

2358

Jet Physics and Substructure in ATLAS

......

Dresden, November 2019

Eva Hansen Lund University

Outline

Introduction

- Quantum Chromo Dynamics
- Jets
- Pile-up
- Jet reconstruction
 - Measuring jets with ATLAS
 - Jet inputs
 - Jet Algorithms
- Jet calibration
 - Jet Energy Scale
 - Jet Mass Scale
- Jet Substructure
 - "Prong-like" variables
 - · Top-tagging
 - "Haze-like" variables
 - · Quark/gluon-tagging

11/7/19

Outline

• Introduction

- Quantum Chromo Dynamics
- Jets
- Pile-up
- Jet reconstruction
 - Measuring jets with ATLAS
 - Jet inputs
 - Jet Algorithms
- Jet calibration
 - Jet Energy Scale
 - Jet Mass Scale
- Jet Substructure
 - "Prong-like" variables
 - Top-tagging
 - "Haze-like" variables
 - · Quark/gluon-tagging

11/7/19

- In 1960 Particle Physics was a chaotic zoo of observations
 - Electrons, muons and neutrinos, called *leptons*
 - Protons, neutrons, and a plethora of other *hadrons*

Michael Riordan: The Hunting of the Quark

- In 1960 Particle Physics was a chaotic zoo of observations
 - Electrons, muons and neutrinos, called *leptons*
 - Protons, neutrons, and a plethora of other *hadrons*
- Murray Gell-Mann proposed that the hadrons consisted of tiny, fractionally charged subcomponents
 - Called the quirky little things quarks

- In 1960 Particle Physics was a chaotic zoo of observations
 - Electrons, muons and neutrinos, called *leptons*
 - Protons, neutrons, and a plethora of other *hadrons*
- Murray Gell-Mann proposed that the hadrons consisted of tiny, fractionally charged subcomponents
 - Called the quirky little things quarks
- The quark model had big implications:
 - Pauli exclusion principle demanded a new quantum number
 - Color charge
 - And a new force, holding the quarks together:
 - → The strong force carried by the gluon
 - Weaker at small distances (asymptotic freedom)
 - Stronger at large distances (confinement)

Proton:

- In 1960 Particle Physics was a chaotic zoo of observations
 - Electrons, muons and neutrinos, called *leptons*
 - Protons, neutrons, and a plethora of other *hadrons*
- Murray Gell-Mann proposed that the hadrons consisted of tiny, fractionally charged subcomponents
 - Called the quirky little things quarks
- The quark model had big implications:
 - Pauli exclusion principle demanded a new quantum number
 - Color charge
 - And a new force, holding the quarks together:
 - → The *strong force* carried by the *gluon*
 - Weaker at small distances (asymptotic freedom)
 - Stronger at large distances (confinement)
- The Standard Model of particle physics took form

Jets: Showering and hadronisation

- QCD predicted a detectable signature that was crucial for establishing the theory: **Jets**!
- Asymptotic freedom: Quarks are ~free at small distances
 - Interact as individual particle at very high energy / short distance
 - Emit "Bremstrahlung" when accelerated in a hard scattering, forming a narrow shower of quarks and gluons
- Confinement: One can never observe a free quark
 - At distances of ~ 1 fm the quarks hadronise-
- First evidence in 1975 with the SPEAR collider at SLAC

Jets: Showering and hadronisation

- QCD predicted a detectable signature that was crucial for establishing the theory: **Jets**!
- Asymptotic freedom: quarks are ~free at small distances
 - Interact as individual particle at very high energy / short distance
 - Emit "Bremstrahlung" like electrons when accelerated forming a narrow shower of quarks and gluons
- Confinement: one can never observe a free quark
 - At distances of \sim 1 fm the quarks transform into hadrons
- First evidence in 1975 with the SPEAR collider at SLAC

