

New physics explanations of a_{μ} in light of the FNAL muon g – 2 measurement

Peter AthronCsaba BalazsDouglas HJ JacobWojciech KotlarskiHyejung Stöckinger-Kim

Date: 15th July 2021 arXiv:2104.03691

Outline

New physics explanations of a_{μ} in light of the FNAL muon g-2 experiment

Muon g-2

- Theoretical Prediction
- Fermilab Experiment
- 2021 Muon g-2 Discrepancy
- Phenomenological Description
- Contributions to Muon g-2

BSM Models and Results

- 1 Field Models (Leptoquarks)
- 2 Field Models with Dark Matter
- 3 Field Models with Dark Matter
- Future Developments
- Conclusions

Theoretical Prediction

Latest Theoretical Prediction

Muon g-2 Theory Initiative (arXiv:2006.04822)

Goal: Produce a single definitive standard model (SM) prediction for the value for the anomalous magnetic moment of the muon to rule them all.

Before publication, many different predictions for Hadronic contributions.

The current standard model (SM) prediction for the muon g-2 is:

$$a_{\mu}^{SM} = 116591810(1)_{EW}(40)_{HVP}(18)_{Hlbl} \times 10^{-11}$$

Fermilab Experiment

The Road to the Results

Muon G-2

- 2006: Brookhaven Final Results Released
- 2013: Big Move
- 2018: Run-1 Begins
- 2019: Run-2 Begins
- 2020: Muon g-2 Theory Initiative Releases White paper on SM prediction
- 2021: Results & Analysis of Run-1 Released

Muon g-2 Discrepancy

Latest Experiment Values

SM Prediction

$$a_{\mu}^{SM} = 116591810(1)_{EW}(40)_{HVP}(18)_{Hlbl} \times 10^{-11}$$

Brookhaven Value

Deviation:

$$a_{\mu}^{BNL} = 116592089(54)_{stat}(33)_{sys} \times 10^{-11}$$
 $\Delta a_{\mu}^{BNL} = 279 \pm 76 \times 10^{-11}$ 3.7σ

Fermilab Value

$$a_{\mu}^{FNAL} = 116592040(54)_{exp} \times 10^{-11}$$
 $\Delta a_{\mu}^{FNAL} = 230 \pm 69 \times 10^{-11}$ 3.3σ

New World Average

$$a_{\mu}^{2021} = 116592061(41)_{exp} \times 10^{-11}$$
 $\Delta a_{\mu}^{2021} = 251 \pm 59 \times 10^{-11}$ $4.2\sigma!$

Quantum Mechanics

Quantum Mechanics

DRESDEN

Magnetic Moment: $\vec{M} = g \frac{q}{2 m} \vec{L}$

DRESDEN

Quantum Field Theory

Quantum Mechanics

Magnetic Moment:

Quantum Field Theory

μ

μ

V

μ

 $\vec{M} = g \frac{q}{2m} \vec{L}$

Quantum Mechanics

Magnetic Moment:

Quantum Field Theory

Anomalous Magnetic Moment: a = (g - 2)/2

Standard Model Contributions to Muon g-2

Standard Model Contributions to Muon g-2

Quantum Electrodynamics Contributions

Electroweak Contributions

Hadronic Contributions

Standard Model Contributions to Muon g-2

Quantum Electrodynamics Contributions

 $a_{\mu}^{QED} \times 10^{11} = 116\ 584\ 718.931(104)$

Electroweak Contributions

Hadronic Contributions

Standard Model Contributions to Muon g-2

Quantum Electrodynamics Contributions

 $a_{\mu}^{QED} \times 10^{11} = 116\ 584\ 718.931(104)$

Electroweak Contributions

 $a_{\mu}^{EW} \times 10^{11} = 153.6(1.0)$

Hadronic Contributions

Standard Model Contributions to Muon g-2

Quantum Electrodynamics Contributions

 $a_{\mu}^{QED} \times 10^{11} = 116\ 584\ 718.931(104)$

Electroweak Contributions

 $a_{\mu}^{EW} \times 10^{11} = 153.6(1.0)$

Hadronic Contributions

 $a_{\mu}^{HVP} \times 10^{11} = 6845(40)$ $a_{\mu}^{Hlbl} \times 10^{11} = 92(18)$

BSM Models

Simple and SUSY Explanations of Muon g-2

Single Field Extensions

- New Scalars
 - Scalar Leptoquarks
- New Fermions
- New Vectors

Two Field Extensions

- Fermion paired with Scalar
- Fermion paired with Vector
- Mixed Vector-like Fermion Pair
- **Three Field Extensions**

