Physics at the LHC at the precision frontier

Sven-Olaf Moch

Universität Hamburg

Theory seminar, Dresden, June 21, 2018

Sven-Olaf Moch

Physics at the LHC at the precision frontier -p.1

Standard Model cross sections

Cross sections for Standard Model processes at the LHC

Hadroproduction of top-quarks (+ jets) and single-tops CMS coll. '18

Sven-Olaf Moch

QCD factorization

QCD factorization

- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - cross section $\hat{\sigma}_{ij \to k}$ for parton types i, j and hadronic final state X
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Hard scattering cross section

- Parton cross section $\hat{\sigma}_{ij \rightarrow k}$ calculable pertubatively in powers of α_s
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%))$ theory uncertainty)

- Accuracy of perturbative predictions
 - LO (leading order)
 - NLO (next-to-leading order)
 - NNLO (next-to-next-to-leading order)
 - N³LO (next-to-next-to-next-to-leading order)

 $(\mathcal{O}(50 - 100\%) \text{ unc.})$ $(\mathcal{O}(10 - 30\%) \text{ unc.})$ $(\lesssim \mathcal{O}(10\%) \text{ unc.})$

Parton luminosity

Long distance dynamics due to proton structure

Cross section depends on parton distributions *f_i*

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

- Parton distributions known from global fits to exp. data
 - available fits accurate to NNLO
 - information on proton structure depends on kinematic coverage

PDF landscape

- Significant number of active groups ABMP16, CJ15, CT14, HERAPDF2.0, JR14, MMHT14, NNPDF3.1
 - PDFs accurate to NNLO in QCD, except for CJ15 (NLO)
 - different choices of data sets
 - different fitting procedures ($\Delta \chi^2$ criterium)

PDF sets	$\Delta \chi^2$ criterion	data sets used in analysis
ABMP16 arXiv:1701.05838	1	incl. DIS, DIS charm, DY, $t\bar{t}$, single t
CJ15 arXiv:1602.03154	1	incl. DIS, DY (incl. $p\bar{p} \rightarrow W^{\pm}X$), $p\bar{p}$ jets, γ +jet
CT14 arXiv:1506.07443	100	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets
HERAPDF2.0 arXiv:1506.06042	1	incl. DIS, DIS charm, DIS jets
JR14 arXiv:1403.1852	1	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, DIS jets
MMHT14 arXiv:1510.02332	2.3 42.3 (dynamical)	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets, $t\bar{t}$
NNPDF3.1 arXiv:1706.00428	n.a.	incl. DIS, DIS charm, DY, $p\bar{p}$ jets, pp jets, $t\bar{t}$, W + charm, Zp_T

Higgs boson production

Higgs cross section (1995)

NLO QCD corrections

One of the main uncertainties in the prediction of the Higgs production cross section is due to the **gluon density**. [...] Adopting a set of representative parton distributions [...], we find a **variation of about 7%** between the maximum and minimum values of the cross section for Higgs masses above ~ 100 GeV.

Higgs cross section (2018)

Exact N³LO QCD corrections

- Apparent convergence of perturbative expansion
- Scale dependence of exact N³LO prediction with residual uncertainty 3%
- Minimal sensitivity at scale $\mu = m_H/2$

Sven-Olaf Moch

Approximate N⁴LO QCD corrections

Cross section dependence of PDFs

• Cross section $\sigma(H)$ at NNLO with uncertainties: $\sigma(H) + \Delta \sigma(PDF + \alpha_s)$ for $m_H = 125.0$ GeV at $\sqrt{s} = 13$ TeV with $\mu_R, \mu_F = m_H$ and nominal α_s

PDF sets	$\sigma(H)^{\text{NNLO}}$ [pb] nominal $\alpha_s(M_Z)$
ABMP16 Alekhin, Blümlein, S.M., Placakyte '17	40.20 ± 0.63
CJ15 Accardi, Brady, Melnitchouk et al. '16	42.45 + 1.73 - 1.12
CT14 Dulat et al. '15	42.33 + 1.43 - 1.68
HERAPDF2.0 H1+Zeus Coll.	$42.62 \begin{array}{c} + 0.35 \\ - 0.43 \end{array}$
JR14 (dyn) Jimenez-Delgado, Reya '14	38.01 ± 0.34
MMHT14 Martin, Motylinski, Harland-Lang, Thorne '14	$42.36 \begin{array}{c} + 0.56 \\ - 0.78 \end{array}$
NNPDF3.1 Ball et al. '17	42.98 ± 0.40
PDF4LHC15 Butterworth et al. '15	42.42 ± 0.78

- Large spread for predictions from different PDFs $\sigma(H) = 38.0 \dots 43.0$ pb
- PDF and α_s differences between sets amount to up to 12%
 - significantly larger than residual theory uncertainty due to N³LO QCD and NLO electroweak corrections

Sven-Olaf Moch

Parton content of the proton

Parton kinematics at LHC

Information on proton structure depends on kinematic coverage

• LHC run at $\sqrt{s} = 7/8$ TeV

 parton kinematics well covered by HERA and fixed target experiments

Parton kinematics with $x_{1,2} = M/\sqrt{S} e^{\pm y}$

- forward rapidities sensitive to small-x
- Cross section depends on convolution of parton distributions
 - small-x part of f_i and large-x PDFs f_j

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

Evolution equations

• Parton distribution functions $q_i(x, \mu^2)$, $\bar{q}_i(x, \mu^2)$ and $g(x, \mu^2)$ for quarks, antiquarks of flavour *i* and gluons