Jets: Pros and cons

- ✓ Useful probes of QCD at both soft and hard energy scales
- ✓ Probable final state for interesting processes at collider experiments
 - Higgs decay channels
 - New heavy particles in many SM extensions

Jets: Pros and cons

- ✓ Useful probes of QCD at both soft and hard energy scales
- ✓ Probable final state for interesting processes at collider experiments
 - Higgs decay channels
 - New heavy particles in many SM extensions

Pile-up at the LHC

- Very high energy means a ~1:1 correspondence between jet and origin particle
- Protons are collided in bunches every 25 ns to increase luminosity
 - Many collisions per bunch crossing \rightarrow (In-time) *Pile-up*
 - Energy deposits from previous/future bunch crossings → (Out-of-time) *Pile-up*
- Complicates event reconstruction and analyses

65 reconstructed vertices Tracks with p_{T} > 100 MeV

Agenda

- Introduction
 - Quantum Chromo Dynamics
 - Jets
 - Pile-up
- Jet reconstruction
 - Measuring jets with ATLAS
 - Jet inputs
 - Jet Algorithms
- Jet calibration
 - Jet Energy Scale
 - Jet Mass Scale
- Jet Substructure
 - "Prong-like" variables
 - Top-tagging
 - "Haze-like" variables
 - · Quark/gluon-tagging

Measuring Jets with ATLAS

- Different subdetectors allow us to identify and reconstruct most particles efficiently
- Calorimeters provide the principal signals for jet measurement
 - Full coverage and fine segmentation
- The inner detector provides precision $p_{\rm T}$ and direction information of charged particles
 - Vertex reconstruction, pile-up mitigation, refinement of jet reconstruction

Defining jets

Clearly 2 jets

How many do we see here?

Inputs to Jet Algorithms

Two main input definitions used in ATLAS:

More jet inputs combining tracks and calorimeter cluster are being studied:

- Track Calo Cluster (TCC)
- Unified Flow Object (UFO)

Topological Clusters

1) Clustering: Initialised by high energy seeds and expanded in two steps:

2) Origin correction: Modifies topocluster 4-momentum to point back at the primary vertex

- Improves η -resolution without changing the energy

3) Rescaling:

- *EM-scale*: All cell energies are weighted according to the electromagnetic scale calibration
- LCW: Topoclusters are weighted depending them being electromagnetic or hadronic due to lower response in hadronic calorimeter

Particle Flow

Many benefits to combining information from trackers and calorimeter

- Tracking detectors:
 - Better resolution for low p_{T} particles
 - Better angular resolution
 - · Can trace particle to either the hard-scatter interaction or pile-up
- Calorimeters:
 - Better resolution for high p_{T} particles
 - Captures neutral particles

Rough sketch of the algorithm:

- 1) Select "high quality" tracks coming from the primary vertex $p_{T} < 40 \text{ GeV}$
- 2) Match track to corresponding topocluster(s)
- 3) Subtract energy from the cluster depending on position and track p_{T}
- 4) Selected tracks and remaining topoclusters constitute PFlow objects passed to the jet algorithm

More PFlow

- Improved $p_{\rm T}$ resolution
- Improved angular resolution
- Less pile-up contribution

11/7/19

Eva Hansen

Better E^{miss}!

Jet Finding Algorithms

- Intuitive way: Define a cone of fixed size and sum up all momenta inside
- NB! Jet algorithms must be insensitive to arbitrarily soft and collinear splittings in order to make theoretical predictions we can compare to data!
- Sequential algorithms to the rescue!

• Generalised definition:

1) Define the two distances, $p=\{-1, 0, 1\}$:

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^{2p}$$

2) If d_{ii} is smallest, combine *i* and *j*

- 3) Else, declare *i* a jet and remove it
- 4) Repeat until no more particles remain
- Most popular is p = -1: the Anti-kt algorithm
 - Clusters hardest constituents first
 - Gives nearly conical jets
- *R* is the radius parameter
 - Typically R = 0.2, 0.4, 0.6, 1.0, 1.2

11/7/19

Jet Finding Algorithms

- Intuitive way: Define a cone of fixed size and sum up all momenta inside
- NB! Jet algorithms must be insensitive to arbitrarily soft and collinear splittings in order to make theoretical predictions we can compare to data!