Single Field Extensions

Simple and SUSY Explanations of Muon g-2

Model	Spin	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Result for $\Delta a_{\mu}^{\text{BNL}}$, Δa_{μ}^{2021}
1	0	(1, 1, 1)	Excluded: $\Delta a_{\mu} < 0$
2	0	(1 , 1 ,2)	Excluded: $\Delta a_{\mu} < 0$
3	0	$({f 1},{f 2},-1/2)$	Updated
4	0	(1 , 3 ,-1)	Excluded: $\Delta a_{\mu} < 0$
5	0	$(\overline{f 3}, {f 1}, 1/3)$	Updated
6	0	$(\overline{3},1,4/3)$	Excluded: LHC searches
7	0	$(\overline{3}, 3, 1/3)$	Excluded: LHC searches
8	0	$({f 3},{f 2},7/6)$	Updated
9	0	$({f 3},{f 2},1/6)$	Excluded: LHC searches
10	1/2	(1, 1, 0)	Excluded: $\Delta a_{\mu} < 0$
11	1/2	$({f 1},{f 1},-1)$	Excluded: Δa_{μ} too small
12	1/2	(1, 2, -1/2)	Excluded: LEP lepton mixing
13	1/2	$({f 1},{f 2},-3/2)$	Excluded: $\Delta a_{\mu} < 0$
14	1/2	(1, 3, 0)	Excluded: $\Delta a_{\mu} < 0$
15	1/2	$({f 1},{f 3},-1)$	Excluded: $\Delta a_{\mu} < 0$
16	1	$({f 1},{f 1},0)$	Special cases viable
17	1	$({f 1},{f 2},-3/2)$	UV completion problems
18	1	(1, 3, 0)	Excluded: LHC searches
19	1	$(\overline{3},1,-2/3)$	UV completion problems
20	1	$(\overline{3},1,-5/3)$	Excluded: LHC searches
21	1	$(\overline{3}, 2, -5/6)$	UV completion problems
22	1	$(\overline{f 3},{f 2},1/6)$	Excluded: $\Delta a_{\mu} < 0$
23	1	$(\overline{3}, 3, -2/3)$	Excluded: proton decay
			1 0

BSM Models

Chirality Flip

Contributions from diagrams with an internal chirality flip enhanced by a factor:

$$rac{\lambda_{BSM}^2}{\lambda_{\mu}^2}$$

Scalar Leptoquark Singlet

Leptoquark	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
<i>S</i> ₁	(3 , 1 , 1/3)	1/3

Interacts with the standard model through: $\mathcal{L}_{BSM} = (\lambda_{QL}Q.LS_1 + \lambda_{t\mu}t\mu S_1^* + h.c.)$ $-M_{S1}^2|S_1|^2 - g_{HP}|H|^2|S_1|^2 - \frac{\lambda_{\phi}}{2}|S_1|^4$

Scalar Leptoquark Doublet

Leptoquark	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge	
$R_2 = \left(R_2^u, R_2^d\right)$	(3 , 2 , 7/6)	5/3,2/3	R_2

Interacts with the standard model through: $\mathcal{L}_{BSM} = \left(\lambda_{Q\mu}R_2^{\dagger}\mu Q + \lambda_{tL}L.R_2t + h.c.\right)$ $-M_{R2}^2|R_2|^2 - g_{HP}|H|^2|R_2|^2 - \frac{\lambda_{\phi}}{2}|R_2|^4$

