

Searches for Beyond-the-SM Higgs bosons with ATLAS

Jana Schaarschmidt (University of Washington)

Dresden Seminar, January 10 2019

CERN Accelerator Complex

Large Hadron Collider (LHC)

CERN LAB 2 (France)

Super Proton Synchrotron

27km long 150m underground

Large Hadron Collider (LHC)

CERN LAB 1 (Switzerland)

Proton-proton collider

Lake Geneva

Geneva

Airport

Super-conducting magnets operated with Helium at 1.9 K (colder than space!)

Vacuum in the beam pipe at 10⁻¹³ atm

Protons accelerated to 99.999991% of the speed of light

Four large detectors along the ring:

The ATLAS Collaboration in 2018

 ${>}5000$ members: ${\sim}3000$ signing authors, ${>}1000$ students

The ATLAS detector

LHC / HL-LHC Plan

Standard Model of Elementary Particles

SM Higgs Boson Status

SM Higgs boson measurements:

Signal strength: $\mu = 1.13^{+0.09}_{-0.08} = 1.13 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (exp.)}^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$ (ATLAS Run-2 combination with up to 80/fb)

Mass: $m_H = 125.09 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (syst.) GeV}$

(Run-1 ATLAS+CMS combination)

SM Higgs Boson Status

Motivation for Beyond-the-SM (BSM) Physics

Dark Matter

Invisible matter, weakly interacting, massive, clumpy.

~85% of the universe's matter!

No particle of the SM is a convincing DM candidate

12

Bound galaxy clusters

¹³ Motivation for Beyond-the-SM (BSM) Physics

Inflation

Grand Unified Theory

SM Parameters

Neutrino Masses

Matter-antimatter asymmetry

Gravity

Higgs mass fine tuning

Dark Energy

 \rightarrow The Standard Model is not the final answer in physics, but it is a part of a greater theory

New Physics Associated to the Higgs Boson

Program of direct searches for BSM phenomena associated to the Higgs boson

Effort is complementary to measurements of Higgs boson properties (spin, CP, couplings, decays) to search for deviations from the SM

Program is not only in HBSM group, but also in other groups in Higgs and Exotics

Searches for BSM Higgs bosons: Overview

15

Neutral Heavy Higgs	Higgs Di-Higgs Charged Higgs		Light Higgs, exotic Higgs decays	Mono-Higgs		
$\begin{array}{l} A/H \longrightarrow \tau\tau \\ A/H \longrightarrow tt \\ A/H \longrightarrow bb \\ A/H \longrightarrow \mu\mu \\ H \longrightarrow VVW \\ H \longrightarrow ZZ \\ H \longrightarrow \gamma\gamma \\ H \longrightarrow Z\gamma \\ H \longrightarrow \chi\chi \\ H \longrightarrow WH^{+} \\ A \longrightarrow Zh \\ A \longrightarrow ZH \end{array}$	H→hh H→Sh H→SS NR HH	$H^{+} \rightarrow tb$ $H^{+} \rightarrow \tau \nu$ $H^{+} \rightarrow cs$ $H^{+} \rightarrow cb$ $H^{+} \rightarrow \chi \chi$ $H^{+} \rightarrow W\gamma$ $H^{+} \rightarrow WH/Wh$ $H^{++} \rightarrow WW$ $H^{++} \rightarrow H$	$\begin{array}{l} h \rightarrow Za \\ h \rightarrow aa \\ h \rightarrow ss \\ tta, tts \\ H^+ \rightarrow Wa \\ h \rightarrow meson + \gamma \\ LFV h \\ h \rightarrow invisible \\ h \rightarrow \chi \chi \end{array}$	H→bb+MET H→ττ + MET H→Za→Z+MET		

 \rightarrow Rich and diverse physics program in the Higgs, Exotics, and Higgs/Dibosons physics groups of ATLAS

