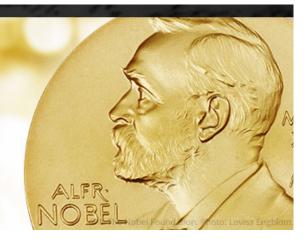
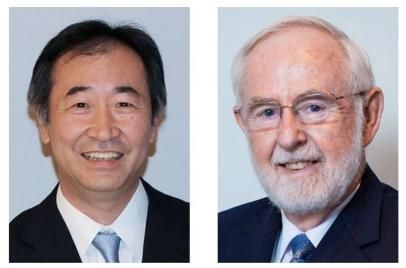
Neutrino mass and implications for the Standard Model of particle physics

Thomas Schwetz-Mangold

Institutsseminar, TU Dresden, Inst. für Kern- und Teilchenphysik, 18.4.2019




www.kit.edu

"For the greatest benefit to mankind" alped Wohel

2015 NOBEL PRIZE IN PHYSICS

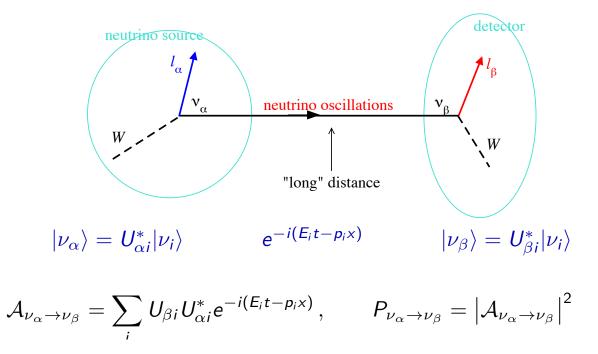
Takaaki Kajita Arthur B. McDonald

"...for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Outline

- Neutrino oscillations
 - basic introduction
 - present status of 3-flavour oscillations from global data
- Beyond oscillations
 - absolute mass observables
 - implications for the Standard Model of particle physics
 - how to identify the mechanism behind neutrino mass?
 comments on lepton number and lepton flavour violation

Summary

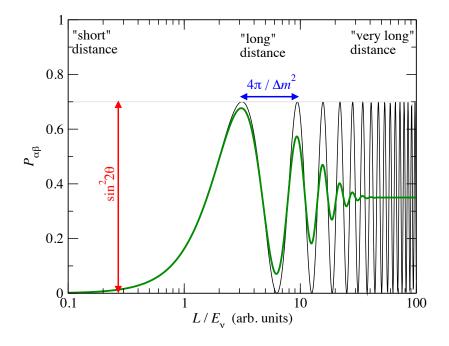


Neutrino oscillations - basics

Flavour neutrinos ν_{α} are superpositions of massive neutrinos ν_i :

$$u_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \nu_{i} \qquad (\alpha = e, \mu, \tau)$$

• $U_{\alpha i}$: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix \rightarrow mismatch between mass and interaction basis



Neutrino oscillations - basics

2-flavour limit:

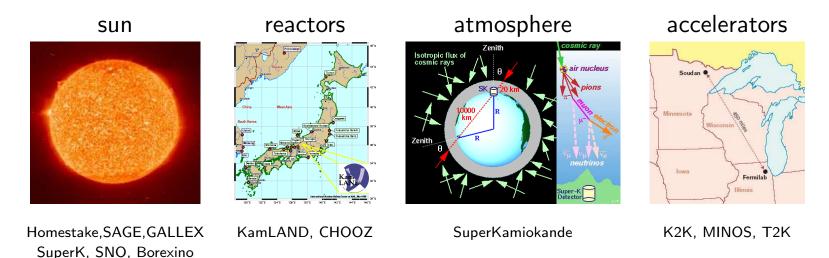
$$U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \qquad P = \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E_{\nu}}$$

 $\Delta m^2 = m_2^2 - m_1^2 \longrightarrow$ oscillations are sensitive to mass differences

 $\frac{\Delta m^2 L}{4E_{\nu}} = 1.27 \frac{\Delta m^2 [\mathrm{eV}^2] \, L[\mathrm{km}]}{E_{\nu} [\mathrm{GeV}]}$

Evolution of flavour state can be described by effective Schrödinger equ.:

$$i\frac{d}{dt}\left(\begin{array}{c}a_{e}\\a_{\mu}\\a_{\tau}\end{array}\right)=H\left(\begin{array}{c}a_{e}\\a_{\mu}\\a_{\tau}\end{array}\right)$$


where

$$H = \boldsymbol{U} \text{diag} \left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}} \right) \boldsymbol{U}^{\dagger}$$

Global data on neutrino oscillations

from various neutrino sources and vastly different energy and distance scales:

- global data fits nicely with the 3 neutrinos from the SM
- a few "anomalies" at 2-3 σ: LSND, MiniBooNE, reactor anomaly, no LMA MSW up-turn of solar neutrino spectrum

The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m₀
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$
- 3 phases (1 Dirac, 2 Majorana)

$$\Delta m_{31}^{2} \qquad \Delta m_{21}^{2}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$atm+LBL(dis) \qquad react+LBL(app) \qquad solar+KamLAND$$

The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m_0
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$

neutrino oscillations

• 3 phases (| Dirac, 2 Majorana)

$$\Delta m_{31}^{2} \qquad \Delta m_{21}^{2}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$atm+LBL(dis) \qquad react+LBL(app) \qquad solar+KamLAND$$

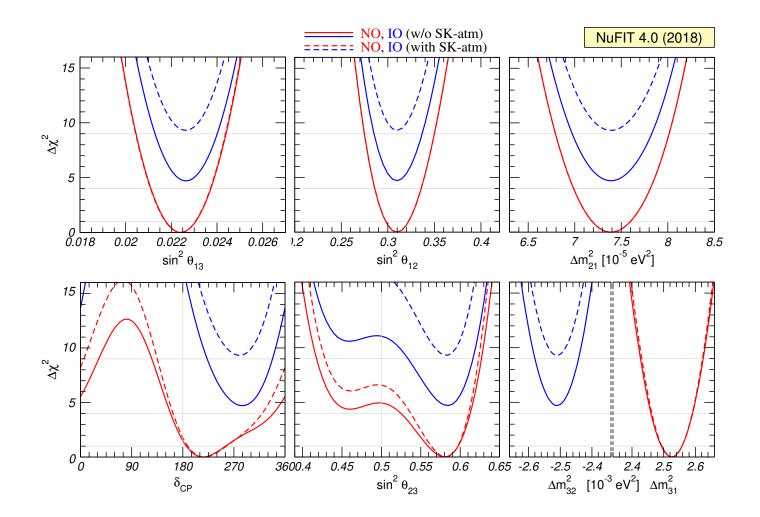
The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m_0
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$
- 3 phases (| Dirac, 2 Majorana)

neutrino oscillations

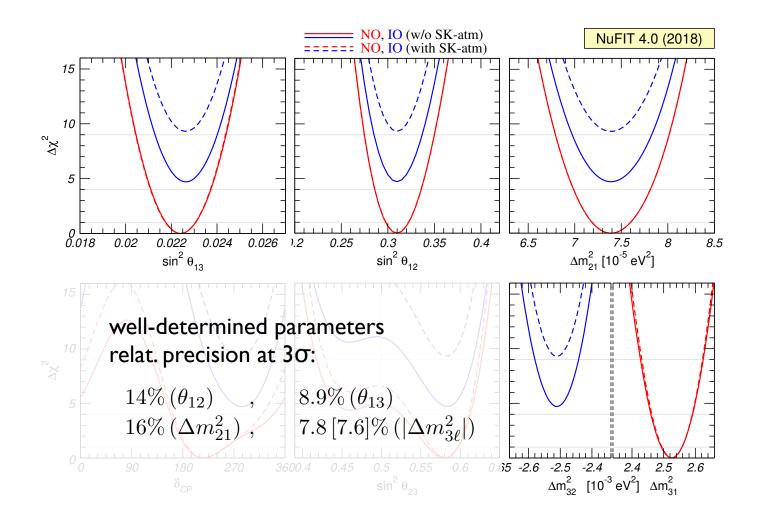
- each parameter determined by several (classes of) experiments
- especially true for not-so-well determined parameters (θ₂₃, MO, Dirac-phase)

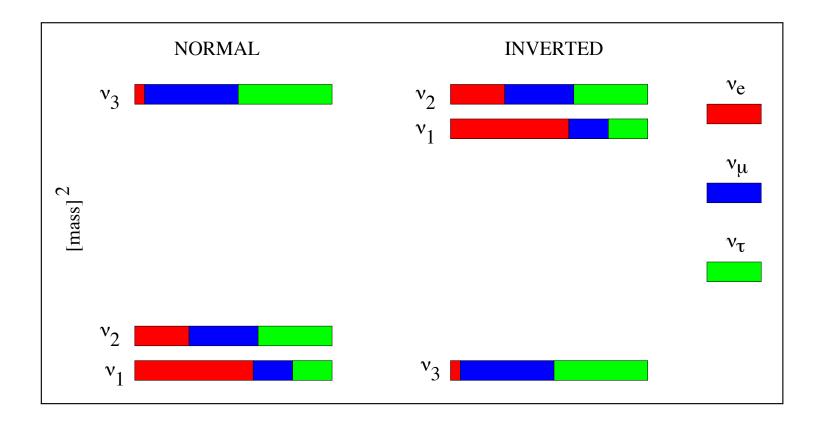
Interplay of different data sets → global analyses