Two Field Extensions

Simple and SUSY Explanations of Muon g-2

SDE

$(SU(3)_C \times SU(2)_L \times U(1)_Y)_{spin}$	$+\mathbb{Z}_2$	Result for $\Delta a_{\mu}^{\text{BNL}}$, Δa_{μ}^{2021}
(1 1 0) $(1 1 1)$	No	Projected LHC 14 TeV exclusion, not confirmed
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Updated
$(1,1,-1)_0 - (1,1,0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1,2,-1/2)_0 - (1,1,0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1 \ 1 \ 0)_{2} = (1 \ 2 \ -1/2)_{2}$	No	Excluded: LHC searches
$(1,1,0)_0 - (1,2,-1/2)_{1/2}$	Yes	Updated
(1 1 0) (1 1 1)	No	Excluded: LEP contact interactions
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Viable with under abundant DM
$(1,1,-1)_0 - (1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1,2,-1/2)_0 - (1,2,-1/2)_{1/2}$	Both	Excluded: LEP search
(1 1 0) (1 1 1)	No	Excluded: LHC searches
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Viable with under abundant DM
(1 1 0) (1 1 1)	No	Excluded: LHC searches + LEP contact interactions
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Viable with under abundant DM
$(1,3,0)_0 - (1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
(1 1 0), $(1 1 1)$,	No	Excluded: LHC searches
$(1,1,0)_0 - (1,1,-1)_{1/2}$	Yes	Viable with under abundant DM
$(1,3,-1)_0 - (1,2,-1/2)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1, 3, -1)_0 - (1, 3, 0)_{1/2}$	Both	Excluded: $\Delta a_{\mu} < 0$
$(1,1,-1)_{1/2}-(1,1,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$
$(1,2,-1/2)_{1/2}-(1,1,0)_1$	No	Excluded: $\Delta a_{\mu} < 0$
$(1,2,-1/2)_{1/2}-(1,3,0)_1$	No	Excluded: LHC searches + LEP contact interactions
$({f 1},{f 1},0)_{1/2}-({f 1},{f 1},1)_1$	No	Excluded: LHC searches + LEP contact interactions
$(1, 2, -1/2)_{1/2} - (1, 1, -1)_1$	No	Excluded: LHC searches + LEP contact interactions
$({f 1},{f 3},-1)_{1/2}-({f 1},{f 3},0)_1$	No	Excluded: $\Delta a_{\mu} < 0$

Z2 Symmetry

Z2-odd fields interact only in pairs:

 ψ_d

 ϕ

New Fermion and Scalar Coupling to Left-Handed Muon

New Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
$\psi_d = (\psi_d^+, \psi_d^0)$	(1 , 2 , 1/2)	1,0
ϕ	(1, 1, 0)	0

Interacts with the standard model through: $\mathcal{L}_{BSM} = (\lambda_L L_L. \psi_d \phi - M_{\psi} \psi_d^c \psi_d + h. c.) - \frac{M_{\phi}^2}{2} \phi^2$ Contributes to muon g-2

Source: 1804.00009

300

New Fermion and Scalar Coupling to Left-Handed Muon

arXiv:2104.03691

Contributes to muon g-2

Now Ruled Out
Still Viable
Newly Viable
Exclusions:
Exclusions:

 ψ_s

 ϕ

New Fermion and Scalar Coupling to Right-Handed Muon

New Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
$\psi_s = \psi_s^-$	(1, 1, − 1)	-1
ϕ	(1,1,0)	0

Interacts with the standard model through: $\mathcal{L}_{BSM} = \left(\lambda_R \ \mu \ \phi \ \psi_s - M_{\psi} \psi_s^c \psi_s + h.c.\right) - \frac{M_{\phi}^2}{2} \phi^2$ Contributes to muon g-2

Source: 1804.00009

New Fermion and Scalar Coupling to Right-Handed Muon

Two Fields with Dark Matter

300

New Fermion and Scalar Coupling to Right-Handed Muon

Contributes to muon g-2

Now Ruled Out			
Still Viable			
Newly Viable			
Exclusions:			
LHC Searches			

Cmp. Spectra

Two Fields with Dark Matter

New Fermion and Scalar Coupling to Right-Handed Muon

Two Fields with Dark Matter

New Fermion and Scalar Coupling to Right-Handed Muon

Contributes to muon g-2

Now Ruled Out Still Viable Newly Viable

Exclusions:

LHC Searches

Cmp. Spectra

BSM Models

Mixing Fermions and Scalars

After EWSB, mixed fields with identical electric charges mix:

$$\psi_s^0, \psi_d^0 \to \psi_1^0, \psi_2^0$$

$$\psi_s^-, \psi_d^- \to \psi_1^-, \psi_2^-$$

 ψ_s

 ϕ_s

 ϕ_d

Pair of New Scalars + Fermion

New Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge		
$\psi_s=\psi_s^{-\dagger}$	(1 , 1 , 1)	1		
$\phi_s = \phi_s^0$	(1, 1, 0)	0		
$\phi_d = (\phi_d^0, \phi_d^-)$	(1 , 2 , −1/2)	0,-1		

Interacts with the standard model through: $\mathcal{L}_{BSM} = (a_H H. \phi_d \phi_s + \lambda_L L_L. \phi_d \psi_s + \lambda_R \phi_s e_R^{\dagger} \psi_s^c$ $-M_{\psi} \psi_s^c \psi_s + h. c.) - \frac{M_{\phi d}}{2} |\phi_d|^2 - M_{\phi s}^2 |\phi_s|^2$

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Over Abundant

Direct Detection

 $|\lambda_L \lambda_R| \gtrsim 0.22$

 ψ_d

 ψ_s

 ϕ_d

Pair of New Fermions + Scalar

New Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
$\psi_d = (\psi_d^0, \psi_d^-)$	(1 , 2 , −1/2)	0,-1
$\psi_s=\psi_s^0$	(1, 1, 0)	0
$\phi_d = (\phi_d^+, \phi_d^0)$	(1 , 2 , 1/2)	1,0

