline	$low-p_T^{\mu}$	low	-p _T ^µ	VBF tag	(2012 only)
	p _T ^I > 35 GeV	high-p _T I	high	ו-p _T i	0	int
e, µµ	baseline	$low-p_T^{-1}$	low	/-p _T l	2.	Jet
T _h T _h TeV only)	baseline		boosted highly VBF tag		⁼ tag	
32			p _T ^π > 100 GeV	p _T ^π > 170 GeV	$\begin{array}{l} p_T^{ \mathrm{TT} } > 100 \; \mathrm{GeV} \\ m_{jj} > 500 \; \mathrm{GeV} \\ \Delta n_{jj} > 3.5 \end{array}$	

Fit Inputs

- Measured signal strength in units of SM cross section x branching ratio
- Not possible to measure either by itself without theory assumptions
- In all decay channels signal strength agrees with SM expectation within 1-2 σ

Channel	References for individual publications		Signal str from r	Signal strength $[\mu]$ Signal significance [afrom results in this paper (Section 5.2)			
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	
$H \rightarrow \gamma \gamma$	[92]	[<mark>9</mark> 3]	$1.14^{+0.27}_{-0.25}$	$1.11^{+0.25}_{-0.23}$	5.0	5.6	
			$\begin{pmatrix} +0.26\\ -0.24 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.21 \end{pmatrix}$	(4.6)	(5.1)	
$H \rightarrow ZZ$	[94]	[95]	$1.52^{+0.40}_{-0.34}$	$1.04 \substack{+0.32 \\ -0.26}$	7.6	7.0	
			$\begin{pmatrix} +0.32 \\ -0.27 \end{pmatrix}$	$\begin{pmatrix} +0.30\\ -0.25 \end{pmatrix}$	(5.6)	(6.8)	
$H \rightarrow WW$	[96,97]	[<mark>98</mark>]	$1.22^{+0.23}_{-0.21}$	$0.90 {}^{+0.23}_{-0.21}$	6.8	4.8	
			$\begin{pmatrix} +0.21 \\ -0.20 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.20 \end{pmatrix}$	(5.8)	(5.6)	
$H \to \tau \tau$	[99]	[100]	$1.41^{+0.40}_{-0.36}$	$0.88 \substack{+0.30 \\ -0.28}$	4.4	3.4	
			$\begin{pmatrix} +0.37\\ -0.33 \end{pmatrix}$	$\begin{pmatrix} +0.31\\ -0.29 \end{pmatrix}$	(3.3)	(3.7)	
$H \rightarrow bb$	[101]	[102]	$0.62^{+0.37}_{-0.37}$	$0.81^{+0.45}_{-0.43}$	1.7	2.0	
			$\begin{pmatrix} +0.39\\ -0.37 \end{pmatrix}$	$\begin{pmatrix} +0.45 \\ -0.43 \end{pmatrix}$	(2.7)	(2.5)	
$H \rightarrow \mu \mu$	[103]	[104]	$-0.6^{+3.6}_{-3.6}$	$0.9^{+3.6}_{-3.5}$			
			$\binom{+3.6}{-3.6}$	$\binom{+3.3}{-3.2}$			
ttH production	[78, 105, 106]	[108]	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$	2.7	3.6	
			$\binom{+0.7}{-0.7}$	$\begin{pmatrix} +0.9\\ -0.8 \end{pmatrix}$	(1.6)	(1.3)	

- **Selection:** 2 pairs of isolated, opposite sign leptons, lead pair consistent with Z mass
- **Categorization:** one each for VBF, ggF and VH
- **Backgrounds:** ZZ* continuum, Z+jets and ttbar
- Main Results: obs. (exp.) 6.6 (4.4) σ at 124.3 GeV, corresponding to $\mu = 1.7^{+0.5}_{-0.4}$

ATLAS-CONF-2013-013 / PLB 726, pp 88-119

GEORG-AUGUST-UNIVERSITÄT

- Selection: 2 high E_T, isolated photons
- **Categorization:** split 14 ways by production mode and sensitivity
- **Backgrounds:** γ-γ, γ-jet, jet-jet and Drell-Yan fit in mass sidebands
- <u>**Main Results:</u>** obs. (exp.) 7.4 (4.1) σ at 126.8 GeV, corresponding to $\mu = 1.65^{+0.35}_{-0.30}$ </u>