I. Esteban, C. Gonzalez-Garcia, A. Hernandez, M. Maltoni, T. Schwetz, JHEP 19, [arXiv:1811.05487]

- data available till Oct 2018 (incl. Neutrino 2018 releases)
- updated results, full list of data, χ² tables
 <u>http://www.nu-fit.org</u>

NuFit 4.0 (2018)

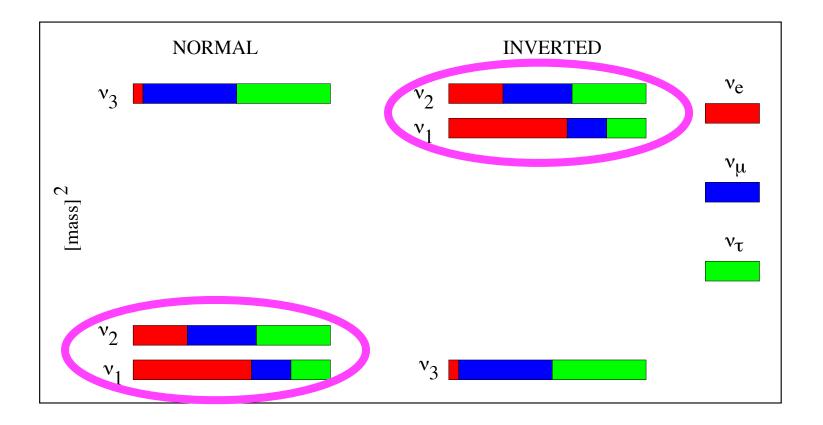



NuFit 4.0 (2018)

3-flavour mixing

The SM flavour puzzle

Lepton mixing:


Quark mixing:

The dominant oscillation modes

I-2 sector: θ_{12} and Δm_{21}^2

When neutrinos pass through matter the interactions with the particles in the background induce an effective potential for the neutrinos

Effective 4-point interaction Hamiltonian

$$H_{\rm int}^{\nu_{\alpha}} = \frac{G_F}{\sqrt{2}} \, \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\alpha} \underbrace{\sum_{f} \bar{f} \gamma^{\mu} (g_V^{\alpha, f} - g_A^{\alpha, f} \gamma_5) f}_{J_{\rm mat}^{\mu}}$$

coherent forward scattering amplitude leads to an "index of refraction" L. Wolfenstein, Phys. Rev. D **17**, 2369 (1978); *ibid.* D **20**, 2634 (1979)

effective Schrödinger eq. in matter:

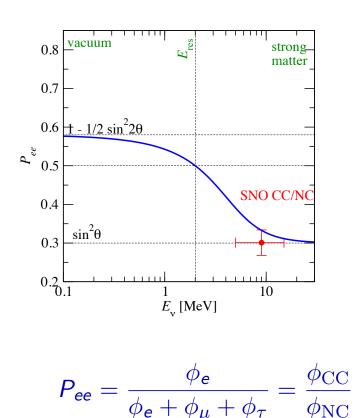
$$i\frac{d}{dt}\left(\begin{array}{c}a_{e}\\a_{\mu}\\a_{\tau}\end{array}\right)=H\left(\begin{array}{c}a_{e}\\a_{\mu}\\a_{\tau}\end{array}\right)$$

with

$$H = \underbrace{U \operatorname{diag}\left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}}\right) U^{\dagger}}_{\operatorname{vaccum}} + \underbrace{\operatorname{diag}(\sqrt{2}G_F N_e, 0, 0)}_{\operatorname{matter}}$$

 $N_e(x)$: electron density along the neutrino path

for non-constant matter: $H(t) \rightarrow$ time-dependent Schrödinger eq. "MSW resonance" Mikheev, Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)

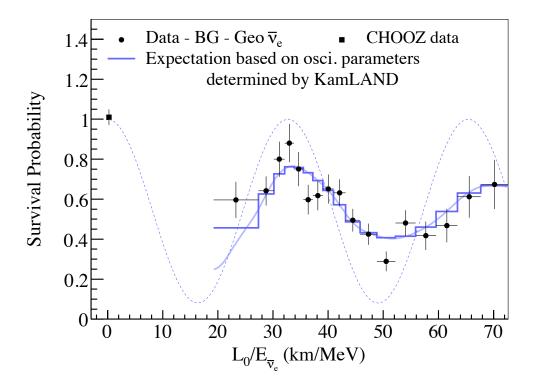

I-2 sector: θ_{12} and Δm_{21}^2

MSW conversion in the Sun

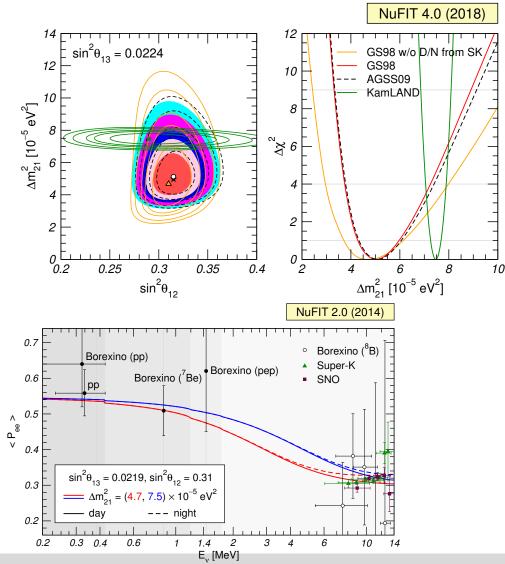
2002: SNO: CC to NC ratio of solar neutrino flux

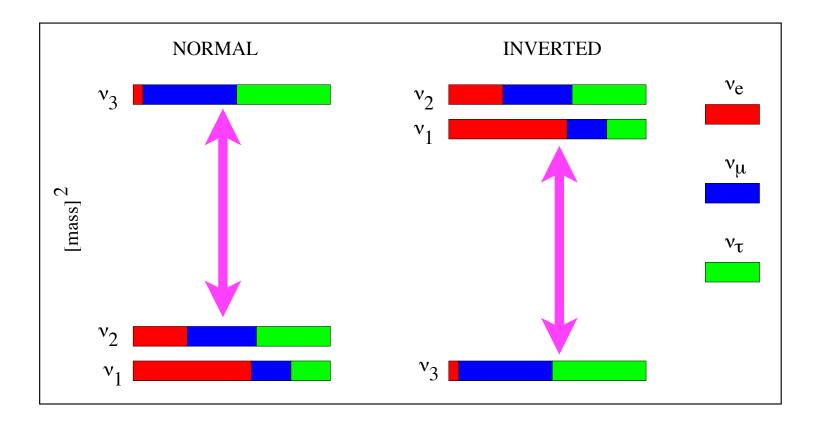
CC: $\nu_e + d \rightarrow p + p + e^-$ NC: $\nu_x + d \rightarrow p + n + \nu_x$

- evidence for $\nu_e \rightarrow \nu_\mu, \nu_\tau$ conversion
- MSW effect inside the sun adiabatic conversion through resonance
- fixes ordering of the 1-2 mass states