• Flavor non-singlet combinations with $2n_f - 1$ scalar evolution equations

 $q_{\text{ns},ik}^{\pm} = (q_i \pm \bar{q}_i) - (q_k \pm \bar{q}_k)$ and $q_{\text{ns}}^{\text{v}} = \sum_{i=1}^{n} (q_i - \bar{q}_i)$

with $\frac{d}{d\ln\mu^2} q_{\rm ns}^{\pm,{\rm v}} = P_{\rm ns}^{\pm,{\rm v}} \otimes q_{\rm ns}^{\pm,{\rm v}}$

• splitting functions $P_{\rm ns}^{\pm}$ and $P_{\rm ns}^{\rm v} = P_{\rm ns}^{-} + P_{\rm ns}^{\rm s}$

• Flavor singlet $(2 \times 2 \text{ matrix})$ evolution equations

$$\frac{d}{d\ln\mu^2} \begin{pmatrix} q_{\rm s} \\ g \end{pmatrix} = \begin{pmatrix} P_{\rm qq} & P_{\rm qg} \\ P_{\rm gq} & P_{\rm gg} \end{pmatrix} \otimes \begin{pmatrix} q_{\rm s} \\ g \end{pmatrix} \quad \text{and} \quad q_{\rm s} = \sum_{i=1}^{n_f} (q_i + \bar{q}_i)$$

• quark-quark splitting function $P_{qq} = P_{ns}^{+} + P_{ps}$

• Perturbative expansion of splitting functions up to N³LO $P_{ij} = \alpha_s P_{ij}^{(0)} + \alpha_s^2 P_{ij}^{(1)} + \alpha_s^3 P_{ij}^{(2)} + \alpha_s^4 P_{ij}^{(3)} + \dots$

Data in global PDF fits

Data sets considered in ABMP16 analysis

- Analysis of world data for deep-inelastic scattering, fixed-target data for Drell-Yan process and collider data (W^{\pm} -, Z-bosons, top-quarks)
 - inclusive DIS data HERA, BCDMS, NMC, SLAC (NDP = 2155)
 - semi-inclusive DIS charm-, bottom-quark data HERA (NDP = 81)
 - Drell-Yan data (fixed target) E-605, E-866 (NDP = 158)
 - neutrino-nucleon DIS (di-muon data) CCFR/NuTeV, CHORUS, NOMAD
 - (NDP = 232)
 - W^{\pm} -, Z-boson production data D0, ATLAS, CMS, LHCb (NDP = 172)
 - inclusive top-quark hadro-production CDF&D0, ATLAS, CMS

(NDP = 24)

Iterative cycle of PDF fits

- i) check of compatibility of new data set with available world data
- ii) study of potential constraints due to addition of new data set to fit
- iii) perform high precision measurement of PDFs, strong coupling $\alpha_s(M_Z)$ and heavy quark masses m_c , m_b , m_t ,

Theory considerations in PDF fits

Theory considerations in ABMP16

- Strictly NNLO QCD for determination of PDFs and α_s
- Consistent scheme for treatment of heavy quarks
 - $\overline{\mathrm{MS}}$ -scheme for quark masses and α_s
 - fixed-flavor number scheme for $n_f = 3, 4, 5$
- Consistent theory description for consistent data sets
 - Iow scale DIS data with account of higher twist
- Full account of error correlations

Interplay with perturbation theory

- Accuracy of determination driven by precision of theory predictions
- PDF parameters, α_s , m_c , m_b and m_t sensitive to
 - radiative corrections at higher orders
 - chosen scheme (e.g. $(\overline{MS} \text{ scheme})$
 - renormalization and factorization scales μ_R , μ_F

• . . .

ABMP16 PDF ansatz

- PDFs parameterization at scale $\mu_0 = 3 \text{GeV}$ in scheme with $n_f = 3$ Alekhin, Blümlein, S.M., Placakyte '17
 - ansatz for valence-/sea-quarks, gluon

$$\begin{aligned} xq_v(x,\mu_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} x^{a_q} (1-x)^{b_q} x^{P_{qv}(x)} \\ xq_s(x,\mu_0^2) &= x\bar{q}_s(x,\mu_0^2) = A_{qs} (1-x)^{b_{qs}} x^{a_{qs}P_{qs}(x)} \\ xg(x,\mu_0^2) &= A_g x^{a_g} (1-x)^{b_g} x^{a_g} P_{g}(x) \end{aligned}$$

- strange quark is taken in charge-symmetric form
- function $P_p(x)$

$$P_p(x) = (1 + \gamma_{-1,p} \ln x) \left(1 + \gamma_{1,p} x + \gamma_{2,p} x^2 + \gamma_{3,p} x^3 \right) ,$$

- 29 parameters in fit including $\alpha_s^{(n_f=3)}(\mu_0=3 \text{ GeV}), m_c, m_b$ and m_t
- simultaneous fit of higher twist parameters (twist-4)
- Ansatz provides sufficient flexibility; no additional terms required to improve the quality of fit

Quality of fit

Statistical tests

- Goodness-of-fit estimator
 - χ^2 values compared to number of data points (typically a few thousand in global fit)

