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• Application of machine learning in imaging for solving inverse problems and reconstruction 
tasks.

• PhD (12/2016) in Machine Learning (Neuroimaging and Modelling)

• PostDoc @ TUD & Harvard (Lab. of Mathematics in Imaging)

• >20 ML-related publications (MICCAI, ICLR, IEEE, SPIE, …)



IS ELECTRO-MAGNETIC PLASMA PHYSICS IMPORTANT? 

Active Galactic Nuclea, Dusty Plasmas 

Solar Physics

Earth’s Ionosphere and Magnetosphere, Space 
Weather, Aurora Borealis

Electric Discharges: Lightning

Electric Discharges: Compact Fluorescent
Lamps

Plasma Displays 

Controlled Nuclear Fusion 
Laser Particle Acceleration



EUROPEAN SYNCHROTRON RADIATION FACILITY, GRENOBLE, 
FRANCE
One of our X-ray and Neutron “light” sources..

Recent upgrade: 177M €

supported by 22 countries (13 member countries: France, Germany, Italy, UK, Spain, 
Switzerland, Belgium, The Netherlands, Denmark, Finland, Norway, Sweden, 
Russia and 9 associate countries: Austria, Portugal, Israel, Poland, Czech 
Republic, Hungary, Slovakia, India and South Africa)



Advanced comprehension of Laser-Plasma Accelerators

Source: H
ZD

R
.de

Source: Jan Vorberger

Modern cancer therapy matter under extreme condition

ML-driven fast feedback systems for non-equilibrium processes requires

§ Theory-guided Neural Networks that integrates all knowledge about the system => DT

§ full knowledge of the beamline including potential perturbations 
(e.g. non-planar wavefronts, point spread function) => DT

§ reliable ML techniques (uncertainty quantification, outlier detection)

§ resolving ambiguity by joint reconstruction of orthogonal slices through the object 



GI-SAXS

beam diagnostics, 
Phase Contrast

Imaging, ...

SAXS

System description Reduced Order 
Model, Surrogate 

Model

Reconstruction of non-linear & non-equilibrium processes ... 
1) Differentiable Simulations 2) Multi-modal Data

.. requires comprehensive Digital Twins. 

e.g. 
Laser Ion acceleration

Σ

(Willmann et al.), (Bethke et al.) @ 
Simulation with Deep Learning at ICLR’21



Building blocks of a Digital Twin

Surrogate Models

Reduced Order Models

Am
ou

nt
of

da
ta

System parameters Diagnostics

Invertible Neural Networks

time evolution

Data-driven methods

Full simulation runs

Neural Solver

theoretical model time evolution



(Invertible) Surrogate Model

System parameter

beam diagnostics

Task
● Finding best system parameter (laser energy or stability)
● requires multiple simulation runs
● computationally expensive

Idea
● Surrogate model learns relationship from parameters to diagnostics
● fast inference (ms range) enables fast parameter scans
● Invertible surrogates models solve ambiguous inverse problem
● uncertainty quantification

Disadvantages
● needs high amount of data
● Black box model



Ambiguous inverse problems

For many applications, especially complex systems, the forward process loses information 
rendering the inverse process ill-posed. That means the inverse process is uncertain, i.e. 
multiple variables x can result in the same measurement y. 

Figure: The intrinsic dimension of observation y is typically lower than independent variables 
x resulting in an ambigous inverse problem. 



Normalizing flows

Figure: Mapping from normal distribution π(Z) to target distribution π(Y ) via 
unconditioned normalizing flow. Image source: [Kobyzev et al., 2019] 



Invertible Neural Networks

Iff. latent space 𝑧 ∈ 𝑅$	captures the information not contained in measurement 𝑦 ∈ 𝑅', then 
the former non-bijective mappings becomes bijective via 𝑰𝑵𝑵 𝒚, 𝒛 = 	 𝒙 :

Figure: Abstract comparison of standard approach (left) and INN (right)

(see 
Peter’s 
talk)
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Laser-Plasma acceleration
Surrogate Models

Invertible Surrogate Models jointly approximate simulation and reconstruction. 
Implemented by ML4IP framework of Helmholtz AI@HZDR. Beta testers are welcome!

Benefits

Recover ambiguous 
mapping

Uncertainty quantification

Fast parameter 
scans!