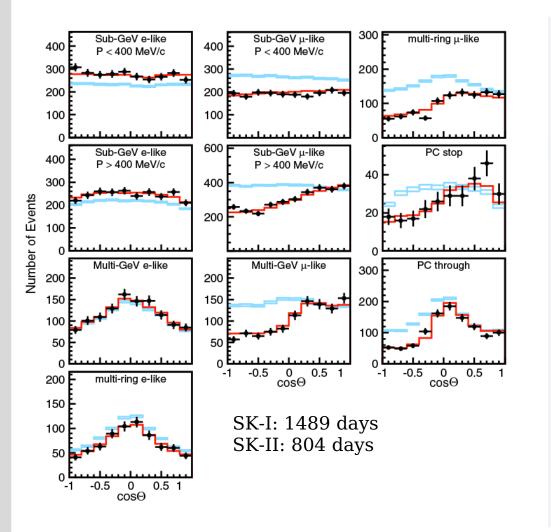


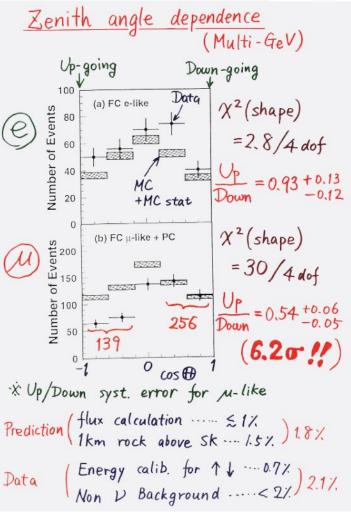
I-2 sector: θ_{12} and Δm_{21}^2


Evidence for spectral distortion: KamLAND 2004

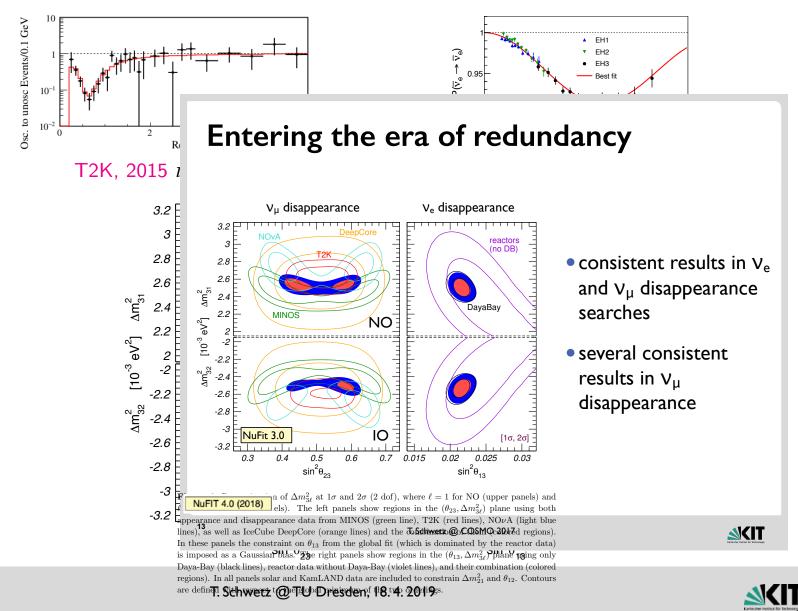

Solar parameters

- using reconstructed fluxes from Daya-Bay in KamLAND analysis
- tension between solar and KamLAND at ~2σ
- robust wrt to solar models (abundances)
- driven by spectrum upturn and day/night data from SK

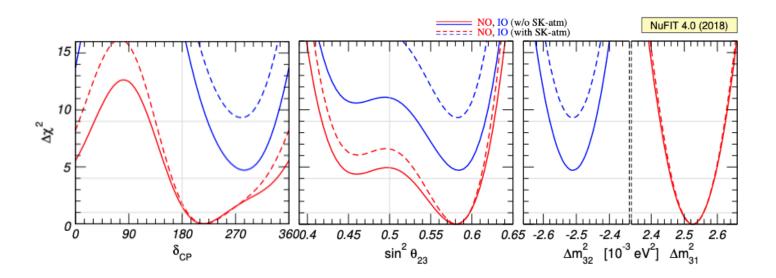

i-3 sector: θ_{i3} and Δm^{2}_{3i} (i=1,2)

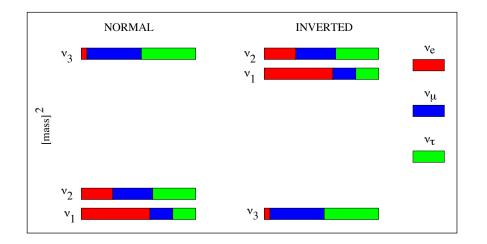


i-3 sector: θ_{i3} and Δm^{2}_{3i} (i=1,2)

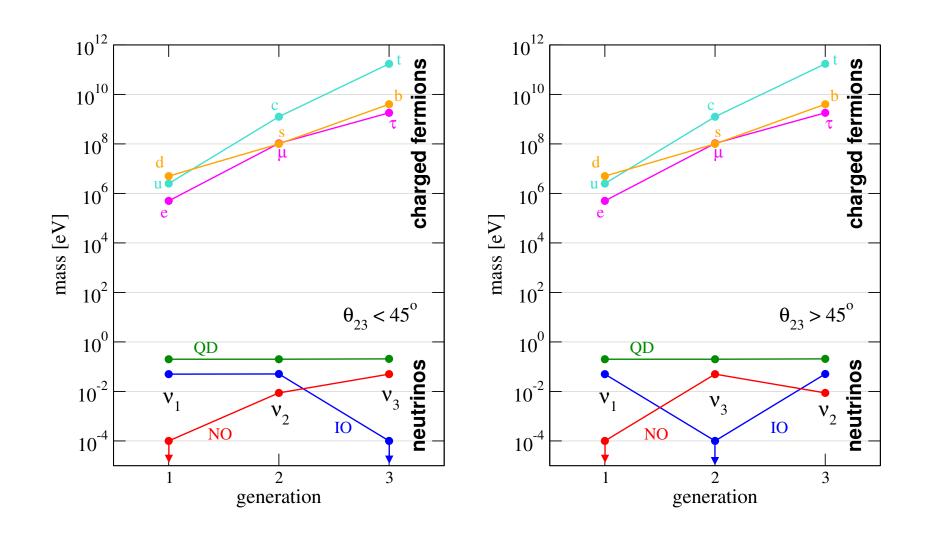


i-3 sector: θ_{i3} and Δm^{2}_{3i} (i=1,2)

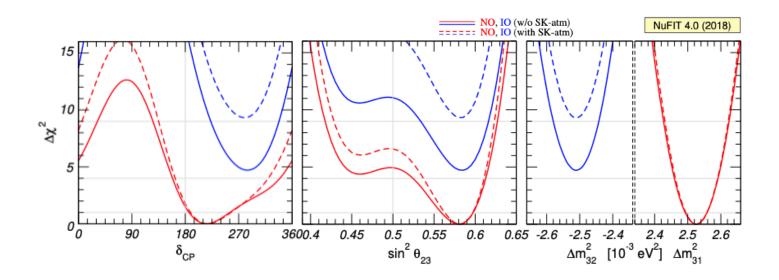



currently followed by the LBL accelerator experiments: we marginalize with respect to θ_{13} ,

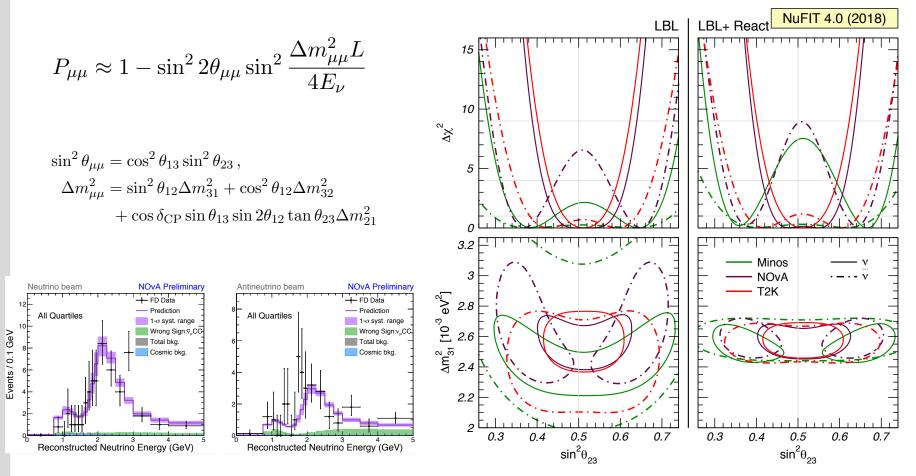
not-so-well determined parameters


CP phase, θ_{23} , mass ordering

The SM fermion mass puzzle



CP phase, θ_{23} , mass ordering



- CP conservation allowed at $\Delta \chi^2 = 1.8$, bf at $\delta = 217^{\circ}$
- preference for second octant of θ_{23} , bf at $\sin^2\theta_{23} = 0.58$ $\sin^2\theta_{23} < 0.5$ disfavoured with $\Delta \chi^2 \approx 4.4$ (6.0) without (with) SK atm
- NO preferred over IO by $\Delta \chi^2 = 4.7$ (9.3) without (with) SK atm

θ_{23} from LBL disappearance results

M. Sanchez, Neutrino 18

 2σ contours, normal ordering, prior on θ_{13} imposed

LBL $\nu_{\mu} \rightarrow \nu_{e}$ appearance data

 $N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2 (1+2oA) - C' \sin \delta_{\rm CP} (1+oA) \right]$

 $N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2 (1 - 2oA) + C' \sin \delta_{\rm CP} (1 - oA) \right]$

following Elevant, Schwetz, 15

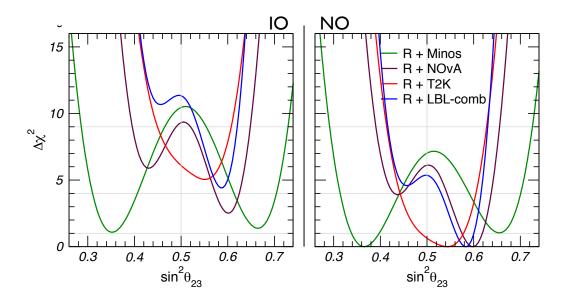
$$C' \approx 0.28$$

$$o \equiv \operatorname{sgn}(\Delta m_{3\ell}^2)$$

$$A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \operatorname{T2K} \\ 0.1 & \operatorname{NOvA} \end{cases}$$

	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$
\mathcal{N}	40	3.8	11	34	11
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8

- Both neutrino and anti-neutrino events are enhanced by increasing s_{23}^2 .
- Values of $\sin \delta_{CP} \simeq +1 (-1)$ suppress (increase) neutrino events, and have the opposite effect for anti-neutrino events.
- For NO (IO) neutrino events are enhanced (suppressed) due to the matter effect, whereas anti-neutrino events are suppressed (enhanced).
- For NO (IO) the matter effect increases (decreases) the impact of δ_{CP} for neutrinos, while the opposite happens for anti-neutrinos.