→ Find all results online: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

I. Additional Higgs Bosons

¹⁷ Benchmark Models

- Countless benchmark models on the market (→ see recommendations by the LHCHXSWG)
- Popular: MSSM (Minimal Supersymmetric SM), 2HDM (two Higgs Doublets), additional singlets, Higgs tripletts, ...
- **2HDM:** Two complex, hypercharge-one scalar doublets $\Phi_1 \Phi_2$ resulting in 8 degrees of freedom

$$\begin{split} \mathsf{SM:} \\ \Phi &= \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} \to H_1 = \begin{pmatrix} H_1^+ \\ H_1^0 \end{pmatrix}, H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix} \quad \mathsf{tan}\beta = \mathsf{v}_1 / \mathsf{v}_2 \quad \begin{pmatrix} m_H^2 & 0 \\ 0 & m_h^2 \end{pmatrix} = \begin{pmatrix} c_\alpha & s_\alpha \\ -s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2 \\ \mathcal{M}_{12}^2 & \mathcal{M}_{22}^2 \end{pmatrix} \begin{pmatrix} c_\alpha & -s_\alpha \\ s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} c_\alpha & -s_\alpha \\ \sigma_1 & \sigma_2 \end{pmatrix} \end{split}$$

 \rightarrow Five Higgs bosons: **h** (SM-like, CP even), **H** (heavy, CP-even), **A** (heavy, CP-odd), **H**⁺, **H**⁻

Mass hierarchy or mass degeneracy often imposed in the benchmarks, leaving three parameters: Heavy Higgs mass, tan β , mixing angle α

Four types for which no FCNC are allowed on tree level:

- Type I: All fermions couple with H_2 , none with H_1
- Type II: Up-type quarks couple to H_2 , down-type quarks and charged leptons to H_1

Flipped: Up-type quarks and charged leptons couple to H_2 , down-type quarks couple to H_1

Lepton-specific: Charged leptons couple to H_1 , all quarks couple to H_2

Heavy Higgs Decay in the MSSM: High tanβ

$A/H \rightarrow \tau \tau$

Selections

19

- $\tau_{had} \tau_{had}$: single τ trigger, $p_T(\tau_1) > 85/130/165$ GeV depends on trigger , $p_T(\tau_2) > 65$ GeV
- $\tau_{lep}\tau_{had}$: single e/ μ trigger, p_T(l/ τ_{had})>30/25 GeV, M_T(l, E_T^{miss})<40 GeV
- Opposite Charge, $\Delta \Phi(\tau, \tau) > 2.4/2.7$, Categorization: 0 or ≥ 1 b-tagged jet

Background modeling

$A \rightarrow ZH \rightarrow IIbb$

21

- H is not limited to 125 GeV \rightarrow 2D scan in A and H mass, mA > mH
- Signal produced in gluon-fusion and through b-associated production
- Categories: nb=2, nb>=3 to access both production modes
- 80 < mll < 100 GeV, mbb must be close to the hypothesized H mass

Background estimation:

- ttbar: Shape taken from simulation, normalisation from data control region (eµ pair instead of ee or µµ pair) \rightarrow 99% pure
- Z+jets: Shape from simulation, normalisation obtained from signal region mllbb fit (works well because shape is different from signal)
- Smaller backgrounds estimated entirely from simulation

$A \rightarrow ZH \rightarrow IIbb$

24

Additional Neutral Higgs Bosons: $H \rightarrow Z\gamma$

- Two catgeories for the high mass search: $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$
- Signal shape modelled with double sided Crystal Ball
- Background shape modelled $f_{bkg}^{k}(x; b, a_{k}) = N(1 x^{1/3})^{b} x^{\sum_{j=0}^{k} a_{k} \log(x)^{j}}$ (k=0)
- Background model had to pass spurious signal tests and also an F-test •
- No significant excess found, global significance 0.8σ
- SM limit: 6.6 (5.2) obs (exp) (SM analysis uses different categorisation)

ATLAS Simulation

• ee

---- uu

ee parameterised

μμ parameterised

√s = 13 TeV

 $aa \rightarrow X \rightarrow Z\gamma$, J =0

m, = 1000 GéV

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.004

-0.004

0.002

dN/dm

Ś

Heavy Higgs Decay in the MSSM: Low tanβ

25

ttbar decay is dominant in many models for $m_{\mu} > 350$ GeV and low tan β

$A/H \rightarrow ttbar (8 TeV)$

26

Huge signal-background interference, model-dependent

Charged Higgs Bosons: Production (2HDM)

Low mass

27

150

160

140

100

110

120

130

M_{H[±]} [GeV]