ATLAS-CONF-2013-013 / PLB 726, pp 88-119 GÖTTINGEN

 $H \rightarrow WW(|v|v)$

- **Selection:** 2 isolated, opposite sign leptons, large ET^{Miss}
- **Categorization:** VBF and ggF split by jet multiplicity
- **Backgrounds:** WW continuum, other VV, top, V+jets
- Main Results: obs. (exp.) 3.8 (3.7) σ at 125 GeV, corresponding to $\mu = 1.01^{+0.31}_{-0.31}$

ATLAS-CONF-2013-079

- **Selection:** 2 b-tagged jets and either large E_T^{Miss} or 1-2 leptons
- **Categorization:** split by W/Z decay, jet multiplicity and di-jet system pT
- **Backgrounds:** ttbar,V+heavy flavour,VV, QCD multijet
- Main Results: obs. (exp.) 95% CL 1.4 (1.3) x SM at 125 GeV, $\mu = 0.2^{+0.7}_{-0.6}$

ATLAS-CONF-2013-108

- **Categorization:** VBF and boosted category, split by decay mode of τ lepton
- **Backgrounds:** Z→TT, ttbar,VV Depending on tau decay: Drell-Yan,W+jets, QCD multijet
- Main Results: obs. (exp.) 4.1 (3.2) σ at 125 GeV, corresponding to $\mu = 1.4^{+0.5}-0.4$

Property Measurements

Fit Inputs

- Measured signal strength in units of SM cross section x branching ratio
- Not possible to measure either by itself without theory assumptions
- \bullet $\,$ In all decay channels signal strength agrees with SM expectation within 1-2 σ

Channel	References individual publ	for ications	Signal str from r	Signal strength [µ] from results in this p		nificance $[\sigma]$ ion 5.2)
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS
$H \rightarrow \gamma \gamma$	[92]	[93]	$1.14^{+0.27}_{-0.25}$	$1.11^{+0.25}_{-0.23}$	5.0	5.6
			$\begin{pmatrix} +0.26\\ -0.24 \end{pmatrix}$	$\begin{pmatrix} +0.23\\ -0.21 \end{pmatrix}$	(4.6)	(5.1)
$H \rightarrow ZZ$	[94]	[95]	$1.52 \substack{+0.40 \\ -0.34}$	1.04 + 0.32 - 0.26	7.6	7.0
			$\begin{pmatrix} +0.32\\ -0.27 \end{pmatrix}$	$\begin{pmatrix} +0.30\\ -0.25 \end{pmatrix}$	(5.6)	(6.8)
$H \rightarrow WW$	[96,97]	[<mark>98</mark>]	$1.22 \substack{+0.23 \\ -0.21}$	$0.90 {}^{+0.23}_{-0.21}$	6.8	4.8
			$\begin{pmatrix} +0.21\\ -0.20 \end{pmatrix}$	$\begin{pmatrix} +0.23 \\ -0.20 \end{pmatrix}$	(5.8)	(5.6)
$H \to \tau \tau$	[99]	[100]	$1.41 \substack{+0.40 \\ -0.36}$	$0.88 \substack{+0.30 \\ -0.28}$	4.4	3.4
			$\begin{pmatrix} +0.37\\ -0.33 \end{pmatrix}$	$\begin{pmatrix} +0.31\\ -0.29 \end{pmatrix}$	(3.3)	(3.7)
$H \rightarrow bb$	[101]	[102]	$0.62^{+0.37}_{-0.37}$	$0.81 \substack{+0.45 \\ -0.43}$	1.7	2.0
			$\begin{pmatrix} +0.39\\ -0.37 \end{pmatrix}$	$\begin{pmatrix} +0.45\\ -0.43 \end{pmatrix}$	(2.7)	(2.5)
$H \rightarrow \mu \mu$	[103]	[104]	$-0.6^{+3.6}_{-3.6}$	$0.9^{+3.6}_{-3.5}$		
			$\binom{+3.6}{-3.6}$	$\binom{+3.3}{-3.2}$		
<i>ttH</i> production	[78, 105, 106]	[108]	$1.9 {}^{+0.8}_{-0.7}$	$2.9 {}^{+1.0}_{-0.9}$	2.7	3.6
			$\binom{+0.7}{-0.7}$	$\binom{+0.9}{-0.8}$	(1.6)	(1.3)