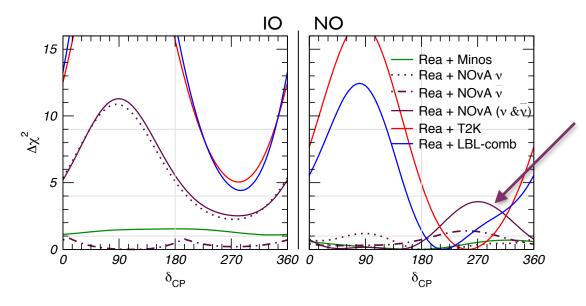

θ_{23} octant

$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\mathrm{CP}}(1+oA) \right] \qquad \qquad C' \approx 0.28$$

$$o \equiv \mathrm{sgn}(\Delta m_{3\ell}^2)$$

$$N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2(1-2oA) + C' \sin \delta_{\mathrm{CP}}(1-oA) \right] \qquad \qquad A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \mathrm{T2K} \\ 0.1 & \mathrm{NOvA} \end{cases}$$

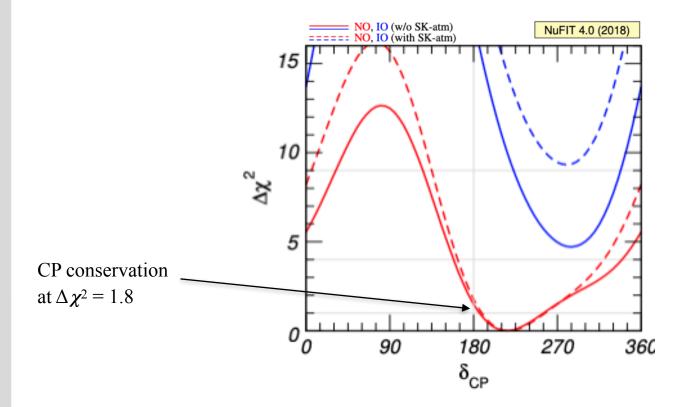
	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$
\mathcal{N}	40	3.8	11	34	11
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8


CP phase

$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\mathrm{CP}}(1+oA) \right] \qquad \qquad C' \approx 0.28$$

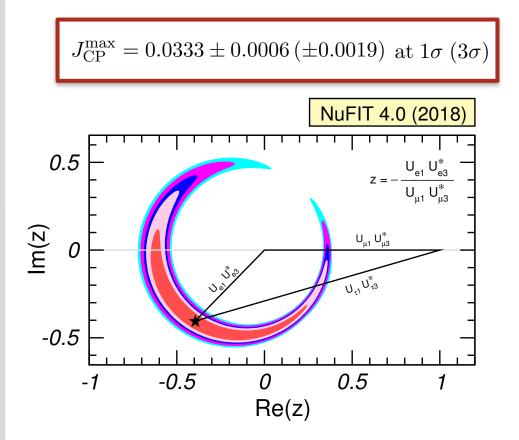
$$o \equiv \mathrm{sgn}(\Delta m_{3\ell}^2)$$

$$N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2(1-2oA) + C' \sin \delta_{\mathrm{CP}}(1-oA) \right] \qquad \qquad A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \mathrm{T2K} \\ 0.1 & \mathrm{NOvA} \end{cases}$$


	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$
\mathcal{N}	40	3.8	11	34	11
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8

NOvA: non-max θ_{23} from antineut. + matter enhancement predict too many neutrino events for $\delta \approx 270^{\circ}$

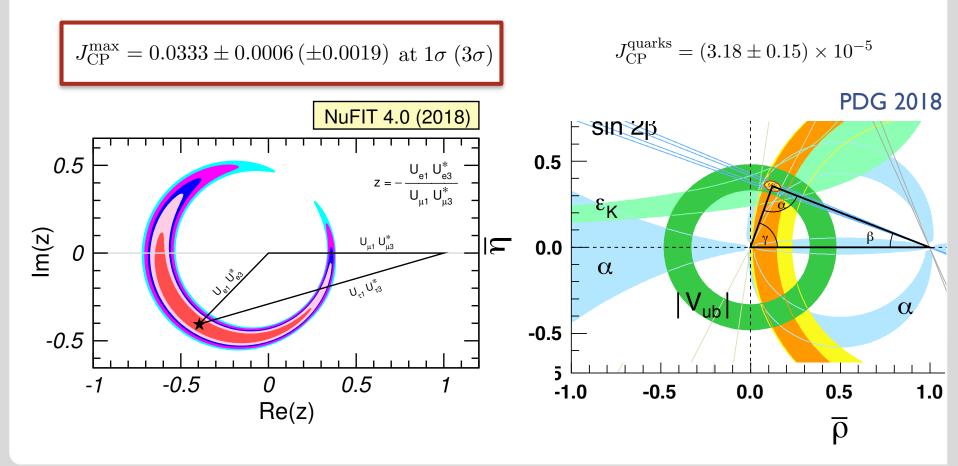
CP phase


-	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 9.3)$		
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$	

Leptonic CP violation

Jarlskog invariant:

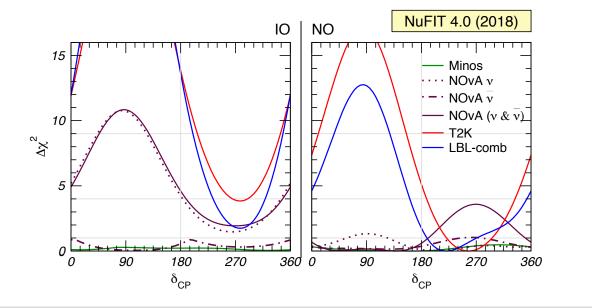
 $J = |\text{Im}(U_{\alpha 1}U_{\alpha 2}^{*}U_{\beta 1}^{*}U_{\beta 2})| = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^{2}\sin\delta \equiv J^{\max}\sin\delta$



Leptonic CP violation

Jarlskog invariant:

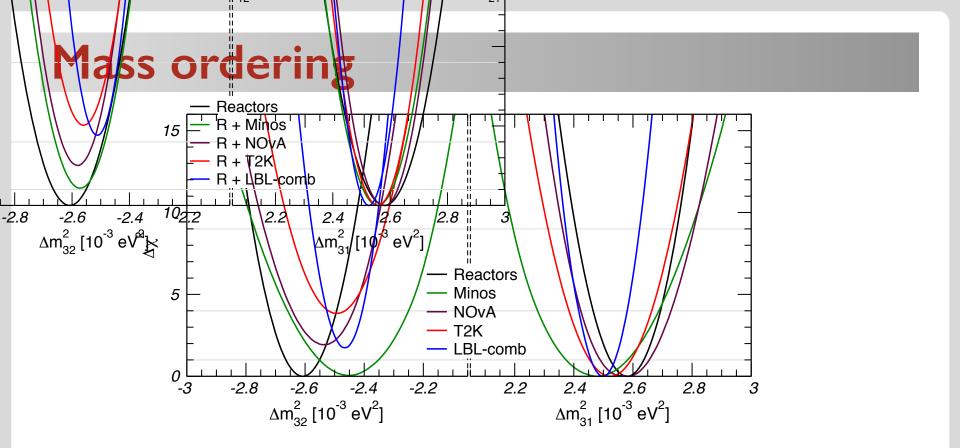
$$J = |{
m Im}(U_{lpha 1} U_{lpha 2}^* U_{eta 1}^* U_{eta 2})| \ = s_{12} c_{12} s_{23} c_{23} s_{13} c_{13}^2 \sin \delta \equiv J^{
m max} \sin \delta$$


Mass ordering

$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\mathrm{CP}}(1+oA) \right] \qquad \qquad C' \approx 0.28$$

$$o \equiv \mathrm{sgn}(\Delta m_{3\ell}^2)$$

$$N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2(1-2oA) + C' \sin \delta_{\mathrm{CP}}(1-oA) \right] \qquad \qquad A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \mathrm{T2K} \\ 0.1 & \mathrm{NOvA} \end{cases}$$