- 0.0759

0.0443

- 0.0951

0.0263

0.0382

- 0.2565

0.2541

- 0.2666

0.2380 - 0.0522 0.0946

0.2849

0.0467 - 0.0221 - 0.1190

0.1695

0.0086

0.2983

0.1608

0.0719

0.9152

0.2941

0.1579

0.2688

- 0.2190

0.0515

0.0137

0.0849

0.0006

- 0.0573

1.0 - 0.1608 0.0719

0.0 0.0

0.0452 - 0.0492

0.0197 - 0.0809

0.0345 0.0101

0.0589 - 0.1791

0.0683 0.1309

- 0.2084 - 0.5576

0.0190 - 0.2029

0.1841 - 0.4584

0.0 0.0 0.0 0.0

0.0076 0.1460

0.0515

1.0 0.7834

- 0.3022 - 0.1838

0.0390 - 0.1373

0.0454 - 0.1031

0.0503 0.1409

0.0695

0.7834

0.0260 0.0169

0.0180 - 0.0960 - 0.1797 0.9280

0.0917 0.2130

- 0.0604 - 0.1265 - 0.1811

0.0547 0.0413

0.0332

0.1067 - 0.2003 - 0.0869 0.0169

0.0241 - 0.0470

0.0156 0.0501

- 0.0404 0.3055

1.0

0.1980 - 0.2034

0.1262 - 0.1285

- 0.2349 - 0.2362

0.1526 0.2328

0.1113 0.0960

0.2167 0.1596

0.1739 0.066

0.2407 - 0.1054

0.2983 0.4131

0.1856 0.0291

0.2117

0.0781 - 0.0010

0.9152 - 0.2941

0.3022 - 0.0390

0.1833

0.0896 0.6522

0.2571 0.0626

- 0.0469 - 0.0092

0.1193 - 0.0728

0.0022 - 0.0279

- 0.1330 - 0.0841

- 0.0432 - 0.0159

0.1838 - 0.1373

1.0 - 0.1833

1.0

0.7191

0.2811

0.1428 - 0.2080

Covariance matrix

- Positive-definite covariance matrix
 - correlations for fit parameters of ABMP16 PDFs

		a _u	b _u	$\gamma_{1,u}$	$\gamma_{2,u}$	$\gamma_{3,u}$	a _d	b_d	$\gamma_{1,d}$	$\gamma_{2,d}$	$\gamma_{3,d}$			a _{us}	b _{us}	$\gamma_{-1,us}$	$\gamma_{1,us}$	A_{us}
	a _u	1.0	0.7617	0.9372	- 0.5078	0.4839	0.4069	0.3591	0.4344	- 0.3475	0.0001	1	au	- 0.0683	- 0.3508	0.2296	- 0.4853	0.0506
	b_u	0.7617	1.0	0.6124	- 0.1533	- 0.0346	0.3596	0.2958	0.3748	- 0.2748	0.0001		b_u	- 0.0081	- 0.3089	0.1387	- 0.4119	0.0807
	$\gamma_{1,u}$	0.9372	0.6124	1.0	- 0.7526	0.7154	0.2231	0.2441	0.2812	- 0.2606	0.0001		γ1, <i>u</i>	- 0.2094	- 0.3462	0.3367	- 0.3844	- 0.0949
	$\gamma_{2,u}$	- 0.5078	- 0.1533	- 0.7526	1.0	- 0.9409	0.2779	0.2276	0.2266	- 0.1860	0.0		γ2,u	0.3881	0.0906	- 0.4043	- 0.0365	0.3198
	γ _{3,u}	0.4839	- 0.0346	0.7154	- 0.9409	1.0	- 0.1738	- 0.1829	- 0.1327	0.1488	0.0		γз,и	- 0.3206	- 0.0537	0.3474	0.0064	- 0.2560
	a_d	0.4069	0.3596	0.2231	0.2779	- 0.1738	1.0	0.7209	0.9697	- 0.6529	0.0001		a_d	0.2266	- 0.1045	- 0.1171	- 0.4380	0.2527
	b_d	0.3591	0.2958	0.2441	0.2276	- 0.1829	0.7209	1.0	0.7681	- 0.9786	- 0.0001		b_d	0.1502	- 0.2000	- 0.1127	- 0.3592	0.1648
	$\gamma_{1,d}$	0.4344	0.3748	0.2812	0.2266	- 0.1327	0.9697	0.7681	1.0	- 0.7454	0.0002		$\gamma_{1,d}$	0.2000	- 0.2241	- 0.0810	- 0.4957	0.2350
	$\gamma_{2,d}$	- 0.3475	- 0.2748	- 0.2606	- 0.1860	0.1488	- 0.6529	- 0.9786	- 0.7454	1.0	- 0.0002		$\gamma_{2,d}$	- 0.1293	0.2798	0.0767	0.3771	- 0.1509
	$\gamma_{3,d}$	0.0001	0.0001	0.0001	0.0	0.0	0.0001	- 0.0001	0.0002	- 0.0002	1.0		$\gamma_{3,d}$	0.0	0.0	0.0	- 0.0001	0.0
	a_{us}	- 0.0683	- 0.0081	- 0.2094	0.3881	- 0.3206	0.2266	0.1502	0.2000	- 0.1293	0.0		aus	1.0	- 0.3156	- 0.8947	- 0.5310	0.9719
	b_{us}	- 0.3508	- 0.3089	- 0.3462	0.0906	- 0.0537	- 0.1045	- 0.2000	- 0.2241	0.2798	0.0		b_{us}	- 0.3156	1.0	0.1372	0.8258	- 0.3995
	$\gamma_{-1,us}$	0.2296	0.1387	0.3367	- 0.4043	0.3474	- 0.1171	- 0.1127	- 0.0810	0.0767	0.0		$\gamma_{-1,us}$	- 0.8947	0.1372	1.0	0.2611	- 0.7829
	$\gamma_{1,us}$	- 0.4853	- 0.4119	- 0.3844	- 0.0365	0.0064	- 0.4380	- 0.3592	- 0.4957	0.3771	- 0.0001		$\gamma_{1,us}$	- 0.5310	0.8258	0.2611	1.0	- 0.6479
	A_{us}	0.0506	0.0807	- 0.0949	0.3198	- 0.2560	0.2527	0.1648	0.2350	- 0.1509	0.0		A_{us}	0.9719	- 0.3995	- 0.7829	- 0.6479	1.0
	a_{ds}	- 0.0759	- 0.0443	- 0.0951	0.0263	- 0.0382	- 0.2565	- 0.2541	- 0.2666	0.2380	0.0		ads	0.2849	0.0467	- 0.1695	0.0086	0.2983
	b_{bs}	0.0452	- 0.0197	0.0345	- 0.0589	0.0683	- 0.2084	0.0190	- 0.1841	- 0.0522	0.0		b_{bs}	0.0241	- 0.0221	0.0156	0.0076	0.0515
	$\gamma_{1,ds}$	- 0.0492	- 0.0809	0.0101	- 0.1791	0.1309	- 0.5576	- 0.2029	- 0.4584	0.0946	0.0		$\gamma_{1,ds}$	- 0.0470	- 0.1190	0.0501	0.1460	- 0.0404
	A_{ds}	- 0.1980	- 0.1262	- 0.2349	0.1526	- 0.1428	- 0.1113	- 0.2167	- 0.1739	0.2407	0.0		A_{ds}	0.2983	0.1856	- 0.2117	0.0781	0.3055
	a_{ss}	- 0.2034	- 0.1285	- 0.2362	0.2328	- 0.2080	0.0960	0.1596	0.0661	- 0.1054	0.0		ass	0.4131	0.0291	- 0.7191	- 0.0010	0.2811
	b_{ss}	- 0.1186	- 0.0480	- 0.1532	0.1549	- 0.1536	0.0486	0.1508	0.0267	- 0.1161	0.0		b _{ss}	0.2197	0.0643	- 0.4479	0.1286	0.1193
	A_{ss}	- 0.1013	- 0.0411	- 0.1458	0.1802	- 0.1625	0.1216	0.1678	0.0924	- 0.1196	0.0		A_{ss}	0.3627	0.0261	- 0.6319	0.0102	0.2412
	a_g	0.0046	- 0.0374	0.1109	- 0.1934	0.1653	- 0.0288	- 0.0122	0.0053	0.0059	0.0		a_g	- 0.2570	0.0001	0.2196	0.0039	- 0.2493
	b_g	0.2662	0.3141	0.1579	- 0.0050	- 0.0207	0.0973	0.0870	0.0646	- 0.0666	0.0		b_g	- 0.1419	0.1266	0.0694	0.2648	- 0.1715
	$\gamma_{1,g}$	0.2008	0.2274	0.0706	0.0876	- 0.0835	0.0919	0.0574	0.0493	- 0.0364	0.0		$\gamma_{1,g}$	- 0.0241	0.0332	- 0.0226	0.1296	- 0.0489
$\alpha_s^{(\prime)}$	$\mu_{f}=3)(\mu_{0})$	0.1083	- 0.0607	0.0848	- 0.0250	0.0765	0.0763	- 0.0306	0.0725	0.0243	0.0		$\alpha_{s}^{(n_{f}=3)}(\mu_{0})$	0.0954	- 0.2866	- 0.0341	- 0.3493	0.1110
n	$n_c(m_c)$	- 0.0006	0.0170	- 0.0104	0.0206	- 0.0201	- 0.0123	- 0.0161	- 0.0114	0.0108	0.0		$m_c(m_c)$	0.0704	- 0.0093	- 0.0033	- 0.0462	0.1182
n	$m_b(m_b)$	0.0661	0.0554	0.0605	- 0.0367	0.0287	- 0.0116	0.0029	- 0.0074	- 0.0051	0.0		$m_b(m_b)$	- 0.0183	- 0.0132	0.0044	0.0209	- 0.0298
1	$m_t(m_t)$	- 0.1339	- 0.2170	- 0.0816	0.0081	0.0250	- 0.0616	- 0.0813	- 0.0491	0.0736	0.0		$m_t(m_t)$	0.0641	- 0.1841	- 0.0408	- 0.2635	0.0755