Eva Hansen

• Sequential algorithms to the rescue!

Generalised definition, p={-1, 0, 1}:
1) Define the two distances:

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^{2p}$$

2) If d_{ii} is smallest, combine *i* and *j*

3) Else, declare *i* a jet and remove it

- 4) Repeat until no more particles remain
- Most popular is p = -1: the Anti-kt algorithm
 - Clusters hardest constituents first
 - Gives nearly conical jets
- *R* is the radius parameter
 - Typically R = 0.2, 0.4, 0.6, 1.0, 1.2

Outline

- Introduction
 - QCD
 - Jets
 - LHC
- Jet reconstruction
 - Measuring jets with ATLAS
 - Jet inputs
 - Jet Algorithms
- Jet calibration
 - Jet Energy Scale
 - Jet Mass Scale
- Jet Substructure
 - "Prong-like" variables
 - Top-tagging
 - "Haze-like" variables
 - · Quark/gluon-tagging

11/7/19

Why calibrate?

To correct the translation of calorimeter signal to original parton for detector effects:

- Dead material
 - Energy deposited in non-sensitive regions of the detector
- Calorimeter non-compensation
 - Partial measurement of the energy deposited by hadrons
- Punch-through
 - Showers extending beyond the calorimeters

- Pile-up
 - Additional energy deposits from other particles
- Out-of-cone
 - Part of the particle shower not included in the jet cone
 - Worse for low $p_{\rm T}$ jets because of magnetic field
- Energy deposits below noise threshold

11/7/19

Jet Energy Scale

Focus of

- Calibrations are provided for several jet definitions
 - "Small-R jets": Anti-kt R=0.4, based on Particle Flow
 - "Large-R jets": Anti-kt R=1.0, based on Local Cell Weighting f this talk
 - "R-Scan jets": Anti-kt R=0.2 and 0.6 LCW jets
 - Heavy Ion Jets
- Calibration differs slightly for the different definition, but principles are the same:

- Pile-up subtraction done in two steps
 - Area based subtraction of the per-event pile-up contribution to the p_{T} of each jet
 - Residual N_{PV} and μ based subtraction

$$p_{T}^{corr} = p_{T}^{reco} - \rho \times A + \alpha (N_{PV} - 1) - \beta \langle \mu \rangle$$

11/7/19

Jet Energy Scale

- Grooming" techniques reduce the contribution of pile-up and soft/wide-angle emissions
- Improves the p_{T} and mass resolution
- Makes substructure variables less dependent on fragmentation
- Full calibration provided for trimmed jets
- Reclusters the R=1.0 jet into constituent subjets with $R_{sub} = 0.2$

Recalculates the jet four-momentum from the remaining constituents •

11/7/19

Jet Energy Scale Pile-up Mitigation MC-based Calibration Global Sequential Calibration Lunversity

- Energy response differs across η
 - Especially at boundaries between different calorimeter technologies and granularities
- Isolated reco jets are matched to truth jets and compared

Two/three corrections are applied

1) Absolute JES correction

 Response: Mean of a Gaussian fit to E^{reco}/E^{truth}

2) Jet η correction

- Response: η^{reco}-η^{truth}
- 3) Jet mass correction (just for large-R)
 - Response: m^{reco}/m^{truth}