	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$
\mathcal{N}	40	3.8	11	34	11
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8

no reactor data, but θ_{13} prior added

T2K: $\Delta \chi^2(IO) \approx 4$ adding NOvA: $\Delta \chi^2(IO) \approx 2$

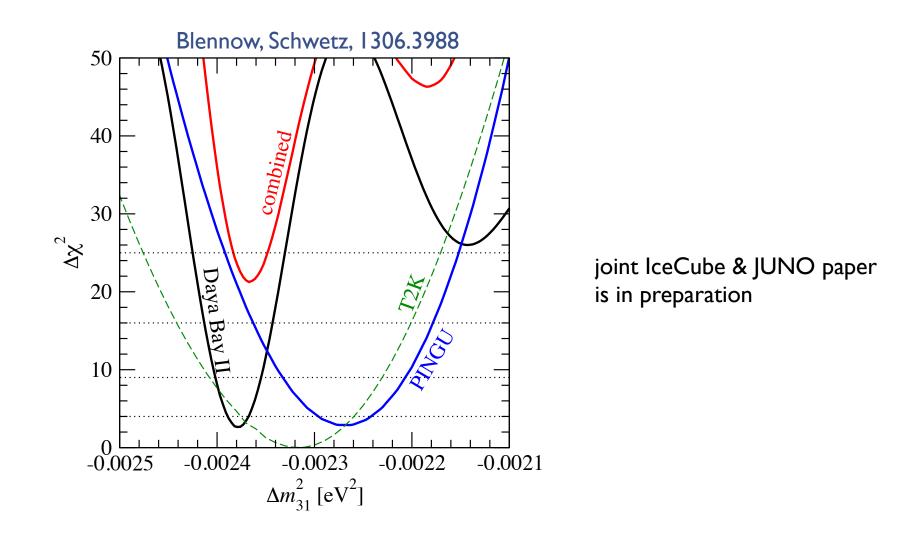
 v_e and v_{μ} disappearance depend on slightly different effective mass-squared differences

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

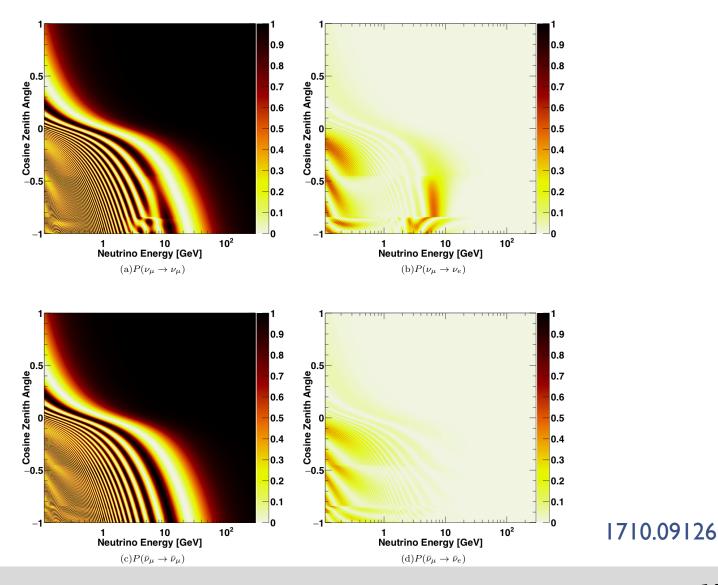
$$\Delta m_{\mu\mu}^2 = \sin^2 \theta_{12} \Delta m_{31}^2 + \cos^2 \theta_{12} \Delta m_{32}^2 + \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m_{21}^2$$

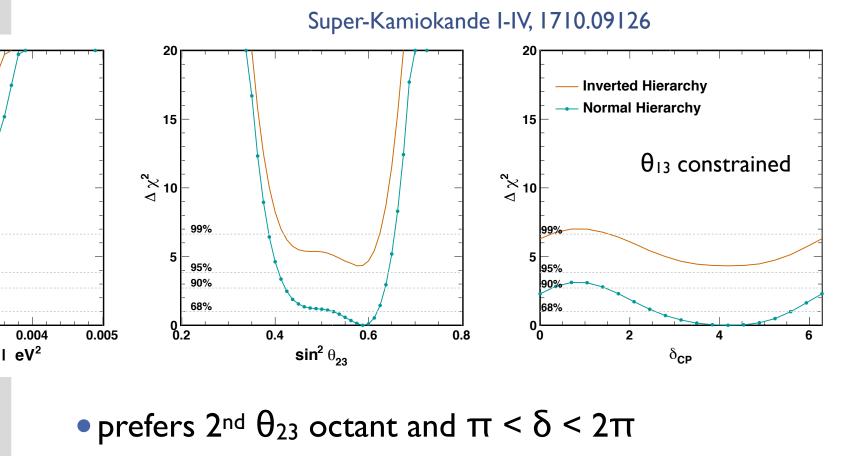
Nunokawa, Parke, Zukanovich, 05, 06

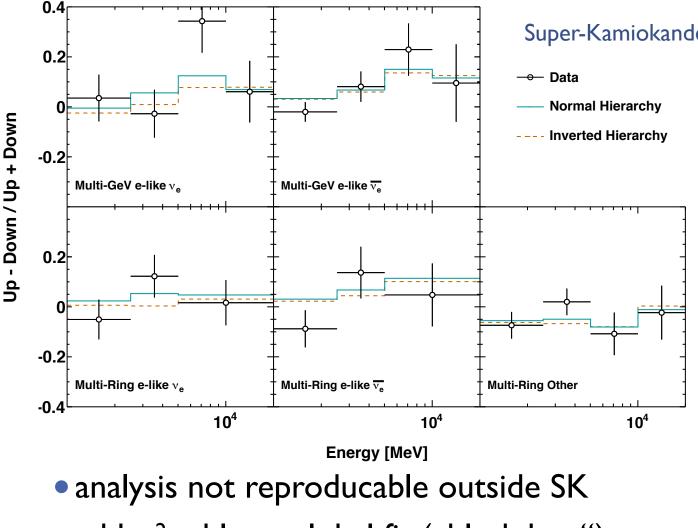
Mass ordering

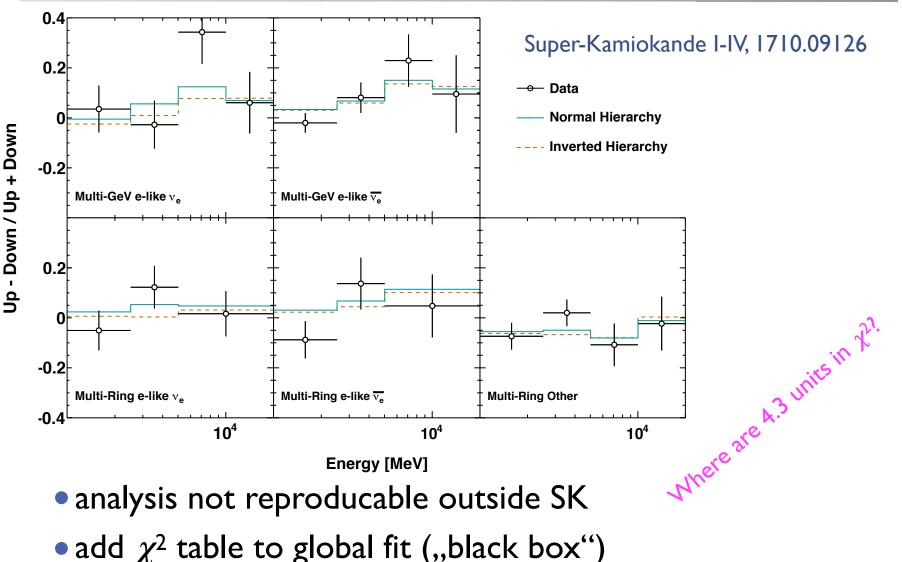

no reactor data, but θ_{13} prior added

T2K: $\Delta \chi^2(IO) \approx 4$ adding NOvA: $\Delta \chi^2(IO) \approx 2$

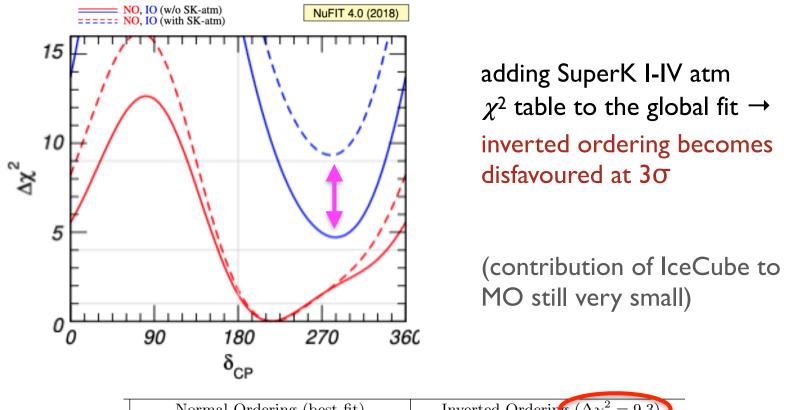

adding reactors: $\Delta \chi^2 (IO) \approx 4$


$\nu_{\rm e}$ and ν_{μ} disapp. complementarity in future



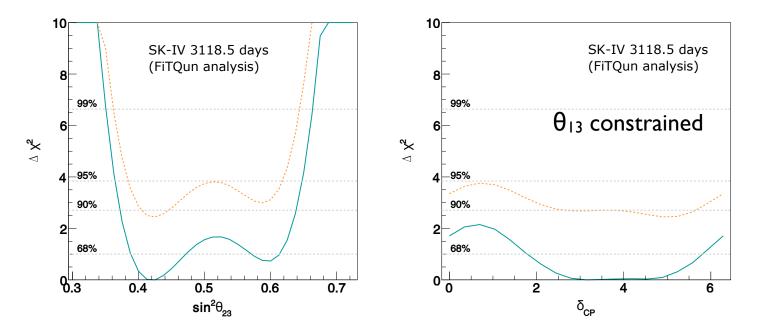

•
$$\chi^2(IO)$$
 - $\chi^2(NO)$ = 4.3

% C.L.