	b _{ss}	A_{ss}	a_g	b_g	$\gamma_{1,g}$	$\alpha_s^{(n_f=3)}(\mu_0)$	$m_c(m_c)$	$m_b(m_b)$	$m_t(m_t)$
au	- 0.1186	- 0.1013	0.0046	0.2662	0.2008	0.1083	- 0.0006	0.0661	- 0.1339
b_u	- 0.0480	- 0.0411	- 0.0374	0.3141	0.2274	- 0.0607	0.0170	0.0554	- 0.2170
$\gamma_{1,u}$	- 0.1532	- 0.1458	0.1109	0.1579	0.0706	0.0848	- 0.0104	0.0605	- 0.0816
$\gamma_{2,u}$	0.1549	0.1802	- 0.1934	- 0.0050	0.0876	- 0.0250	0.0206	- 0.0367	0.0081
γ _{3,u}	- 0.1536	- 0.1625	0.1653	- 0.0207	- 0.0835	0.0765	- 0.0201	0.0287	0.0250
a_d	0.0486	0.1216	- 0.0288	0.0973	0.0919	0.0763	- 0.0123	- 0.0116	- 0.0616
b_d	0.1508	0.1678	- 0.0122	0.0870	0.0574	- 0.0306	- 0.0161	0.0029	- 0.0813
$\gamma_{1,d}$	0.0267	0.0924	0.0053	0.0646	0.0493	0.0725	- 0.0114	- 0.0074	- 0.0491
$\gamma_{2,d}$	- 0.1161	- 0.1196	0.0059	- 0.0666	- 0.0364	0.0243	0.0108	- 0.0051	0.0736
$\gamma_{3,d}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
a_{us}	0.2197	0.3627	- 0.2570	- 0.1419	- 0.0241	0.0954	0.0704	- 0.0183	0.0641
b_{us}	0.0643	0.0261	0.0001	0.1266	0.0332	- 0.2866	- 0.0093	- 0.0132	- 0.1841
$\gamma_{-1,us}$	- 0.4479	- 0.6319	0.2197	0.0694	- 0.0226	- 0.0341	- 0.0034	0.0044	- 0.0408
$\gamma_{1,us}$	0.1286	0.0102	0.0039	0.2648	0.1296	- 0.3493	- 0.0462	0.0209	- 0.2635
A_{us}	0.1193	0.2412	- 0.2493	- 0.1715	- 0.0489	0.1110	0.1182	- 0.0298	0.0755
a_{ds}	- 0.1579	- 0.2688	- 0.2190	- 0.0515	- 0.0137	- 0.0604	0.0849	- 0.0006	- 0.0573
b_{bs}	- 0.0260	- 0.0180	- 0.0454	0.0917	0.0503	- 0.1265	0.0547	0.0332	- 0.1067
$\gamma_{1,ds}$	0.0169	- 0.0960	- 0.1031	0.2130	0.1409	- 0.1811	0.0413	0.0695	- 0.2003
A_{ds}	- 0.0896	- 0.1797	- 0.2571	- 0.0469	0.0022	- 0.1330	0.1193	- 0.0432	- 0.0869
a_{ss}	0.6522	0.9280	0.0626	- 0.0092	- 0.0279	- 0.0841	- 0.0728	- 0.0159	0.0169
b_{ss}	1.0	0.6427	- 0.0179	0.1967	0.1164	- 0.2390	- 0.0965	0.0169	- 0.1675
A_{ss}	0.6427	1.0	- 0.0211	0.1403	0.0997	- 0.1385	0.0216	0.0072	- 0.1109
a_g	- 0.0179	- 0.0211	1.0	- 0.5279	- 0.8046	0.1838	- 0.2829	0.0076	0.3310
b_g	0.1967	0.1403	- 0.5279	1.0	0.8837	- 0.5124	0.1438	0.1255	- 0.7275
$\gamma_{1,g}$	0.1164	0.0997	- 0.8046	0.8837	1.0	- 0.2511	0.1829	0.0814	- 0.5180
$\alpha_s^{(n_f=3)}(\mu_0)$	- 0.2390	- 0.1385	0.1838	- 0.5124	- 0.2511	1.0	- 0.1048	0.0423	0.6924
$m_c(m_c)$	- 0.0965	0.0216	- 0.2829	0.1438	0.1829	- 0.1048	1.0	0.0328	- 0.1577
$m_b(m_b)$	0.0169	0.0072	0.0076	0.1255	0.0814	0.0423	0.0328	1.0	- 0.0900
$m_t(m_t)$	- 0.1675	- 0.1109	0.3310	- 0.7275	- 0.5180	0.6924	- 0.1577	- 0.0900	1.0