Couplings: Fit Model $n_{\text{signal}}^{k} = \left(\sum_{i} \mu_{i} \sigma_{i,\text{SM}} \times A_{if}^{k} \times \varepsilon_{if}^{k}\right) \times \mu_{f} \times B_{f,\text{SM}} \times \mathcal{L}^{k}$

- We derive couplings from event yields n in the different analysis channels k
- Parameters of interest are the "signal strengths" μ_i for production and μ_f for decay modes
- These are defined such that $\mu_{i,f} = 1$ represents signal strength consistent with the SM
- Other parameters are:
 - $\sigma_{i,SM}$, $B_{f,SM}$: standard model production cross section and branching ratios
 - A^k_{if} : detector acceptance for production mode i, decay mode f and analysis channel k
 - $\mathcal{E}^{k_{if}}$: selection efficiency for production mode i, decay mode f and analysis channel k
 - L^k : integrated luminosity analysed in channel k

Production vs. Decay

- Possible to fit production and decay rates separately, assuming SM values for the other part
- Production modes compatible with SM, though large ratio of ttH to for example ggH
- All decay channels signal strength agrees with SM expectation within 1-2 σ

Production Couplings

- separately fit couplings in production
- fix decay BR to SM values
- simplify production couplings
 - VBF = VH : "VBF+VH"
 - ttH = ggF : "ggF+ttH"

PLB 726, pp 120-144

YY: Spin/CP

 $|\cos \theta^*|$

- **Sensitivity:** only sensitive to 0⁺ and 2⁺
- **Variables:** $P_{T,YY}$ and $cos(\theta^*)$ in Collins-Soper frame

$$|\cos\theta^*| = \frac{|\sinh(\Delta\eta^{\gamma\gamma})|}{\sqrt{1 + (p_T^{\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_T^{\gamma_1}p_T^{\gamma_2}}{m_{\gamma\gamma}^2}$$

• **Unique feature:** observation of this decay strongly disfavors spin I (Landau-Yang theor.)

PLB 726, pp 120-144

- **Variables:** full 4 lepton decay kinematics available, combined into BDT
- **Unique feature:** Dominant channel wrt sensitivity to 0- vs 0+

PLB 726, pp 120-144 and Eur. Phys. J. C75 (2015) 231

- **Sensitivity:** all Jp hypotheses, but only small separation between 0⁺ and 0⁻
- **Variables:** $\Delta p_T(II)$, $\Delta \phi(II)$, $p_T(II)$, m(II), E_{IIVV} and m_T , combined into several BDT's
- **Unique feature:** higher event yields than ZZ^* , but difficult due to E_T^{Miss}

AT LAS

Eur. Phys. J. C75 (2015) 476

Limits on alternative Spin/CP Hypotheses

Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\mathrm{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{ m obs}^{ m alt}$	Obs. CL _s (%)
0_{h}^{+}	$2.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	0.85	$7.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-2}$
0^{-}	$1.8 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	0.88	$< 3.1 \cdot 10^{-5}$	$<2.6\cdot10^{-2}$
$2^+(\kappa_q = \kappa_g)$	$4.3 \cdot 10^{-3}$	$2.9\cdot10^{-4}$	0.61	$4.3 \cdot 10^{-5}$	$1.1 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 300 \text{ GeV})$	$< 3.1\cdot 10^{-5}$	$< 3.1\cdot 10^{-5}$	0.52	$< 3.1\cdot 10^{-5}$	$< 6.5 \cdot 10^{-3}$
$2^+(\kappa_q = 0; p_{\rm T} < 125 {\rm GeV})$	$3.4 \cdot 10^{-3}$	$3.9 \cdot 10^{-4}$	0.71	$4.3 \cdot 10^{-5}$	$1.5 \cdot 10^{-2}$
$2^+(\kappa_q = 2\kappa_g; p_{\rm T} < 300 {\rm GeV})$	$< 3.1\cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.28	$< 3.1\cdot 10^{-5}$	$< 4.3 \cdot 10^{-3}$
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 \ {\rm GeV})$	$7.8 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	0.80	$7.3 \cdot 10^{-5}$	$3.7 \cdot 10^{-2}$