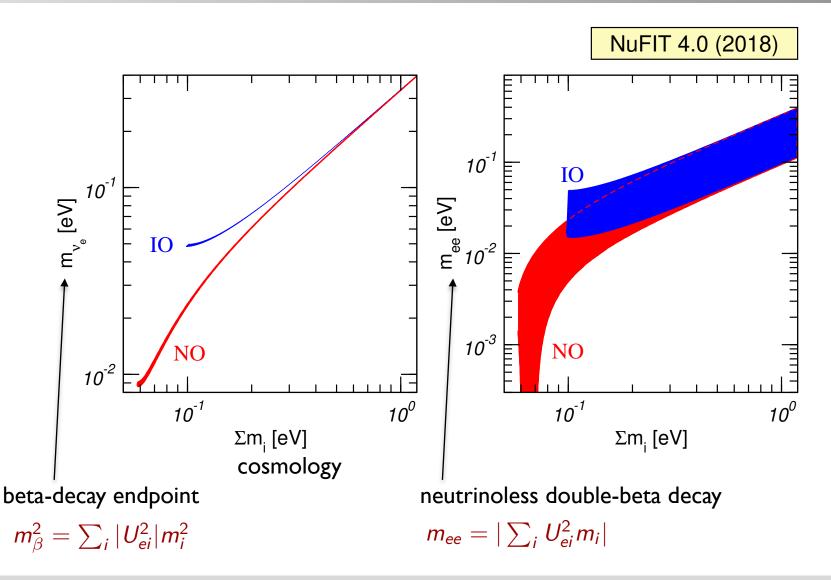
Super-Kamiokande I-IV, 1710.09126

• add χ^2 table to global fit ("black box")


Mass ordering incl. atmospherics

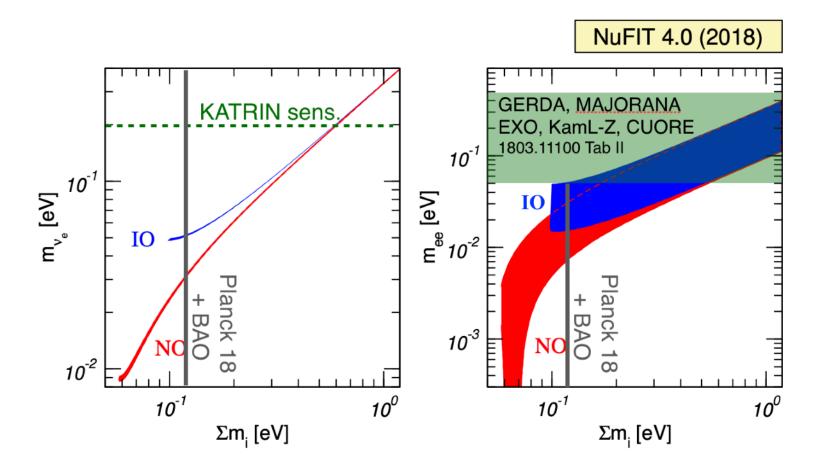
-	Normal Ordering (best fit)		Inverted Orde	ring $(\Delta \chi^2 = 9.3)$
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$

Atmospheric Neutrino Oscillation Analysis With Improved Event Reconstruction in Super-Kamiokande IV, 1901.03230

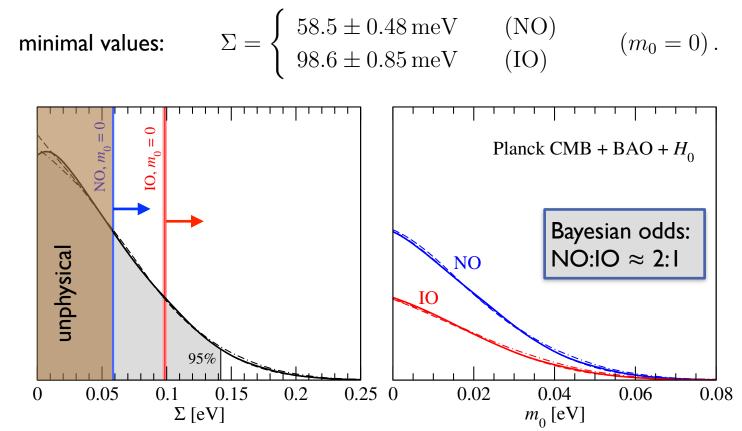

• $\chi^2_{(IO)}$ - $\chi^2_{(NO)}$ = 2.45 (compared to 4.3 from SK I-IV 2017)

 effective exposure 254 kt yr only 23% smaller (32% larger fiducial volume) (compared to 328 kt yr of SK I-IV 2017)

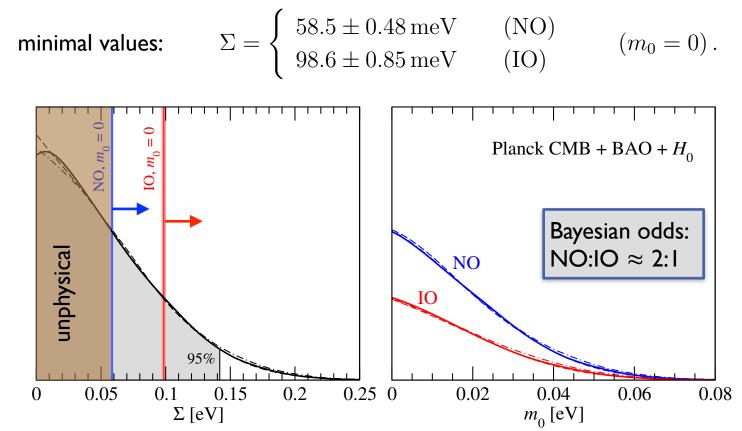
Beyond oscillations — absolute neutrino mass



Absolute neutrino mass observables


Absolute neutrino mass observables

assumes standard 3-flavour & standard cosmology & Majorana neutrinos



Hannestad, Schwetz, 1606.04691

Hannestad, Schwetz, 1606.04691



"Strong evidence" for NO claimed in Simpson et al. 1703.03425 \rightarrow be aware of Bayesian priors [TS et al. 1703.04585]

Hannestad, Schwetz, 1606.04691

minimal values:
$$\Sigma = \begin{cases} 58.5 \pm 0.48 \text{ meV} & (\text{NO}) \\ 98.6 \pm 0.85 \text{ meV} & (\text{IO}) \end{cases}$$
 $(m_0 = 0).$

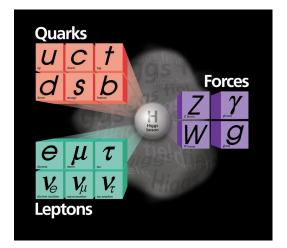
simulated future data: 2 yrs of EUCLID data, available ~2023-24

 need accuracy better than 0.02 eV to exclude 0.1 eV against 0.06 eV at 2σ

 this would imply a 3σ evidence for non-zero neutrino mass (for Sum = 0.06 eV)

How to give mass to neutrinos?

Masses in the Standard Model


The Standard Model has only one dimension full parameter: the vacuum expectation value of the Higgs:

 $\langle H \rangle \approx 174 \,\, {
m GeV}$

All masses in the Standard Model are set by this single scale:

 $m_i = y_i \langle H \rangle$

top quark: $y_t \approx 1$ electron: $y_e \approx 10^{-6}$

Neutrino masses in the Standard Model

- fermion mass terms require left- and right-handed fields
- right-handed neutrinos are complete singlets under the SM gauge group → not part of the original formulation of the SM

no Dirac mass term for neutrinos!

Neutrino masses in the Standard Model

- fermion mass terms require left- and right-handed fields
- right-handed neutrinos are complete singlets under the SM gauge group → not part of the original formulation of the SM

no Dirac mass term for neutrinos!

