

IKTP Institute seminar

From the interior of stars and tunnels Nuclear astrophysics in a nutshell

Steffen Turkat 07.01.2021

In preparation for this talk: Please visit Slido.com (mobile phone) and enter with #1444 \rightarrow Leave it like that, the rest will appear automatically

Nuclear astrophysics

 \rightarrow The origin of the elements

The new underground facility at Felsenkeller

 \rightarrow How to study the universe from underground

Recent achievements and outlook

 \rightarrow Experimental campaign on ³He(α,γ)⁷Be

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Chemical evolution of the universe

How, when & in which amounts were all the elements in our universe formed?

https://sciencenotes.org/periodic-table-2017-edition-black-white/

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Elemental abundance of our earth

What are the four most abundant elements of our earth? → Please visit Slido.com & enter #1444 → Leave it like that, the rest will appear automatically

 \equiv Active poll

Join at slido.com #1444

What are the four most abundant elements on our earth?	000
• H	
• He	
• C	
• N	
• 0	
• Na	
• Mg	
• Al	
• Si	
• K	
• Ca	

Elemental abundance of our earth

The composition of the universe

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

The birthplaces of the elements

Credit: NASA

Credit: NASA / GSFC

Credit: ESO/M.Kornmesser (https://www.eso.org/public/germany/images/eso1229a/)

Credit: ESA (https://www.cosmos.esa.int/documents/332075/979553//788px-Cassiopeia_A_Spitzer_Crop.jpg)

Credit: ESO (https://www.eso.org/public/images/eso1733q/)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

The Big Bang Nucleosynthesis

- Chromodynamic binding energy p/n: ~1 GeV
- ²H bottle neck: Literally the whole universe had to wait for ²H
- Spoiler: Upcoming paper on ${}^{2}H(p,\gamma) {}^{3}He$ in Phys. Rev. C (*Turkat et al.*)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

The Big Bang Nucleosynthesis

- Chromodynamic binding energy p/n: ~1 GeV
- ²H bottle neck: Literally the whole universe had to wait for ²H
- > **Spoiler:** Upcoming paper on ${}^{2}H(p,\gamma){}^{3}He$ in Phys. Rev. C (*Turkat et al.*)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

The origin of the elements

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Elemental abundance of the solar photosphere

Data from: M. Asplund et al. Annual Reviews of Astronomy and Astropysics, Vol. 47, 481 (2009)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Elemental abundance of the solar photosphere

Data from: M. Asplund et al. Annual Reviews of Astronomy and Astropysics, Vol. 47, 481 (2009)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Isobaric abundance of the solar system

Data from: E. Anders & N. Grevesse, Geochimica et Cosmochimica Acta, Vol. 53, 197 (1989)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

During the last 13.6Gyr...

https://particleadventure.org/images/history-of-the-universe-2015.jpg

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021 Slido.com #1444

Recreating nucleosynthesis environments

- \rightarrow Large scale simulation ~ \mathcal{O} (Mpc)
- \rightarrow Simulation of galaxy supercluster

→ "Small" scale simulation $\sim \mathcal{O}(kpc)$ → Simulation of a single galaxy

https://en.wikipedia.org/wiki/Osmium

→ Osmium → density: ~ 22 g/cm³ → densest material on earth

Credit: The TNG Project (https://www.tng-project.org/media/)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Join at slido.com #1444 How much more dense does the center of a protostar need to get in order to $\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}$ finally start nucleosynthesis?

- 5 times more than Os
- 300 times more than Os
- 8000 times more than Os

Protostar formation + stellar nucleosynthesis

https://en.wikipedia.org/wiki/Nuclear_binding_energy

https://www.astro.ex.ac.uk/people/mbate/ Animations/Beta0_01_RT_1M_DensSplash.mov

Courtesy: Matthew Bate (University of Exeter)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Stellar nucleosynthesis

https://www.astro.keele.ac.uk/~hirschi/animation/anim.html

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Stellar nucleosynthesis

https://www.astro.keele.ac.uk/~hirschi/animation/anim.html

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Nuclear astrophysics in summary

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Explosive nucleosynthesis

https://en.wikipedia.org/wiki/Type_II_supernova#

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Explosive nucleosynthesis

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Nuclear astrophysics during stellar evolution

Credit: ESO/M.Kornmesser (https://www. eso.org/public/germany/images/eso1229a/)

Credit: NASA (https://www.accessscience.com/media/EST/media/654000FG0010.jpg)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

IKTP Institute seminar

From the interior of stars and tunnels

Nuclear astrophysics in a nutshell

Steffen Turkat 07.01.2021

In preparation for this talk:

Please visit Slido.com (mobile phone) and enter with #1444

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Slido.com #1444

From the interior of stars to the interior of tunnels

Credit: Blake Stacey, based on SOHO (ESA, NASA)

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Credit: TU Dres The new Felsenkeller laboratory **Scientific leader Technical leader** D. Bemmerer K. Zuber Google Earth

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

The benefit of going underground

- Protection from cosmic muons (reduce background)
- Investigate rare processes in nuclear astrophysics
 - Measure close to Gamow window

F. Ludwig et al. Astroparticle Physics 112 (2019) 24-34

Adapted from: T. Szücs et al. European Physics Journal A 55, 174

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

The new Felsenkeller underground laboratory

\rightarrow External ion source

- \rightarrow Carbon beam (¹²C⁻) in tandem mode
- \rightarrow 5MV Pelletron accelerator
 - \rightarrow Carbon beam in tandem mode
- \rightarrow Interal ion source
 - \rightarrow H & He beam in single end mode
- \rightarrow Current experimental setup
 - \rightarrow ³He(α,γ)⁷Be campaign

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

TECHNISCHE UNIVERSITÄT DRESDEN

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

Timeline of the last three years

28.06.2017: Topping out ceremony

03.07.2019: First light at FK (external ion source)

09.11.2020: Stable beam (internal ion source)

26.11.2020: Beam quality improvements

13.08.2018: Last beam line component underground

04.07.2019: Inauguration

16.11.2020: First ³He(α,γ)⁷Be reaction

From the interior of stars and tunnels IKTP Institute seminar / Steffen Turkat Dresden // 07.01.2021