- **Channels:** $\gamma\gamma$, ZZ* and WW
- **Signal models:** 0- quark-induced, I^{+/-} gluon-induced, 2⁺ different mixtures
- **Results:** All hypotheses except 0⁺ excluded at >99.9% confidence level

$$T^{\mu\nu}(q_{1},q_{2}) = T^{\mu\nu}(q_{1},q_{2}) = a_{1}(q_{1},q_{2})$$

$$= a_{2}(q_{1},q_{2})$$

$$= a_{1}(q_{1},q_{2})$$

$$=$$

Florian Kiss (Univ. Freiburg) $\tilde{g}_{HAA} = \tilde{g}_{HZZ} = \frac{1}{2}\tilde{g}_{HWW} = \frac{QP}{2m_W} \text{in } VBF H \xrightarrow{\rightarrow} \gamma\gamma$ and $H \xrightarrow{\rightarrow} \gamma\gamma$

Expressed in terms of the parameters used for the HWW/HZZ CP analysis (E.P. J. C75 (2015) 476): $\tilde{d} = -\hat{k}_Z = -\hat{k}_W = -\tilde{\kappa}_W/\kappa_{SM} \tan \alpha$

The $H \rightarrow \tau \tau$ Decay Channel

49

- Utilize $H \rightarrow \tau \tau$ due to relatively large VBF sample
- But method independent of Higgs decay, so could include more channels in Run2
- Based on Run I H→TT ATLAS analysis (JHEP 04 (2015) 117)
- same background (BG) models and multivariate classifier (BDT)
- But instead of fitting BDT score distribution, cut on score and fit OO
- Prove that BDT score and optimal observable are uncorrelated

Events / bin 10³

10²

10

_H→ττ

ATLAS

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

 $\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$

Background (u=1

H(125)→ττ (μ=1.4) *H*(125)→ττ (μ=1)

Generating Signal Models

- Generating signals for continuous CP-mixing parameter is CPU- and disk-intensive
- Prefer to re-weight SM signal sample with large number of events
- Use final state kinematics at generator level to calculate weight based on ratio of CP-odd and SM matrix elements
- Matrix elements calculated at leading order using HAWK 2.0
- Leading-order calculation validated against NLO calculation with Madgraph 5

 $\tilde{g}_{HZ'}$

 \tilde{g}_{HZ}

 \tilde{g}_{HW}

Testing for CPViolation

- Define CP odd observable X
- $\langle X \rangle != 0 \rightarrow CP$ violation
- Possible Observables:
 - "Optimal" observable
 - Signed $\Delta \Phi_{jj} = \Phi_+ \Phi_- : \Phi_+$ is Φ of the jet in positive z-direction

Embedding

- Feel a bit cheeky talking about embedding in Bonn, just wanted to say it's important also for this analysis
- Large irreducible background from $Z \rightarrow \tau \tau$ decays
- Complex final states (boosted, VBF) want to rely as little as possible on simulation
- Cannot select pure $Z \rightarrow \tau \tau$ control region in data, but we can get a very pure $Z \rightarrow \mu \mu$

Confirm BG Model

- Control Regions:
 - Low BDT-score region ($Z \rightarrow \tau \tau$, Fakes)
 - Inverted b-veto (ttbar)
 - Z→II mass-window (only leplep channel)

Signed $\Delta \Phi j j$ Analysis

- Signed $\Delta \Phi_{jj} = \Phi_+ \Phi_- : \Phi_+$ is Φ of the jet in positive z-direction
- CP-odd observable proposed previously in Phys. Rev. D74 (2006) 095001
- Significantly better performance of optimal observable