- for electrically neutral fermions a mass term can be built only from left-handed fields (Majorana mass term)
- cannot assign conserved quantum number → Lepton number would be violated
- BUT: in the SM Lepton number is an accidental symmetry → cannot break L at renormalizable level
- no Majorana mass term for neutrinos!

Neutrino mass requires physics beyond the SM

• which type of new physics?

• at which energy scale?

The Weinberg operator

Assume there is new physics at a high scale Λ . It will manifest itself by non-renormalizable operators suppressed by powers of Λ .

Weinberg 1979: there is only one dim-5 operator consistent with the gauge symmetry of the SM, and this operator will lead to a Majorana mass term for neutrinos after EWSB:

$$Y^2 rac{L^T \tilde{H}^* \tilde{H}^\dagger L}{\Lambda} \longrightarrow m_
u \sim Y^2 rac{\langle H
angle^2}{\Lambda}$$

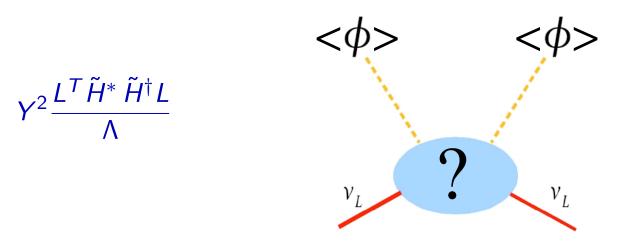
at dim-5 lepton number can be broken $(L \rightarrow e^{i\alpha}L$ forbidden by above operator)

The Weinberg operator

Assume there is new physics at a high scale Λ . It will manifest itself by non-renormalizable operators suppressed by powers of Λ .

Weinberg 1979: there is only one dim-5 operator consistent with the gauge symmetry of the SM, and this operator will lead to a Majorana mass term for neutrinos after EWSB:

$$Y^2 rac{L^T ilde{H}^* ilde{H}^\dagger L}{\Lambda} \longrightarrow m_
u \sim Y^2 rac{\langle H
angle^2}{\Lambda}$$


at dim-5 lepton number can be broken $(L \rightarrow e^{i\alpha}L$ forbidden by above operator)

Seesaw: neutrinos are light because of the presence of the large energy scale Λ

The Weinberg operator

What is the new physics responsible for neutrino mass?

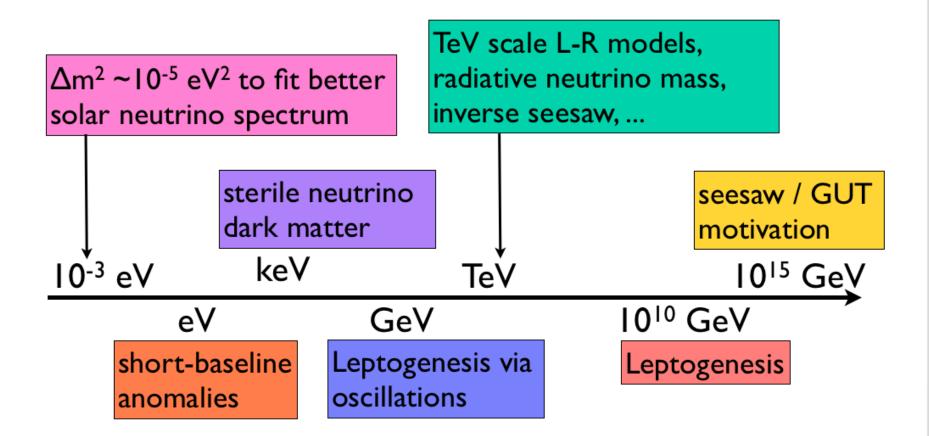
many realisations (too many?) are known:

- right-handed neutrinos
- extended Higgs sector
- realisations due to quantum effects (loop-induced neutrino mass)

▶ ...

What is the energy scale responsible for neutrino mass?

 $m_{\nu} \sim Y^2 \frac{\langle H \rangle^2}{\Lambda}$ small neutrino mass by making Λ large or Y small or both


• High scale seesaw: $Y \sim 1$ (top Yukawa) $\rightarrow \Lambda \sim 10^{14}$ GeV

- "natural" explanation of small neutrino masses
- A close to GUT scale \rightarrow SO(10) models
- Leptogenesis
- very hard to test experimentally
- ► Low scale seesaw: $Y \sim 10^{-6}$ (electron Yukawa) $\rightarrow \Lambda \sim 1$ TeV
 - Ink neutrino mass generation to TeV scale physics
 - potentially testable at colliders
 - observable signatures in searches for LFV

 $\mu \rightarrow \mathbf{e}\gamma, \tau \rightarrow \mu\gamma, \mu \rightarrow \mathbf{e}\mathbf{e}\mathbf{e}, \dots$

What is the energy scale responsible for neutrino mass?

Testing the Majorana nature

Weinberg operator breaks lepton number $(L \rightarrow e^{i\alpha}L$ forbidden)

$$Y^2 \frac{L^T \tilde{H}^* \tilde{H}^\dagger L}{\Lambda}$$

 \rightarrow predicts Majorana neutrinos!

Testing the Majorana nature

Weinberg operator breaks lepton number $(L \rightarrow e^{i\alpha}L$ forbidden)

$$Y^2 \frac{L^T \tilde{H}^* \tilde{H}^\dagger L}{\Lambda}$$

 \rightarrow predicts Majorana neutrinos!

Neutrinoless double-beta decay: $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$

- observation of this process would prove that lepton number is violated
- in a "natural theory" neutrinos will get a Majorana mass term Schechter, Valle, 1982; Takasugi, 1984
- lot's of experimental activity
 GERDA, Majorana, EXO, XMASS, KamLAND-Zen, CUORE, NEMO, SNO+, ...

What if lepton number is conserved?

neutrinos have to be Dirac particles (like all other fermions of the SM)

What if lepton number is conserved?

- neutrinos have to be Dirac particles (like all other fermions of the SM)
- need to add right-handed neutrinos N
- need tiny Yukawa couplings $y_{\nu} \lesssim 10^{-11}$ (compare: top quark: $y_t \sim 1$, electron: $y_e \sim 10^{-6}$)
- ► Majorana mass term for N is allowed by gauge symmetry there is "no reason" why lepton number is conserved there is no longer an accidental symmetry of the theory → impose "by hand"
- $m_{\text{Maj}} = 0$ is "technically natural" (stable under quantum corrections)

How to identify the neutrino mass mechanism?

- theory provides little guidance towards the physics beyond the SM responsible for neutrino mass
- hope of additional signatures:
 - lepton number violation neutrinoless double-beta decay / at LHC
 - search for ,,unexpected" neutrino properties (exotic interactions, sterile neutrinos, non-unitarity, neutrino decay,...)
 - lepton flavour violation in charged leptons

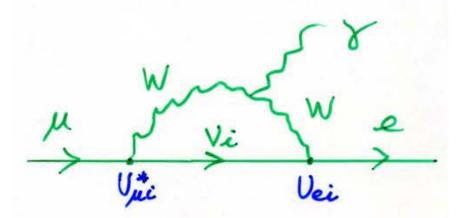
Charged lepton flavour violation

- ▶ Neutrino oscillations imply violation of lepton flavour, e.g.: $\nu_{\mu} \rightarrow \nu_{e}$
- Can we see also LFV in charged leptons?

$$\mu^{\pm} \rightarrow e^{\pm} \gamma$$

$$\tau^{\pm} \rightarrow \mu^{\pm} \gamma$$

$$\mu^{+} \rightarrow e^{+} e^{+} e^{-}$$


$$\mu^{-} + N \rightarrow e^{-} + N$$

rich experimental programme with sensitivities in the 10⁻¹³ to 10⁻¹⁸ range!

Can we see LFV in charged leptons?

Yes, BUT: $\mu^{\pm} \rightarrow e^{\pm}\gamma$ in the SM + ν mass:

$$L(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} e^{\gamma} U_{\mu i}^* \frac{3\alpha}{32\pi} \right|^2 \leq 10^{-54}$$

unobservably small (present limits: $\sim 10^{-13}$) $(\mu \rightarrow e\gamma) \leq 10^{-54}$ observation of $\mu \rightarrow e\gamma$ implies new physics beyond neutrino mass

Charged lepton flavour violation

generically:
$$Br(\mu \to e\gamma) \sim 10^{-10} \left(\frac{\text{TeV}}{\Lambda_{\text{LFV}}}\right)^4 \left(\frac{\theta_{e\mu}}{10^{-2}}\right)^2$$

 sensitive to new physics at I-1000 TeV (TeV-scale SUSY, TeV-scale neutrino mass models,...)

cLFV does not (directly) probe Majorana mass
 LFV is lepton number conserving; LNV: dim-5, LFV: dim-6

$$\mathcal{L}_{\rm LFV} = \frac{1}{\Lambda_{\rm LFV1}^2} (\overline{\mu}e)(\overline{e}e) + \frac{1}{\Lambda_{\rm LFV2}^2} (\overline{\mu}e)(\overline{q}q) + \dots$$

 cLFV probes new physics which may or may not be related to neutrino mass → extremely viable information!