Intermediate mass

\tilde{H}^{-}

High mass

Tools: 4FS: MG5_aMCatNLO, 5FS: Prospino

https://arxiv.org/abs/1607.05291

Differential cross sections at LO

Differential cross sections at NLO

Charged Higgs Decay in the MSSM

29

Charged Higgs Bosons: $H^{*} \rightarrow \tau \nu$

$ au_h$ -jet	$ au_h$ -lep
E_T trigger	single lepton trigger
$1 \tau_h, p_T^{\tau} > 40 GeV$	$1 \tau_h, p_T^{\tau} > 30 GeV$
≥ 3 jets and ≥ 1 b-tag	≥ 1 jets and ≥ 1 b-tag
no μ or e	1 mu or $e, p_T^{\ell} > 30 GeV$
$E_T > 150 GeV$	$E_T > 50 GeV$
$m_T(au, E_T) > 50 GeV$	opposite sign τ and e/μ

BDT input variable	$\tau_{had-vis}$ +jets	$\tau_{\text{had-vis}}$ +lepton
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark
$p_{\mathrm{T}}^{ au}$	\checkmark	\checkmark
$p_{\mathrm{T}}^{b\text{-jet}}$	\checkmark	\checkmark
$p_{\mathrm{T}}^{\hat{\ell}}$		\checkmark
$\Delta \phi_{ au_{ m had-vis}, m miss}$	\checkmark	\checkmark
$\Delta \phi_{b}$ -jet, miss	\checkmark	\checkmark
$\Delta \phi_{\ell, m miss}$		\checkmark
$\Delta R_{ au_{ ext{had-vis}},\ \ell}$		\checkmark
$\Delta R_{b ext{-jet}, \ell}$		\checkmark
$\Delta R_{b ext{-jet}, au_{ ext{had-vis}}}$	\checkmark	
Υ	\checkmark	\checkmark

30

Charged Higgs Bosons: $H^{*} \to \tau \nu$

$ au_h$ -jet	$ au_h$ -lep
<i>E</i> / _T trigger	single lepton trigger
$1 \tau_h, p_T^{\tau} > 40 GeV$	$1 \tau_h, p_T^{\tau} > 30 GeV$
≥ 3 jets and ≥ 1 b-tag	≥ 1 jets and ≥ 1 b-tag
no μ or e	1 mu or $e, p_T^{\ell} > 30 GeV$
<i>E</i> / _T > 150 <i>GeV</i>	$E_T > 50 GeV$
$m_T(au, E_T) > 50 GeV$	opposite sign τ and e/μ

$$\Upsilon = \frac{E_{\rm T}^{\pi^{\pm}} - E_{\rm T}^{\pi^{0}}}{E_{\rm T}^{\tau}} \approx 2\frac{p_{\rm T}^{\tau-{\rm track}}}{p_{\rm T}^{\tau}} - 1$$

Polarization of the hadronic tau gives discrimination:

- In t \rightarrow bW decay, tau comes from W decay - In H⁺ $\rightarrow \tau v$, tau comes from a scalar

 \rightarrow Difference in energy carried by the charged and neutral pions

Charged Higgs Bosons: $H^{\star} \to \tau \nu$

Charged Higgs Bosons: $H^+ \rightarrow \tau v$

Huge improvement since run-1 from using MVA methods

No gap for $m(H^+) \sim m(t)$ ATLAS explored this region for the first time ever

Charged Higgs Bosons: $H^+ \rightarrow tb$

34

Very little discrimination at low mass (~200-300 GeV)

BDT trained for each mass point, in each SR

At low mass, kinematic discriminant added to training

$$D = P_{H^+}(\mathbf{x}) / (P_{H^+}(\mathbf{x}) + P_{t\bar{t}}(\mathbf{x}))$$

Discriminant D reflects the probability that an event is compatible with $H^+ \rightarrow tb$ or ttbar

Inputs:

- mass of leptonic top
- mass of the hadronic W
- mass difference between leptonic top and hadronic W
- mass difference of the H⁺ and one of the tops

Discriminant

Charged Higgs Bosons: $H^+ \rightarrow tb$

Charged Higgs Bosons: MSSM Interpretation

Charged Higgs Bosons in Triplett Models

- 3 leptons, MET > 25 GeV, b-jet veto
- m(WZ) reconstructed calculated with the solution for neutrino p₂ that gives W mass
- VBF selection on jets (m_{ii}>500 GeV, $|\Delta \eta_{ii}|>3.5$)
- Georgi Machacek model Nucl. Phys. B 262 (1985) 463