Sven-Olaf Moch

Results for parton distributions

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Gluon g(x)

Strong coupling constant

Strong coupling constant (1992)

	·	in QCD - 20 Years Later, CEBN-TH-6623-92
Average	0.118 ± 0.007	G. Altarelli (1992)
Jets at LEP	0.122 ± 0.009	
$\Gamma(Z \to \text{hadrons}) / \Gamma(Z \to l\bar{l})$	0.132 ± 0.012	
$p\overline{p} \rightarrow W + jets$	0.121 ± 0.024	
$R_{e^+e^-}(s<62~{\rm GeV})$	0.140 ± 0.020	
Ŷ Decays	0.110 ± 0.010	
DIS	0.112 ± 0.007	
$R_{ au}$	$0.117 {}^{+\ 0.010}_{-\ 0.016}$	
	$lpha_s({ m M_Z^2})$	

Essential facts

- World average 1992 $\alpha_s(M_Z) = 0.118 \pm 0.007$
- Central value at NLO QCD
 - still right, but for very different reasons
- Error at NLO QCD
 - now down to $\sim 0.0050 0.0040$ (theory scale uncertainty)

$\alpha_s(M_Z)$ in PDFs

PDF sets	$\alpha_s(M_Z)$	method of determination
ABMP16 Alekhin, Blümlein, S.M., Placakyte '17	0.1147 ± 0.0008	fit at NNLO
CJ15 Accardi, Brady, Melnitchouk et al. '16	0.118 ± 0.002	fit at NLO
CT14 Dulat et al. '15	0.118	assumed at NNLO
HERAPDF2.0 H1+Zeus Coll.	$0.1183 \begin{array}{c} +0.0040 \\ -0.0034 \end{array}$	fit at NLO
JR14 Jimenez-Delgado, Reya '14	0.1136 ± 0.0004	dynamical fit at NNLO
	0.1162 ± 0.0006	standard fit at NNLO
MMHT14 Martin, Motylinski, Harland-Lang, Thorne '14	0.118	assumed at NNLO
	0.1172 ± 0.0013	best fit at NNLO
NNPDF3.1 Ball et al. '17	0.118	assumed at NNLO
Ball et al. '18	0.1185 ± 0.0012	best fit at NNLO
PDF4LHC15 Butterworth et al. '15	0.118	assumed at NLO
	0.118	assumed at NNLO

- Values of $\alpha_s(M_Z)$ often assumed and not fitted (no correlations)
- Large spread of fitted values at NNLO: $\alpha_s(M_Z) = 0.1136...0.1185$
- PDF4LHC: order independent recommendation
 - use $\alpha_s(M_Z) = 0.118$ at NLO and NNLO

Strong coupling constant (2018)