Summary

- 3-flavour oscillation paradigm well established
- first hints on open issues emerging (θ₂₃, mass ordering, CPV) → main goal of upcoming oscillation programme (JUNO, IceCube-g2, ORCA, T2HK, DUNE)
- entering the era of precision / over-constraining the neutrino sector / search for unexpected neutrino properties

Summary

- 3-flavour oscillation paradigm well established
- first hints on open issues emerging (θ₂₃, mass ordering, CPV) → main goal of upcoming oscillation programme (JUNO, IceCube-g2, ORCA, T2HK, DUNE)
- entering the era of precision / over-constraining the neutrino sector / search for unexpected neutrino properties

- neutrino mass requires physics beyond the SM
- identifying the mechanism responsible for neutrino mass is challenging
- urgent need of complementary information:
 - lepton number violation (neutrinoless double-beta decay)
 - charged lepton flavour viol.
 - leptonic signals at LHC

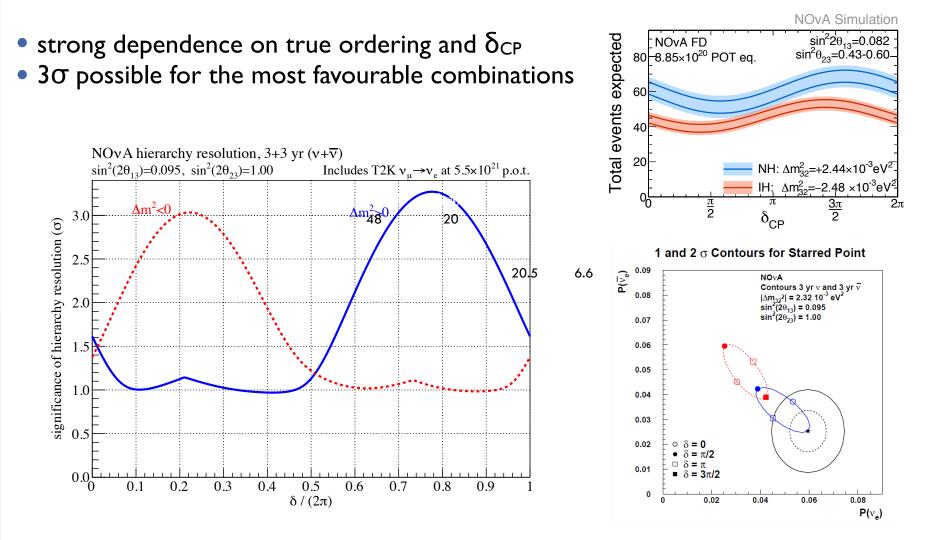
Summary

- 3-flavour oscillation paradigm well established
- first hints on open issues emerging (θ₂₃, mass ordering, CPV) → main goal of upcoming oscillation programme (JUNO, IceCube-g2, ORCA, T2HK, DUNE)
- entering the era of precision / over-constraining the neutrino sector / search for unexpected neutrino properties

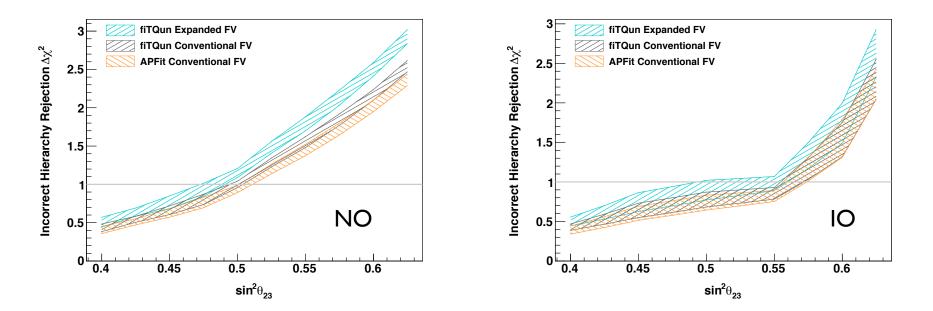
- neutrino mass requires physics beyond the SM
- identifying the mechanism responsible for neutrino mass is challenging
- urgent need of complementary information:
 - lepton number violation (neutrinoless double-beta decay)
 - charged lepton flavour viol.
 - leptonic signals at LHC

Thank you for your attention!

supplementary slides

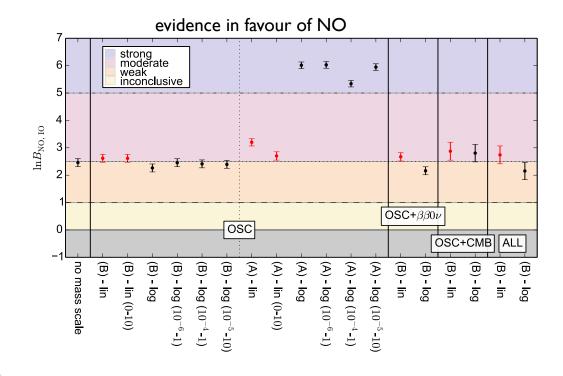

NuFit 4.0 (2018)

		Normal Ore	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 4.7$)		
		$\frac{1}{10000000000000000000000000000000000$		bfp $\pm 1\sigma$	$\frac{1}{3\sigma \text{ range}}$	
	$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	
	$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	
	$\sin^2 heta_{23}$	$0.580^{+0.017}_{-0.021}$	$0.418 \rightarrow 0.627$	$0.584^{+0.016}_{-0.020}$	$0.423 \rightarrow 0.629$	
	$ heta_{23}/^{\circ}$	$49.6^{+1.0}_{-1.2}$	$40.3 \rightarrow 52.4$	$49.8^{+1.0}_{-1.1}$	$40.6 \rightarrow 52.5$	
	$\sin^2 heta_{13}$	$0.02241^{+0.00065}_{-0.00065}$	$0.02045 \rightarrow 0.02439$	$0.02264\substack{+0.00066\\-0.00066}$	$0.02068 \rightarrow 0.02463$	
-atm	$\theta_{13}/^{\circ}$	$8.61\substack{+0.13 \\ -0.13}$	$8.22 \rightarrow 8.99$	$8.65\substack{+0.13 \\ -0.13}$	$8.27 \rightarrow 9.03$	
t SK	$\delta_{ m CP}/^{\circ}$	215_{-29}^{+40}	$125 \rightarrow 392$	284^{+27}_{-29}	$196 \rightarrow 360$	
without SK-atm	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	6.79 ightarrow 8.01	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.032}$	$+2.427 \rightarrow +2.625$	$-2.512\substack{+0.034\\-0.032}$	$-2.611 \rightarrow -2.412$	
		Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 9.3)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	
	$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82_{-0.75}^{+0.78}$	$31.62 \rightarrow 36.27$	
	$\sin^2 heta_{23}$	$0.582^{+0.015}_{-0.019}$	$0.428 \rightarrow 0.624$	$0.582\substack{+0.015\\-0.018}$	$0.433 \rightarrow 0.623$	
	$ heta_{23}/^{\circ}$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	$49.7_{-1.0}^{+0.9}$	$41.2 \rightarrow 52.1$	
с	$\sin^2 heta_{13}$	$0.02240\substack{+0.00065\\-0.00066}$	$0.02044 \rightarrow 0.02437$	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \to 0.02461$	
with SK-atm	$\theta_{13}/^{\circ}$	$8.61_{-0.13}^{+0.12}$	$8.22 \rightarrow 8.98$	$8.65_{-0.13}^{+0.12}$	$8.27 \rightarrow 9.03$	
	$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512\substack{+0.034\\-0.031}$	$-2.606 \rightarrow -2.413$	


MO sensitivity of existing experiments

http://www-nova.fnal.gov/plots_and_figures/plots_and_figures.html

Atmospheric Neutrino Oscillation Analysis With Improved Event Reconstruction in Super-Kamiokande IV, 1901.03230



θ_{13} constrained — expected sensitivity

Model A			Model B		
Parameter	Prior	Range	Parameter	Prior	Range
m_1/eV	linear	0 - 1	$m_{ m lightest}/{ m eV}$	linear	0 - 1
	log	$10^{-5} - 1$		log	$10^{-5} - 1$
m_2/eV	linear	0 - 1	$\Delta m^2_{21}/{ m eV^2}$	linear	$5 imes 10^{-5} - 10^{-4}$
	log	$10^{-5} - 1$			5×10 10
$m_3/{ m eV}$	linear	0 - 1	$ \Delta m^2_{31} /{ m eV^2}$	linear	$1.5 imes 10^{-3} - 3.5 imes 10^{-3}$
	log	$10^{-5} - 1$			1.0 \ 10 0.0 \ 10

Archidiacono, de Salas, Gariazzo, Mena, Ternes, Tortola, 1801.04946

 assuming a log prior in the 3 masses prefers strongly NO (just from oscillation data!)