Jet Energy Scale Pile-up MC-based Calibration Global Sequential

Calibration

- Only done for Small-R jets!
- The GSC is applied to adjust for:
 - Non-compensation: Difference in response to hadrons, leptons and photons
 - Flavor dependence: Difference in response to quarks and gluon
 - **Punch-through:** Jets extending beyond the calorimeters
- Calibration is done in five/six steps (LCW/PFlow)
- Uses observables related to
 - Energy deposits in the calorimeter
 - Track information of jets
 - Activity in the muon segments
- For each observable a 4-momentum correction is derived as a function of p_T^{truth} and |η|
- Does not change the average energy

11/7/19

Eva Hansen

28

UNIVERSITY

- Last step is the residual in-situ calibration
 - Corrects for potential differences between data and MC
 - Applied only to data
- The in-situ methods rely on a well-calibrated reference object in the event to constrain the true jet $p_{\rm T}$

$$Response = R = \left\langle p_T^{jet} / p_T^{ref} \right\rangle$$

• Consists of a set of sub-steps:

Jet Mass Scale

Pile-up

Correction

LUNUVER

In-situ

Validation

- Two in-situ methods are employed to correct the calorimeter mass response
- Forward folding
 - + Uses $t\bar{t}$ events with hadronically decaying boosted Ws and tops
 - Fits the mass peaks and jet mass response of the W and top
- The R_{trk} method
 - · Uses track jets to provide an independent measurement of the jet mass scale

Global

Sequential

Calibration

• The combination is done separately for each mass bin

Outline

- Introduction
 - Quantum Chromo Dynamics
 - Jets
 - Pile-up
- Jet reconstruction
 - Measuring jets with ATLAS
 - Jet inputs
 - Jet Algorithms
- Jet calibration
 - Jet Energy Scale
 - Jet Mass Scale

• Jet Substructure

- Jet mass
- "Prong-like" variables
 - · Top-tagging
- "Haze-like" variables
 - · Quark/gluon-tagging

Why study substructure?

- To identify what kind of particle initiated the jet
 - Light quark, gluon, or something heavy?
- Measuring heavy SM particles (W/Z/top/H) as well as potential new heavy resonances is central for big parts of the ATLAS physics program
- At LHC energies, heavy particles are often produced with a large Lorentz boost
 - Leads to collimated decay products
 - Visible by the internal structure of jets
- Three main substructure variables: Mass, "Prong-ness" and "Hazy-ness"

Particle decaying at rest

Boosted particle decay

11/7/19

Combined Jet Mass

- Mass is the ID-card of particles
- Measuring jet mass requires granularity finer than the size of the jet
 - Depend on both energy and opening angle between decay products
- Two definitions are used
 - Calorimeter Mass:

$$m^{\text{calo}} = \sqrt{\left(\sum_{i \in J} E_i\right)^2 - \left(\sum_{i \in J} \vec{p_i}\right)^2}$$

Track-Assisted Mass:

$$m^{\mathrm{TA}} = \frac{p_{\mathrm{T}}^{\mathrm{calo}}}{p_{\mathrm{T}}^{\mathrm{track}}} \times m^{\mathrm{track}}$$

 Best performance is obtained from a linear combination:

$$m^{\text{comb}} = w^{\text{calo}} \times m^{\text{calo}} + w^{\text{TA}} \times m^{\text{TA}}$$

the formulation preliminary

$$\sqrt{s} = 13 \text{ TeV}, \text{WZ} \rightarrow qqqq$$

 0.25
 $1000 \text{ Trimmed} (f_{cut} = 0.05, \text{R}_{sub} = 0.2)$
 $1000 \text{ LCW} + \text{JES} + \text{JMS calibrated}$
 0.15
 0.15
 0.15
 0.15
 0.05
 0.05
 0.05
 0.00
 1000
 1500
 1000
 1500
 2000
 2500
Truth jet p_ [GeV]

ATLAS-CONF-2016-035

Eva Hansen

34

"Prong-like" Variables

- Several options out there
- N-subjettiness:
 - Define a variable that quantifies how well the jet is described by N subjets:

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \times \min(\delta R_{1k}, \delta R_{2k}, ..., \delta R_{Nk}), \text{ with } d_0 \equiv \sum_k p_{\mathrm{T}k} \times R$$