Way faster than 
Bayesian computation.
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Projection Based Reduced Order Model

Task
● Simulations need high performance tailored code
● Runs on large HPC systems
● Create high amount of data
● Not every scientist or laboratory has high computational resources

Solution & Benefits
● learns an mapping in a reduced domain
● Forward simulation is performed in reduced domain
● Generalization to other simulation parameter
● High memory compression & speed up
● Runs on a laptop → democratization

Disadvantages
● Simulation resolution depends on training data
● Quality loss through reduction

Simulation data at time: 0

z
t=0

z
t=1

z
t=2

Time stepping



Shadowgraphy Reduced Order Model

Encoder Compressed 
Representation Decoder

Time evolution in reduced order representation (800 x faster)

Timestep NNCompressed
Representation Timestep NN Decoder

Learning Reduced Order Representation (data reduction by x 7000) Willmann et al. (2021)



Plasma Wave Imaging

16

Physical model: propagation of 3D electrical field given by Maxwell’s 
equations through a cell with a sphere(defined by radius and refractive 
index) in the middle of it

Aim: to reconstruct approximation of the field propagation such that 
radius and refractive index of the sphere are varying between the 
known values

Idea: a reduced order model 
•size of the original domain is reduced – input arrays are projected to 
the smaller space
•approximation of solution is calculated in the smaller space



Plasma Wave Imaging

17

encode

decode
decode

Scheme of the model



Plasma Wave Imaging
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encode

decode
decode

Scheme of the model



Plasma Wave Imaging
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Examples of reconstruction

ground-truth

reconstructed



Plasma Wave Imaging

20

Examples of reconstruction

reconstructed

ground-truth



ROM for 3D Wave Equation
Extrapolation

Radius of Sphere Refractive Index
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Laser-Plasma acceleration

Recover time evolution of phase space/field data by Physics-informed Neural Networks promise
§ exascale speed-up, guidance by governing equations
§ Helmholtz AI framework NeuralSolvers for 2d/3d Wave-✅, Heat-✅ & Maxwell’s equation 

(soon). 

Approximate Simulations

(source: Adler et al., 
2020)



Toy problem 1: High-energy laser beams

• Laser-beam propagates through vacuum

• 3D Helmholtz equation:

𝛻0 − 𝑐34
𝛿0

𝛿𝑡0
𝐸 = 0	

boundary conditions:
𝐸 𝑥:, 𝑦:, 𝑧:, 𝑡 = 𝐸 −𝑥:, −𝑦:, −𝑧:, 𝑡

Not being discussed 
today J



Toy problem 2: Quantum harmonic oscillator (QHO)

• elemental properties of condensed matter can be described by QHO

• time-evolution of 2D Schrödinger equation

𝑖𝜓= −
1
2
(−𝛻0+𝑉)𝜓 = 0

𝑉(𝑥, 𝑦) 	= 	𝑥0 	+ 	𝑦0

boundary conditions:
𝜓 𝑥, 𝑦, 0 = stationary solution
𝜓(𝑥:, 𝑦:, 𝑡) = 0
∫ 𝜓 … , 𝑡 = 1



Example: Neural Solver for 2D QHO

• 2D Schrödinger equation

𝑖𝜓= −
1
2
(−𝛻0+𝑉)𝜓 = 0

𝑉(𝑥, 𝑦) 	= 	𝑥0 	+ 	𝑦0

• NN approximates solution of our PDE: 𝐧𝐧 𝐱, 𝐲, 𝐭 ≈ 𝛙	(𝐱, 𝐲, 𝐭)
§ Multi-Layer Perceptron
§ tanh, some layers, …

§ PDE solving translated into optimisation problem and
parameters of neural network optimized accordingly



Neural solvers

• Training of our NN yields solution of our PDE: 𝐧𝐧(𝐱, 𝐲, 𝐭) = 𝛙	(𝐱, 𝐲, 𝐭)
§ Multi-Layer Perceptron
§ ReLU, some layers, …

• loss 𝐿	 = 	𝛼𝐿N 	+	𝐿: + 𝐿O

§ 𝐿N => initial state t=0: 𝐿N = ∑	 𝑛𝑛 … , 𝑡N 	− 𝜓 … , 𝑡N 0
0

§ 𝐿: => boundary conditions: 𝐿: = 1 −	∬ |𝜓|	𝑑𝑥	𝑑𝑦U,V	∈	W:

0

§ 𝐿O => pde loss 𝐿O = 	…



PDE loss

• temporal evolution of 2D QHO: 

𝑖𝜓= =
4
0
(−𝛻0+𝑉)𝜓 -> 𝑖𝜓= −

4
0
(−𝛻0+𝑉)𝜓 = 0

• setting temporal evolution to zero yields PDE loss 𝐿O	:

LY = 	∑ 𝑓[ 𝑥, 𝑦, 𝑡 0 + 𝑓\ 𝑥, 𝑦, 𝑡 0�
(U,V,=)