Interacts with the standard model through: $\mathcal{L}_{BSM} = (\lambda_{H1}H.\psi_d\psi_s + \lambda_{H2}H^{\dagger}.\psi_d^c\psi_s + \lambda_L L_L.\phi_d\psi_s + \lambda_R\psi_d e_R^{\dagger}\phi_d^{\dagger} - M_{\psi d}\psi_d^c\psi_d + h.c.) - \frac{M_{\psi s}}{2}\psi_s\psi_s - M_{\phi}^2|\phi_d|^2$

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Contributes to muon g-2

Now Ruled Out

Still Viable

Newly Viable

Exclusions:

Direct Detection

Pair of New Fermions + Scalar

Direct Detection

Pair of New Fermions + Scalar

Direct Detection

Pair of New Fermions + Scalar

Direct Detection

Pair of New Fermions + Scalar

Future Developments

Upcoming Experiments Measurements

Fermilab

J-PARC

Run-4 now completed. Runs-5 & 6 planned. Run-4 experimental precision: 0.14ppm Upcoming.

Final experimental precision: 0.1ppm

Conclusions

The anomalous muon magnetic moment, muon g-2

- Current state of muon g-2
- New muon g-2 value from Fermilab disagrees with SM prediction by 4.2σ .
- Many simple BSM theories cannot produce a contribution that is both positive and large.
- Outlook
- Upcoming muon g-2 experiments are set to further increase the precision, and if the measured value stays the same or increases, then disagreement between the SM and experiment will increase.

Thank you for Listening!

Standard Model of Particle Physics

The sensitivity of g-2 to new particles

Coupling Strength of Muon to New Particles

The contribution to a mass m particle's g-2 from a diagram with a single loop of particles with mass of order M are proportional to

 $\Delta a \propto \frac{m^2}{M^2}$

Since the muon is 207 times larger than the electron, contributions from new particles are of order $m_{\mu}^2/m_e^2 \approx 40000$ times larger to the muon g-2 than the electron g-2. So even though we can measure the electron g-2 more precisely, we expect to find evidence of new contribution in the muon g-2 first.

The colour confinement of quarks makes it difficult to measure their g-2. The short lifetimes of the tau particle and particles of similar mass make it difficult to measure their g-2 at a level of precision close to that of the muon and electron.

Single Field Extensions

 H_2

Second Higgs Doublet Model (2HDM)

New Field	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
H_2	(1 , 2 , 1/2)	+1,0

$$\Phi_1 = \begin{pmatrix} \varphi_1^{\pm} \\ \frac{\nu_1 + \varphi_1 + i\sigma_1}{\sqrt{2}} \end{pmatrix}, \Phi_2 = \begin{pmatrix} \varphi_2^{\pm} \\ \frac{\nu_2 + \varphi_2 + i\sigma_2}{\sqrt{2}} \end{pmatrix}$$

Interacts with the standard model through: $\mathcal{L}_{Yuk} = \frac{1}{v} \sum_{\varphi=h,H,A} \sum_{f} \left(Y_{f}^{\varphi} m_{f} \varphi \bar{f} P_{R} f + h.c. \right)$ Contributes to muon g-2

Single Field Extensions

 H_2

Second Higgs Doublet Model (2HDM)

New Field	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Electric Charge
H_2	(1 , 2 , 1/2)	+1,0

$$\Phi_{v} = \begin{pmatrix} G^{\pm} \\ \frac{\nu + H_{1} + iG^{0}}{\sqrt{2}} \end{pmatrix}, \Phi_{\perp} = \begin{pmatrix} H^{\pm} \\ \frac{H_{2} + iA}{\sqrt{2}} \end{pmatrix}$$
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos(\beta - \alpha) & -\sin(\beta - \alpha) \\ \sin(\beta - \alpha) & \cos(\beta - \alpha) \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \end{pmatrix}$$

Interacts with the standard model through: $\mathcal{L}_{Yuk} = \frac{1}{v} \sum_{\varphi=h,H,A} \sum_{f} \left(Y_{f}^{\varphi} m_{f} \varphi \bar{f} P_{R} f + h.c. \right)$

Contributes to muon g-2

Single Field Extensions

Second Higgs Doublet Model (2HDM)

Detecting BSM Particles

Direct Observation

Direct detection of new physics through the change in momentum of some search particle, or observation through scattering.

Adjustment of Physical Observables

Discovery of new physics through contributions causing a deviation in the measured value of some physical observable compared to the standard model prediction.