BBG	$0.1134 \begin{array}{c} + \ 0.0019 \\ - \ 0.0021 \end{array}$	valence analysis, NNLO	Blümlein, Böttcher, Guffanti '06
JR08	0.1128 ± 0.0010	dynamical approach	Jimenez-Delgado, Reya '08
	0.1162 ± 0.0006	including NLO jets	
ABKM09	0.1135 ± 0.0014	HQ: FFNS $n_f = 3$	Alekhin, Blümlein, Klein, S.M. '09
	0.1129 ± 0.0014	HQ: BSMN	
MSTW	0.1171 ± 0.0014		Martin, Stirling, Thorne, Watt '09
Thorne	0.1136	[DIS+DY, HT*] (2013)	Thorne '13
$ABM11_J$	$0.11340.1149 \pm 0.0012$	Tevatron jets (NLO) incl.	Alekhin, Blümlein, S.M. '11
NN21	0.1173 ± 0.0007	(+ heavy nucl.)	NNPDF '11
ABM12	0.1133 ± 0.0011		Alekhin, Blümlein, S.M. '13
	0.1132 ± 0.0011	(without jets)	
CT10	0.1140	(without jets)	Gao et al. '13
CT14	$0.1150 \begin{array}{c} + \ 0.0060 \\ - \ 0.0040 \end{array}$	$\Delta \chi^2 > 1$ (+ heavy nucl.)	Dulat et al. '15
JR14	0.1136 ± 0.0004	dynamical approach	Jimenez-Delgado, Reya '14
	0.1162 ± 0.0006	standard approach	
MMHT	0.1172 ± 0.0013	(+ heavy nucl.) Martin, M	otylinski, Harland-Lang, Thorne '15
ABMP16	0.1147 ± 0.0008	Ale	ekhin, Blümlein, S.M., Placakyte '17
NN31	0.1185 ± 0.0012	including NLO jets	NNPDF '18

- Measurements at NNLO (last ~ 10 years) from DIS data
- Large spread of fitted values at NNLO: $\alpha_s(M_Z) = 0.1128...0.1185$
- Laken for 2017 PDG average: $\alpha_s(M_Z) = 0.1156 \pm 0.0021$ Sven-Olaf Moch Physics at the LHC at the precision frontier – p.24

Theory description of deep-inelastic scattering

Kinematic variables

- momentum transfer $Q^2 = -q^2$
- Bjorken variable $x = Q^2/(2p \cdot q)$

- Structure functions (up to order $\mathcal{O}(1/Q^2)$) $F_a(x,Q^2) = \sum_i \left[C_{a,i} \left(\alpha_s(\mu^2), \mu^2/Q^2 \right) \otimes PDF(\mu^2) \right](x)$
- Perturbative expansion of coefficient functions up to N³LO $C_{a,i} = \alpha_s^n \left(c_{a,i}^{(0)} + \alpha_s c_{a,i}^{(1)} + \alpha_s^2 c_{a,i}^{(2)} + \alpha_s^3 c_{a,i}^{(3)} + \dots \right)$
- Application to DIS data requires careful consideration of kinematic region in Q^2 and x
 - invariant mass of the hadronic system $W^2 = M_P^2 + Q^2(1-x)/x$
 - cuts $W^2 \ge 12.5 \text{ GeV}^2$ and $Q^2 \ge 2.5 \div 10 \text{ GeV}^2$

- Additional corrections for $F_a(x,Q^2)$ necessary dependent on cuts
 - higher twist and target mass corrections

Higher twist

- Operator product expansion predicts inifinte tower of $(1/Q^2)^n$ of power corrections (higher twist terms)
- Physical interpretation as multi-parton correlations
- Higher twist terms modify structure functions (up to order $\mathcal{O}(1/Q^4)$)

$$F_i^{\text{ht}}(x,Q^2) = F_i^{\text{TMC}}(x,Q^2) + \frac{H_i^{\tau=4}(x)}{Q^2}, \qquad i=2,T$$

Target mass corrections

• Finite nucleon mass leads to target mass corrections up to ${\cal O}(M_N^2/Q^2)$

$$F_2^{\text{TMC}}(x,Q^2) = \frac{x^2}{\xi^2 \gamma^3} F_2(\xi,Q^2) + 6 \frac{x^3 M_N^2}{Q^2 \gamma^4} \int_{\xi}^{1} \frac{d\xi'}{{\xi'}^2} F_2(\xi',Q^2)$$

- kinematic variable $\xi = 2x/(1+\gamma)$
- Nachtmann variable $\gamma = (1 + 4x^2 M_N^2/Q^2)^{1/2}$

Sven-Olaf Moch

Impact on α_s determinations

- Correlation of errors among different data DIS sets
- Target mass corrections (powers of nucleon mass M_N^2/Q^2)
- Variants with no higher twist give larger α_s values Alekhin, Blümlein, S.M. '17

 W^{\pm} - and Z-boson production

W- and Z-boson cross sections

- High precision data from LHC ATLAS, CMS, LHCb and Tevatron D0
 - differential distributions extend to forward region
 - sensitivity to light quark flavors at $x \simeq 10^{-4}$
 - statistically significant: NDP = 172 in ABMP16
- ATLAS measurement at $\sqrt{s} = 13$ TeV from arXiv:1603.09222

 Spread in predictions from different PDFs significantly larger than experimental precision

Muon charge asymmetry from LHC

- comparison of ABM12, ABMP15 and ABMP16 fits
- Problematic data point at $\eta_{\mu} = 3.375$ for $\sqrt{s} = 7$ TeV in LHCb data are omitted in fit

Sven-Olaf Moch

W^{\pm} -boson production from LHC (I)

• CMS data on cross section of inclusive W^{\pm} -boson production at $\sqrt{s} = 8 \text{ TeV}$

• channel $W^{\pm} \rightarrow \mu^{\pm} \nu$

W^{\pm} -boson production from LHC (II)