𝑓𝑢	 𝑥, 𝑦, 𝑡 = 	 _[
_=
+ 4

0
_`\
_U`

+ 4
0
_`\
_V`

− 4
0
𝑥0𝑢 −	4

0
𝑦0𝑢

u = re 𝜓 , 𝑣 = 𝑖𝑚 𝜓 , 𝑓𝑣 = 		 𝑠𝑖𝑚𝑖𝑙𝑎𝑟

• network predicts 𝜓, partial derivatives computed via automatic differentiation

𝜓= = 	
_jj(U,V,=)

_=
psi = net.forward(x,y,t)
psi_t = 
torch.autograd.grad(psi,t)



Sketch of the approach

• points (x, y, t=0) sampled for 
interpolation of initial state 𝜓N (𝐿N)

• PDE loss 𝐿O evaluated at randomly 
sampled co-location points

• boundary conditions enforced at 
corresponding points: 𝜓(𝑥 = 0, 𝑦, 𝑡) or             
𝜓(𝑥, 𝑦 = 0, 𝑡) => 𝐿:

Compute 𝑥 ∈ 𝑙𝑥, , 𝑢U
Domain 𝑦 ∈ [𝑙V, 𝑢V]

t		𝜖	[𝑙=, u=]

Loss  𝐿	 = 	𝛼𝐿N 	+	𝐿: + 𝐿O

𝑳𝒃

(x,y=0,t)

(x1=0,x2, x3)
(x1,x2,x3=0)

𝑳𝟎

(x,y,t)

𝑳𝒇
x

y

t

lx3ux1

lx2

ux2

lx1

ux3



Comparison of PINN vs Spectral Methods for solving 2D parabolic PDE



Bottleneck of Physics-informed neural networks

• Accuracy of the model highly depends on	the capacity (number of parameters)	

à Increasing capacity =	computiational blow-up

• Large	models make Autodifferentionmemory and time	intensive	
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Realized	by	matrix	multiplication	 We need models with high	capacity but	with
less computational blow up



Automatic Differentiation

• Computing derivatives:
• Finite differences, symbolic computation
• Automatic differentation yields exact gradients 

efficiently

• Complex numeric computations can be 
decomposed into elementary operations 
(+,-,*,/,exp, log, sin, cos, etc.)

• These derivatives are already known. Computational graph of
f(x,y) = cos(x)*sin(y) + x/y



Automatic Differentiation

• Forward as well as backward operation of each node easy to implement

class ReLU(torch.autograd.Function): 

def forward(ctx, input): 
ctx.save_for_backward(inp
ut) 
return input.clamp(min=0) 

def backward(ctx, grad_output): 
# Compute gradient wrt. 
input
input, = ctx.saved_tensors
grad_input =
grad_output.clone() 
grad_input[input < 0] = 0 
return grad_input



Conditional	Computing

“Conditional Computation refers to a	class of algorithms in	which each input sample	uses a	
different	part of the model,	such	that on	average the compute,	latency or power	(depending
on	our objective)	is reduced.	”	Bengio et.	al	[10]

• Conditional Condition in	terms of PINNs	leads to domain decomposition
• Domain	decomposition is commonly used tool to accelerate simulations
• Mixture of expert	is a	popular conditional computation approach

GatedPINN =	Mixture-of-Expert	+	Physics-informed neural network



GatedPINN

• Meng	et.	al	[2]	showed that domain decomposition increasing the quality of PINNS	
• Mixture of Experts Models	provides an	adaptive	domain decomposition through their

gating mechanism
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Domain	Decomposition



• In	order to handle	large	amount of
datapoints a	parallelization is necessary

• Data-parallelism framework Horovod is
used

• Speedup scales and power	draw scales
with the number of used GPUs

à Horovod is an	excellent choice for the
distributed training of physics-informed neural
networks

Scalability



• Extending the PINN	input by the frequency of the
quantum harmonic oscillator

• Reduced runtime of parameter scans
• Spectral Solver:	40	Minutes /32	frequencies
• Paramaterized PINN:	6	Minutes /	32	frequencies
• 6x	Speedup
• Jumping to later time	points are possible with PINN
• Avoid restarts of the solver

• Reduced memory footprint
• Spectral Solver:	20	gb for 32	frequencies
• PINN:	48	mb for complete domain +	interpolation

Interpolation	in	Solution	Space

https://github.com/ComputationalRadiationPhysics/NeuralSolvers



GI-SAXS

beam diagnostics, 
Phase Contrast

Imaging, ...

SAXS

System description Reduced Order 
Model, Surrogate 

Model

Reconstruction of non-linear & non-equilibrium processes ... 
1) Differentiable Simulations 2) Multi-modal Data

.. requires comprehensive Digital Twins. 

e.g. 
Laser Ion acceleration
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Simulation with Deep Learning at ICLR’21



Thanks for your attention!
and thanks to my Machine Learning team at HZDR! J

HIRING: 
PostDoc:
Inverse 
Imaging 
Problems

n.hoffmann@hzdr.de