- Typically use the ratio $\tau_{N,N-1} = \tau_N / \tau_{N-1}$ for tagging a jet as "*N*-prong"
- + $\tau_{_{32}}$ found to perform best for top tagging
- Energy correlation ratios:
 - Takes ratios and double ratios of energy correlation functions:

$$\operatorname{ECF}(N,\beta) = \sum_{i_1 < i_2 < \dots < i_N \in J} \left(\prod_{a=1}^N p_{T_{i_a}}\right) \left(\prod_{b=1}^{N-1} \prod_{c=b+1}^N R_{i_b i_c}\right)^{\beta}$$

Found to perform best for W tagging

35

Eva Hansen

11/7/19

Top tagging

- Wishes: Discrimination, stability against pile-up, and understood systematics
- Simple cut on tau32 and combined mass give good overall performance
- Still be something to gain with more complex multivariate techniques
- ATLAS now has a new Neural Network-based tagger

Observable	Variable	Used for	Defense	1 <u> </u>	
		Used Ioi	References		-+ 2-var optimised AILAS Simulation
Calibrated jet kinematics	$p_{\mathrm{T}}, m^{\mathrm{comb}}$	top,W	[44]		tagger $s = 13 \text{ IeV}$ Trimmed anti-k, R = 1.0 jets
Energy correlation ratios	e_3, C_2, D_2	top,W	[50, 54]	<u> </u>	$50 \rightarrow BDT \text{ top}$ $ \eta^{\text{true}} < 2.0$
N-subjettiness	$\tau_1, \tau_2, \tau_{21}$	top, W	[55, 56]	ion	I op tagging at $\epsilon_{sig} = 80\%$
W-Subjettimess	$ au_{3}, au_{32}$	top		ect	40
Fox–Wolfram moment	$R_2^{\rm FW}$	W	[57, 58]	Lej.	-
Splitting measures	Z _{cut}	W	[59, 60]	ק	30
	$\sqrt{d_{12}}$	top, W		Ino	
	$\sqrt{d_{23}}$	top		J	20-
Planar flow	${\cal P}$	W	[<mark>61</mark>]	ach	
Angularity	<i>a</i> ₃	W	[62]	Ĕ	
Aplanarity	A	W	[58]		
KtDR	KtDR	W	[63]		
Qw	Q_w	top	[59]		

 p_{τ}^{true} [GeV]

11/7/19

Eva Hansen

CERN-EP-2018-192

Example of top-tagging use: tt resonance search

- Search for new heavy particles decaying to top pair
- Looking for deviations in the invariant mass spectrum of the tt system
- Using events where both tops decay hadronically $(t \rightarrow Wb \rightarrow qqb)$
- Different search strategies used to target different resonance mass ranges
 - M < 1.2 TeV: Top decay products are resolved
 - M > 1.2 TeV: Top is boosted and the decays merge into a single jet
- For the "boosted" analysis tops are tagged with straight cuts on the jet mass and $\tau_{_{32}}$

CERN-EP-2018-350 4.5 4.5 7 = 13 TeV 2 = 13 TeV $2 = 13 \text$

"Haze-like" Variables

- Used to characterise radiation pattern when not interested in the number of prongs
- Popular haze-variables include
 - Number of constituents
 - Often approximated by the track multiplicity n_{trk}
 - Width of the jet
 - Often defined by the sum of distances between tracks and jet axis weighted by $p_{_{\rm T}}$

$$w_{track} = \frac{\sum_{i} p_{T}^{i} \Delta R(i, jet)}{\sum_{i} p_{T}^{i}}$$

Quark/gluon tagging

- Gluon jets tend to be broader and have more constituents
- Track multiplicity $n_{\rm trk}$ is strongest discriminating variable
- Challenges to quark/gluon tagging:
 - 1) No universal way of truth labeling in Monte Carlo
 - 2) $n_{\rm trk}$ is sensitive to fragmentation modeling
 - 3) Quark and gluon jets are rather alike...