Doubly Charged Higgs Bosons $H^{**} \rightarrow W^*W^*$

Theory: arXiv:1105.1925

38

- SM Higgs Doublet and additional hypercharge Y=2 scalar triplet
- \rightarrow 7 Higgs bosons (H^{±±}, H[±], A, H, h), h is SM like
- → Triplet conveniently provides non-zero neutrino masses (type-II seesaw mechanism)
- **3 catgeories**: 2I (same-sign), 3I, 4I MET > 70 GeV (30 GeV) for 2I (3I, 4I)

Cut-based selection, optimized with TMVA

 $\Delta = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$

H++

Η--

r/Z

Di-Higgs Searches

39

Non-resonant

SM ggF \rightarrow HH cross section (κ_{λ} =1): 33.4 fb SM ggF \rightarrow H cross section: 48.7 pb

Coupling variations lead to different shape and rates:

Resonant

X can be a heavy Higgs (spin-0) or a Graviton (spin-2)

HH branching fractions:

	bb	WW	ττ	ZZ	γγ	
bb	33%	10	.23731/0	CYRM-2	017-002	
WW	25%	4.6%				
π	7.4%	2.5%	0.39%			
ZZ	3.1%	1.2%	0.34%	0.076%		
γγ	0.26%	0.10%	0.029%	0.013%	0.0005%	

Di-Higgs Searches: Non-resonant Results

ATLAS sets worlds-best limit on non-resonant HH production:

$HH \rightarrow 4b$ candidate

Run Number: 311287 Event Number: 518319772 Date: 2016-10-23 07:05:27 CEST

Di-Higgs Searches: HH \rightarrow **4b**

- Trigger: one or two jets passing online b-tagging (plus additional non b-tagged jets)
- Select events with 4 b-tagged jets (R=0.4), p_{T} > 40 GeV
- Not easy: Pairing the b-jets to Higgs candidates, use dijet mass to solve combinatorics

- Expected: decay of two particles of equal mass
- Semi-leptonic B-decays lead to energy loss → mass equality needs modification of expected masses (120 GeV, 110 GeV)
- D_{HH} quantifies the distance of the masses from the line connecting (0,0) and (120, 110) GeV
- Pairing that minimizes $\mathsf{D}_{_{\!\!\!\!\!H\!H}}$ is chosen
- In simulation, this leads to at least 90% correct pairings

Di-Higgs Searches: $HH \rightarrow 4b$

Data-driven estimation of the background model:

- Selection of the two-tag sample (contains \geq 4 jets, exactly 2 of them b-tagged)
- Application of two weights (combinatorial, kinematic), obtained from the sideband, to make the 2b data look more like 4b data
- Determining the normalization of multijet and ttbar by fitting event yields in background-enriched control regions
- An alternative background model is derived from the control region (CR), is used for validation and to derive a systematic uncertainty

Di-Higgs Searches: HH → **4b (Boosted)**

Di-Higgs Searches: $HH \rightarrow bb\tau\tau$

- ATLAS' best HH channel for non-resonant
- 3 categories: Had-had, lep-had (single lepton trigger),
- lep-had (lepton+tau trigger)
 2 bjets required in the SR, 0 and 1 b-tag regions used for validation ²
- BDT trained in each category, for each mass hypothesis
- Fits performed to the BDT output

45

Efficiency

×

0.06

0.04

0.02

200

0.1 ATLAS Simulation

 $\tau_{lep}\tau_{had}$

 $\tau_{\mathsf{had}} \tau_{\mathsf{had}}$

900

1000

13 TeV, 36.1 fb⁻¹

0.08 Narrow Scalar

300

400

500

600

700

m(Scalar) [TeV]

tan β ⁴⁷

II. Exotic Higgs Decays

Exotic Higgs Decays Overview

New particles might couple preferentially to the Higgs boson:

Exotic Higgs Decays Overview

Process	Run-1	Run-2 2015	Run-2 2015+2016	
$H ightarrow$ aa $ ightarrow$ bb $\mu\mu$			arXiv:1807.00539	
$H \rightarrow aa \rightarrow 4b$		arXiv:1606.08391	arXiv:1806.07355	
$H \rightarrow aa \rightarrow 2\tau 2\mu$	arXiv:1505.01609			
$H \rightarrow aa/ZZ_d/Z_dZ_d \rightarrow 4I$	arXiv:1505.07645		arXiv:1802.03388	
$H \rightarrow aa \rightarrow 2j2\gamma$			arXiv:1803.11145	
$H \rightarrow aa \rightarrow 4\gamma$	arXiv:1509.05051		arXiv:1808.10515 (0.2 < mX < 2 TeV)	