- LHCb data on cross section of inclusive W^{\pm} -boson production at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV
 - channel $W^{\pm} \rightarrow \mu^{\pm} \nu$
- Points at $\eta_{\mu} = 2.125$ for $\sqrt{s} = 8$ TeV are not used in fit

Sven-Olaf Moch

Results for parton distributions

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Iso-spin asymmetry $x(\overline{d}(x) \overline{u}(x))$; ratio d(x)/u(x); strange s(x)

Sven-Olaf Moch

Single top-quark production

Single top-quark production

- Study of charged-current weak interaction of top quark
- s-channel production

- *t*-channel production
 - sensitivity to light flavor PDFs
 - bg-channel at NLO enhanced by gluon luminosity

- *Wt*-production
 - contributes at LHC (small at Tevatron)

QCD corrections at NNLO

- Computation of NNLO QCD corrections Brucherseifer, Caola, Melnikov '14
 - fully differential, with cuts on p_T
- QCD corrections treated in structure function approach
 - non-factorizable contributions neglected (neglected diagrams $\mathcal{O}(1/N_c^2)$ supressed)

QCD corrections to t-channel single top quark production at LHC8

p_{\perp}	$\sigma_{ m LO},{\sf pb}$	$\sigma_{ m NLO},{\sf pb}$	$\delta_{ m NLO}$	$\sigma_{ m NNLO}, {\sf pb}$	$\delta_{ m NNLO}$
0 GeV	$53.8^{+3.0}_{-4.3}$	$55.1^{+1.6}_{-0.9}$	+2.4%	$54.2^{+0.5}_{-0.2}$	-1.6%
20 GeV	$46.6^{+2.5}_{-3.7}$	$48.9^{+1.2}_{-0.5}$	+4.9%	$48.3^{+0.3}_{-0.02}$	-1.2%
40 GeV	$33.4^{+1.7}_{-2.5}$	$36.5^{+0.6}_{-0.03}$	+9.3%	$36.5^{+0.1}_{+0.1}$	-0.1%
60 GeV	$22.0^{+1.0}_{-1.5}$	$25.0^{+0.2}_{+0.3}$	+13.6%	$25.4_{\pm 0.2}^{-0.1}$	+1.6%

QCD corrections at NNLO

- Computation of NNLO QCD corrections Brucherseifer, Caola, Melnikov '14
 - fully differential, with cuts on p_T
- QCD corrections treated in structure function approach

QCD corrections to t-channel single anti-top quark production at LHC8

p_{\perp}	$\sigma_{ m LO},{\sf pb}$	$\sigma_{ m NLO},{\sf pb}$	$\delta_{ m NLO}$	$\sigma_{ m NNLO},{\sf pb}$	$\delta_{ m NNLO}$
0 GeV	$29.1^{+1.7}_{-2.4}$	$30.1^{+0.9}_{-0.5}$	+3.4%	$29.7^{+0.3}_{-0.1}$	-1.3%
20 GeV	$24.8^{+1.4}_{-2.0}$	$26.3^{+0.7}_{-0.3}$	+6.0%	$26.2^{-0.01}_{-0.1}$	-0.4%
40 GeV	$17.1^{+0.9}_{-1.3}$	$19.1^{+0.3}_{+0.1}$	+11.7%	$19.3_{\pm 0.1}^{-0.2}$	+1.0%
60 GeV	$10.8^{+0.5}_{-0.7}$	$12.7^{+0.03}_{+0.2}$	+17.6%	$12.9^{-0.2}_{+0.2}$	+1.6%

Sven-Olaf Moch

Physics at the LHC at the precision frontier - p.36

Inclusive cross sections (I)

- Cross sections for t-channel production of single (anti)top-quarks at LHC with 1σ PDF uncertainties
 - computation of hard cross section to NLO in QCD with Hathor for $\overline{\text{MS}}$ mass $m_t(m_t) = 163 \text{ GeV}$ at scale $\mu_R = \mu_F = m_t(m_t)$
- Data at $\sqrt{s} = 7$ TeV from ATLAS
 - inner (yellow) band for statistical uncertainty and outer (green) band for combined statistics and systematics uncertainty

Inclusive cross sections (II)

- Cross sections for *t*-channel production of single (anti)top-quarks at LHC with 1σ PDF uncertainties
 - computation of hard cross section to NLO in QCD with Hathor for $\overline{\text{MS}}$ mass $m_t(m_t) = 163 \text{ GeV}$ at scale $\mu_R = \mu_F = m_t(m_t)$
- Data at $\sqrt{s} = 8$ TeV from CMS
 - inner (yellow) band for statistical uncertainty and outer (green) band for combined statistics and systematics uncertainty

Cross section ratio

• Cross section ratio $R_t = \sigma_t / \sigma_{\bar{t}}$ is very sensitive probe

- data from ATLAS and CMS dominated by inner (yellow) band for statistical uncertainty, systematics largey cancel
- Theory predictions sensitive to ratio d/u of PDFs
 - 1σ PDF uncertainties in R_t small

Upshot

 Production of single top-quarks at LHC can serve as standard candle for the light quark flavor content of proton Top-quark pair production

Total cross section

Exact result at NNLO in QCD

Czakon, Fiedler, Mitov '13

- NNLO perturbative corrections (e.g. at LHC8)
 - *K*-factor (NLO \rightarrow NNLO) of $\mathcal{O}(10\%)$; scale stability of $\mathcal{O}(\pm 5\%)$
- Beyond NNLO
 - theory improvements with soft gluon resummation [many people]
 - *K*-factor (NNLO \rightarrow resummed) small; scale stability further improved