Comparison with Decay Analyses

• Reminder of effective Lagrangian

 $\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \tilde{g}_{HAA} H \tilde{A}_{\mu\nu} A^{\mu\nu} + \tilde{g}_{HAZ} H \tilde{A}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HZZ} H \tilde{Z}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HWW} H \tilde{W}^+_{\mu\nu} W^{-\mu\nu}$

• To be compared with:

$$\mathcal{L}_{0}^{V} = \left\{ \cos(\alpha) \kappa_{\mathrm{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin(\alpha) \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \sin(\alpha) \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] X_{0}$$

• With some simplifications

Full LHC Dataset Projections

	$t\bar{t}H$	HZ	HW	H incl.	H + j	H + 2j
$H \rightarrow b\overline{b}$	80	25	40	100	100	150
$H \to \gamma \gamma$	60	70	30	10	10	20
$H \to \tau^+ \tau^-$	100	75	75	80	80	30
$H \to 4l$	70	30	30	20	20	30
$H \to 2l2\nu$	70	100	100	20	20	30
$ H \to Z\gamma$	100	100	100	100	100	100
$H \to \mu^+ \mu^-$	100	100	100	100	100	100

TABLE III: Relative systematic uncertainties for each production times decay channel in %.

production p	rocess	decay process		
$pp \to H$	10	$H \rightarrow b\bar{b}$	25	
$pp \rightarrow H + j$	30	$H \to \gamma \gamma$	20	
$pp \rightarrow H + 2j$	100	$H \to \tau^+ \tau^-$	15	
$pp \to HZ$	10	$H \to 4l$	20	
$pp \to HW$	50	$H \rightarrow 2l2\nu$	15	
$pp \to t\bar{t}H$	30	$H \to Z\gamma$	150	
		$H \to \mu^+ \mu^-$	150	

TABLE II: Relative systematic uncertainties due to background processes for each production and decay channel in %.

production process		decay process	
$pp \to H$	14.7	$H \to b\bar{b}$	6.1
$pp \rightarrow H + j$	15	$H o \gamma \gamma$	5.4
$pp \rightarrow H + 2j$	15	$H \to \tau^+ \tau^-$	2.8
$pp \rightarrow HZ$	5.1	$H \to 4l$	4.8
$pp \to HW$	3.7	$H \rightarrow 2l 2 \nu$	4.8
$pp \to t\bar{t}H$	12	$H \to Z\gamma$	9.4
		$H \to \mu^+ \mu^-$	2.8

TABLE IV: Theoretical uncertainties for each production and decay channel in %.

EPJC 75 (2015) 476

Comparison with H→Bosons

- Limits on CP-mixing also extracted from combination of WW and ZZ channels
 - EFT model predictions derived from MadGraph
- Approach for WW analogous to analysis used to exclude spin I,2 hypotheses
- In ZZ a matrix element method is used also based on ratios of CP-odd and even matrix elements

 $O_{1}(\kappa_{AVV}, \alpha) = \frac{2\Re[\operatorname{ME}(\kappa_{\mathrm{SM}}\neq0; \kappa_{HVV}, \kappa_{AVV}=0; \alpha=0)^{*} \cdot \operatorname{ME}(\kappa_{AVV}\neq0; \kappa_{\mathrm{SM}}, \kappa_{HVV}=0; \alpha=\pi/2)]}{|\operatorname{ME}(\kappa_{\mathrm{SM}}\neq0; \kappa_{HVV}, \kappa_{AVV}=0; \alpha=0)|^{2}},$ $O_{2}(\kappa_{AVV}, \alpha) = \frac{|\operatorname{ME}(\kappa_{AVV}\neq0; \kappa_{\mathrm{SM}}, \kappa_{HVV}=0; \alpha=\pi/2)|^{2}}{|\operatorname{ME}(\kappa_{\mathrm{SM}}\neq0; \kappa_{HVV}, \kappa_{AVV}=0; \alpha=0)|^{2}}.$

 Main difference is inclusion of second order term that grows ically with CP-mixing parameter

Stolen from Karsten Koeneke

Stolen from Karsten Koeneke