Higgs may decay to DM, can be identified indirectly via MET + the rest of the event $\Delta \ln(\Lambda)$

12

10

8

6

2

-0.2

ATLAS Preliminary

 $\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$

 $\sqrt{s} = 8 \text{ TeV}$. 20.3 fb⁻¹

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

- Run 1 combined

Run 2 combined Run 1+2 combined

0.2

0

0.4

0.6

BR (H → inv) < 0.26 (obs) (0.17 +0.07 -0.05 exp)

CMS: 24% obs (23% exp)

Interpretation also in Higgs portal models to set limit on WIMP-nucleon scattering cross section.

Rare Higgs Decays

- Search for $H\to J/\psi\,\gamma$, $H\to\psi\,\gamma$ and $H\to Y\gamma$ probes c-quark and b-quark Yukawa coupling
- Rate predicted by the SM extremely small, an observation would hint new physics (eg. composite Higgs)
- Select events with OS muon pair (lead μ pT > 18 GeV), and a photon (pT > 35 GeV)
- 2D fits to the dimuon and dimuon+photon invarant mass spectra \rightarrow no signal found on top of the SM predictions
- Rare decays of Z to the same final states searched as well, no deviation from prediction found

H(125) → aa → bbμμ

53

- Muons pT> 7 GeV, "medium" ID, lead μ pT > 27 GeV, 0.4 anti-kt jets pT > 20 GeV, b-tagged with 77% WP
- Decay to two particles with equal mass \to symmetric decay, but $\mu\mu$ mass resolution 10x better than the bb mass
- Kinematic fit to the energy of the b-jets improve $bb\mu\mu$ mass resolution, $|m_{_{bb\mu\mu}}^{~~KL}-125~GeV|$ < 15 GeV
- DY Background yield estimated from data from m_{bbμμ} sidebands, shape template from 0 b-tagged events.
- ttbar yield estimated from CR with large MET, shape from MC

No excess, largest local significance at 38 GeV (1.6σ)

ATLAS Preliminary

Run 1: √s = 8 TeV, 20.3 fb⁻¹ **Run 2**: √s = 13 TeV, 36.1 fb⁻¹

2*HDM*+*S* Type-II, $tan\beta = 2$

+ + + + + expected ± 1 σ observed **Run 1** H \rightarrow aa \rightarrow µµ $\tau\tau$ arXiv: 1505.01609 **Run 1** H \rightarrow aa $\rightarrow \gamma\gamma\gamma\gamma$ arXiv: 1509.05051 **Run 2** $H \rightarrow aa \rightarrow \mu \mu \mu \mu$ arXiv: 1802.03388 **Run 1** H \rightarrow aa $\rightarrow \gamma \gamma j j$ arXiv: 1803.11145 **Run 2** $H \rightarrow aa \rightarrow bbbb$ arXiv: 1806.07355 **Run 2** $H \rightarrow aa \rightarrow bb\mu\mu$

arXiv: 1807.00539

After two runs and 8 years of datataking...

- no sign of new physics found yet (but a few excesses here and there), no SUSY
- if new physics is accessible at the LHC energy scale, then it's hiding well
- We're entering a new era, doubling the luminosity will take a long time

But, analyses get more and more sophisticated:

Clever and more powerful machine learning techniques, better signal-background discrimination, better control of systematic uncertainties for physics objects and theory

We have collected only a small part of the dataset yet (5%!)

- Run-3 and then HL-LHC enables probing especially the phase spaces where we're now very much statistically limited, and it leads to better precision of Higgs and other particles coupling measurements

- 14 TeV energy leads to larger cross sections and helps pushing into the high mass corners

Backup

Minimal SUSY Extension of the SM (MSSM)

In the simplest SUSY extension, the Higgs sector consists of two Higgs doublets:

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} \to H_u = \begin{pmatrix} h_u^+ \\ h_u^0 \end{pmatrix}, \ H_d = \begin{pmatrix} h_d^0 \\ h_d^- \end{pmatrix} \quad \tan \beta = \frac{v_u}{v_d}$$

 \rightarrow This leads to 5 observable Higgs bosons:

 \rightarrow Observation of the Higgs at 125 GeV does therefore not rule out the MSSM