Top-quark mass from total cross section

• Cross section for $t\bar{t}$ -production with parametric dependence

 $\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$

- PDFs f_i , strong coupling α_s , masses m_X
- PDFs and $\alpha_s(M_Z)$ already well constrained by global fit
 - effective parton $\langle x \rangle \sim 2m_t/\sqrt{s} \sim 2.5 \dots 5 \cdot 10^{-2}$

Top-quark mass determination

- Choice of renormalization scheme for treatment of heavy quarks
 - $\overline{\mathrm{MS}}$ -scheme for quark masses and α_s
- Intrinsic limitation of sensitivity in total cross section

$$\left|\frac{\Delta\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}}\right| \simeq 5 \times \left|\frac{\Delta m_t}{m_t}\right|$$

Data on top-quark cross sections

• Pulls for $t\bar{t}$ - and single-t inclusive cross sections in ABMP16

Fit quality

- Goodness-of-fit estimator χ^2 for extracted $\alpha_s(M_Z)$ and $m_t(m_t)$ values
 - χ^2 of global fit with NDP = 2834
 - data on top-quark production with NDP = 36 D0, ATLAS, CMS, LHCb

Correlations

• Correlations between gluon PDF g(x), $\alpha_s(M_Z)$ and $m_t(m_t)$

• Fits with fixed values of m_t and $\alpha_S(M_Z)$ carry significant bias

Implications on electroweak vacuum

Higgs potential

Renormalization group equation

- Quantum corrections to Higgs potential $V(\Phi) = \lambda \left| \Phi^{\dagger} \Phi \frac{v}{2} \right|^2$
- Radiative corrections to Higgs self-coupling λ
 - electro-weak couplings g and g' of SU(2) and U(1)
 - top-Yukawa coupling y_t

$$16\pi^2 \frac{d\lambda}{dQ} = 24\lambda^2 - \left(3g'^2 + 9g^2 - 12y_t^2\right)\lambda + \frac{3}{8}g'^4 + \frac{3}{4}g'^2g^2 + \frac{9}{8}g^4 - 6y_t^4 + \dots$$

Higgs potential

Triviality

- Large mass implies large λ
 - renormalization group equation dominated by first term

$$16\pi^2 \frac{d\lambda}{dQ} \simeq 24\lambda^2 \longrightarrow \lambda(Q) = \frac{m_H^2}{2v^2 - \frac{3}{2\pi^2}m_H^2 \ln(Q/v)}$$

- $\lambda(Q)$ increases with Q
- Landau pole implies cut-off Λ
 - scale of new physics smaller than Λ to restore stability
 - upper bound on m_H for fixed Λ

$$\Lambda \le v \exp\left(\frac{4\pi^2 v^2}{3m_H^2}\right)$$

- Triviality for $\Lambda \to \infty$
 - vanishing self-coupling $\lambda \to 0$ (no interaction)

Higgs potential

Vacuum stability

- Small mass
 - renormalization group equation dominated by y_t

$$16\pi^2 \frac{d\lambda}{dQ} \simeq -6y_t^4 \longrightarrow \lambda(Q) = \lambda_0 - \frac{\frac{3}{8\pi^2} y_0^4 \ln(Q/Q_0)}{1 - \frac{9}{16\pi^2} y_0^2 \ln(Q/Q_0)}$$

- $\lambda(Q)$ decreases with Q
- Higgs potential unbounded from below for $\lambda < 0$
- $\lambda = 0$ for $\lambda_0 \simeq \frac{3}{8\pi^2} y_0^4 \ln(Q/Q_0)$
- Vacuum stability

$$\Lambda \le v \exp\left(\frac{4\pi^2 m_H^2}{3y_t^4 v^2}\right)$$

- scale of new physics smaller than Λ to ensure vacuum stability
- lower bound on m_H for fixed Λ

Implications on electroweak vacuum

- Condition of absolute stability of electroweak vacuum at Planck scale M_{Planck} requires Higgs self-coupling $\lambda(\mu_r) \ge 0$
 - correlation between Higgs mass m_H , m_t and $\alpha_s(M_Z)$ at $\mu = M_{\text{Planck}}$

$$m_H \ge 129.6 + 2.0 \times \left(m_t^{\text{pole}} - 173.34 \text{ GeV} \right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007} \right) \pm 0.3 \text{ GeV}$$

NNLO analyses

Bezrukov, Kalmykov, Kniehl, Shaposhnikov '12; Degrassi et al. '12; Buttazzo et al. '13; Bednyakov, Kniehl, Pikelner, Veretin '15

Higgs self-coupling

- Renormalization group evolution of λ with uncertainties in m_H , m_t and α_s up to $\mu_r = M_{\rm Planck}$ (using program mr Kniehl, Pikelner, Veretin '16)
 - top-quark mass least precise parameter
- $\lambda(\mu_r = M_{\text{Planck}}) \simeq 0$ implies "fate of universe" may not be fatal, after all

Summary

- Experimental precision of $\leq 1\%$ makes theoretical predictions at NNLO in QCD mandatory
- Values of $\alpha_s(M_Z)$ at NNLO from measurements at colliders lower than world average
 - $\alpha_s(M_Z) = 0.118$ at NNLO not preferred by data
 - details of kinematic cuts, treatment of higher twist, target mass corrections are essential
- LHC data for W^{\pm} and Z-boson production gives valuable information on light flavor PDFs u, d and s over wide range of x
 - important constraints on single-top production
 - single-top production has potential to become standard candle process
- Top-quark pair production provides precision determination of top-quark mass m_t
 - correlations with PDFs, strong coupling constant $\alpha_s(M_Z)$ are essential and need to be taken into account

• Values of m_t and $\alpha_s(M_Z)$ are crucial for decisive statement on electroweak vacuum

Sven-Olaf Moch