Eva Hansen

n_{track}

Quark/gluon tagging

Current recommendation based only on n_{trk}

11/7/19

- Data-driven technique used to estimate uncertainty
- For a given $p_{\rm T}$, $n_{\rm trk}$ does not depend on eta, but the probability of a jet being q or g does

$$\langle n_{\text{charged}}^{\text{f}} \rangle = f_{\text{q}}^{\text{f}} \langle n_{\text{charged}}^{q} \rangle + f_{\text{g}}^{\text{f}} \langle n_{\text{charged}}^{g} \rangle$$

$$\langle n_{\text{charged}}^{\text{c}} \rangle = f_{\text{q}}^{\text{c}} \langle n_{\text{charged}}^{q} \rangle + f_{\text{g}}^{\text{c}} \langle n_{\text{charged}}^{g} \rangle,$$

Example of quark/gluon-tagging use: Vector-boson fusion Higgs

- A Higgs produced via VBF is accompanied by two light-flavor quarks
- Background processes are more rich on gluon jets
- Select events with four jets of which two are b-tagged
- *N*_{trk} is used as an input variable in a BDT to discriminate signal from background events
- The uncertainty on n_{trk} is propagated through to the limit setting

One more example: Dark QCD-like sectors

- QCD-like hidden sector models can lead to jets with substructure than SM jets
- Composition of **visible** and **invisible** partons in the jet dependent on parameter choice:
 - Exotic I: Displaced vertices, emerging jets
 - Exotic II: Semi-visible jets
 - We target SM QCD-like models
 - With s-channel mediator decaying to two dark quarks
- Four models implemented in Pythia Hidden Valley process
 - All have larger confinement scales than SM QCD!
 - → Many more constituents!
 - Based on <u>arXiv:1712.09279</u>
- Strategy:
 - Select dijet events using substructure variables
 - Look for a bump in the dijet invariant mass spectrum

11/7/19

Eva Hansen

42

Conclusions

- Jets are
 - abundant in LHC experiments
 - interesting for both QCD studies and new physics
 - challenging because of large backgrounds and pile-up
- In the high-pile-up era we are entering, there is a lot to gain from combining track information with calorimeter signal
- Though the topic of jet substructure has existed for a long time, it is still a very vigorous field of study, which will only be more important as colliders go to higher energies

Backup

Calibration Chain: Global Sequential Calibration

- Observables are related to
 - Energy deposits in the calorimeter / Non-compensation
 - Track information of jets / Flavor dependence
 - Activity in the muon segments / Punch-through

Calibration Chain: Global Sequential Calibration

Small-R JER

• The Jet Energy Resolution (JER) is the width of the response distribution in a given bin

Parameterised as

- N: Pile-up and electronic noise
- S: Statistical Poisson fluctuations
- **C**: Signal loss in passive material
- Noise term constrained using Random Cone Method and a μ=0 MC sample
- Other terms obtained by fitting in-situ measurements from dijet (and potentially Z/γ+jet) events with N held fixed

Small-R JER

• Noise term includes pile-up and electronic noise

- N_{pile-up} is derived with the Random Cone Method:
 - Construct two random cones in zero-bias data sample
 - Sum energy clusters within the two cones
 - Fluctuations due to pile-up are taken as the width of the $p_{\rm T}$ difference distribution
- $N_{\mu=0}$ is derived from a MC sample with no pile-up
- Dijet method:
 - Similar to the η -intercalibration
 - JER is the width of the asymmetry distribution

Sep 11, 2018

Eva Hansen, HCW 2018

Small-R JER

- Fit performed to dijet measurements with constraint on noise term from Random Cones method
- JER measurements in Z/γ+jet events may be included to span more phase space
- Brand new recommendations out now