- SUSY introduces a lot of new parameters (to parametrize the mass breaking mechanism)
- The unconstrained MSSM has 109 new parameters → reduced by phenomenological considerations (eg. no FCNC) to 22 parameters
- MSSM benchmark models (such as m_nmod etc.) defined to study specific phenomenologies, leaving only two free parameters: tanβ, A mass

•

m_{H⁺} [GeV]

Model	u_R^i	d_R^i	e_R^i
Type I	Φ_2	Φ_2	Φ_2
Type II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1 -
Flipped	Φ_2	Φ_1	Φ_2

One doublet is fermiophobic

One doublet couples to up, other to

- down-type (=MSSM like)
- One doublet couples to quarks as type-I, other with leptons as type-II
- One doublet couples to quarks as type-II, other with leptons as type-I

Scale factors of Yukawa couplings	$y_{ m h}^{ m u}$	$y_{ m h}^{ m d}$	$y^\ell_{ m h}$	$y_{ m H}^{ m u}$	$y_{ m H}^{ m d}$	$y_{ m H}^\ell$	$y_{ m A}^{ m u}$	$y_{ m A}^{ m d}$	$y^\ell_{ m A}$
Type-I	$rac{C_{oldsymbol{lpha}}}{s_{eta}}$	$rac{c_{lpha}}{s_{eta}}$	$rac{c_{lpha}}{s_{eta}}$	$rac{s_{lpha}}{s_{eta}}$	$rac{s_{lpha}}{s_{eta}}$	$rac{s_{lpha}}{s_{eta}}$	$\cot eta$	$-\cot\beta$	$-\cot\beta$
Type-II	$rac{s_{lpha}}{s_{eta}}$	$\frac{s_{\alpha}}{c_{\beta}}$	$-\frac{s_{\alpha}}{c_{\beta}}$	$\frac{s_{\alpha}}{s_{\beta}}$	$\frac{c_{\alpha}}{c_{\beta}}$	$\frac{c_{\alpha}}{c_{\beta}}$	$\cot eta$	aneta	aneta
Flipped (Y)	$rac{C_{\alpha}}{s_{\beta}}$	$-\frac{s_{\alpha}}{c_{\beta}}$	$rac{c_{lpha}}{s_{eta}}$	$\frac{s_{\alpha}}{s_{\beta}}$	$\frac{s_{\alpha}}{s_{\beta}}$	$\frac{s_{\alpha}}{s_{\beta}}$	$\cot eta$	aneta	$-\cot\beta$
Lepton Specific (X)	$rac{c_{lpha}}{s_{eta}}$	$rac{c_{lpha}}{s_{eta}}$	$-\frac{s_{\alpha}}{c_{\beta}}$	$rac{s_{lpha}}{s_{eta}}$	$\frac{c_{\alpha}}{c_{\beta}}$	$rac{s_{lpha}}{s_{eta}}$	$\cot eta$	$-\cot eta$	aneta

Significance, Limits, test statistics

 \rightarrow **Profile likelihood ratio** (used at the LHC):

$$\lambda(\mu) = rac{L(\mu, \hat{\hat{m{ heta}}}(\mu))}{L(\hat{\mu}, \hat{m{ heta}})}$$
 "conditional fit" "unconditional fit"

Test-statistic to test the background-only hypothesis $(\rightarrow \text{discovery})$:

$$\tilde{q}_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} > 0\\ +2\ln\lambda(0) & \hat{\mu} \le 0 \end{cases}$$

The consistency with the background-only hypothesis is quantified with \mathbf{p}_{a} .

If p_0 is small, the consistency is poor \rightarrow discovery.

The significance is the corresponding number of Gaussian standard derivations:

 $0\sigma \sim 0.5$ $1\sigma \sim 0.16$ $2\sigma \sim 0.022$ $3\sigma \sim 0.0013$ $4\sigma \sim 0.000032$ $5\sigma \sim 0.000003$ Drawings: A. Read

Significance, Limits, test statistics

If eg. $CL_s(\mu) < 5\%$, the signal hypothesis (μ) is excluded at 1-5%=95% confidence level. CL_s is known to be conservative, it prevents excluding hypotheses one is not sensitive to.

The observed p-values ($p_{_0}$, $p_{_{\mu}}$ and 1- $p_{_b}$) are integrals from the observed value of the test-statistic to infinity.

The expected p-values (suppose we had many LHC's, what is the average result we could expect) are obtained from integrating the medium of the test statistic distribution of the toys up to infinity.