Fermilab Experiment

The Road to the Results

Muon G-2

2006: Brookhaven Final Results Released 2013: Big Move

2018: Run-1 Begins 2019: Run-2 Begins

2020: Muon g-2 Theory Initiative Releases White paper on SM prediction

Goldstone Diagrams

Gauge-Fixing

$$\frac{1}{2}V_{\nu}(g^{\nu\lambda}\partial^{2} - \partial^{\nu}\partial^{\lambda})V_{\lambda} - e'vV^{\nu}\partial_{\nu}\phi_{2} + \frac{1}{2\xi}(\partial_{\nu}V^{\nu} - \xi e'v\phi_{2})^{2}$$

$$= \frac{1}{2}V_{\nu}(g^{\nu\lambda}\partial^{2} - (1 - 1/\xi)\partial^{\nu}\partial^{\lambda})V_{\lambda} - e'vV^{\nu}\partial_{\nu}\phi_{2} + e'vV^{\nu}\partial_{\nu}\phi_{2} + \xi e'^{2}v^{2}\phi_{2}^{2}$$

$$= \frac{1}{2}V_{\nu}(g^{\nu\lambda}\partial^{2} - (1 - 1/\xi)\partial^{\nu}\partial^{\lambda})V_{\lambda} + \xi e'^{2}v^{2}\phi_{2}^{2}$$

Gauge	Vector Propagator	Goldstone Propagator
R_{ξ} gauge	$-i(g^{\nu\lambda} - k^{\nu}k^{\lambda}/m_V^2)/(k^2 - m_V^2) - i(k^{\nu}k^{\lambda}/m_V^2)/(k^2 - \xi m_V^2)$	$i/(k^2-\xi m_V^2)$
Feynman gauge	$-ig^{\nu\lambda}/(k^2-m_V^2)$	$i/(k^2 - m_V^2)$
Landau gauge	$-i(g^{\nu\lambda}-k^{\nu}k^{\lambda}/k^2)/(k^2-m_V^2)$	i/k^2
Unitary Gauge	$-i(g^{\nu\lambda}-k^{\nu}k^{\lambda}/m_V^2)/(k^2-m_V^2)$	0

Contributions to g-2

General Contributions to g-2

Coupling of muon to fermions/vectors:

$$\mathcal{L}_{\mu fV} = \bar{f} \gamma_{\nu} V^{\nu} (V F_L P_L + V F_R P_R) \mu + h.c$$

Coupling of muon to fermions/scalars:

$$\mathcal{L}_{\mu f \phi} = \bar{f} \phi (SF_L P_L + SF_R P_R) \mu + h.c$$

Form Factors

Vertex Correction Function:

Ward Identity: $q_{\nu}\Gamma^{\nu} = 0$

$$\Gamma^{\nu} = A \times \gamma^{\nu} + \delta \Gamma^{\nu}$$

$$\Gamma^{\nu} = A \times \gamma^{\nu} + B \times p^{\nu} + C \times p'^{\nu}$$

$$\Gamma^{\nu} = f_1(q^2) \times \gamma^{\nu} + f_2(q^2) \times (p^{\nu} + p'^{\nu}) + f_3(q^2) \times q^{\nu}$$

$$\Gamma^{\nu} = \left(f_1(q^2) + 2mf_2(q^2)\right) \times \gamma^{\nu} - 2mf_2(q^2) \times i\frac{\sigma^{\nu\lambda}q_\lambda}{2m}$$

$$\Gamma^{\nu} = F_1 \times \gamma^{\nu} + F_2 \times i\frac{\sigma^{\nu\lambda}q_\lambda}{2m}$$

Gordon Identity:

$$\bar{u}(p')\frac{p^{\nu}+{p'}^{\nu}}{2m}u(p)=\bar{u}(p')(\gamma^{\nu}-i\frac{\sigma^{\nu\lambda}q_{\lambda}}{2m})u(p)$$

General Contributions

General 1-Loop Diagram Contributions to Muon g-2

$$\begin{aligned} & \text{Working in the Feynman} \left(\xi \to 1\right) \text{Gauge:} \\ & a_{\mu}^{FFS} = \frac{q_F m_F m_{\mu} \left(SF_L^2 + SF_R^2\right)(3 - 4x + x^2 + 2\log x)}{16m_S^2 \pi^2 (1 - x)^3} - \frac{q_F m_{\mu}^2 SF_L SF_R (2 + 3x - 6x^2 + x^3 + 6x\log x)}{24m_S^2 \pi^2 (1 - x)^4} \\ & a_{\mu}^{SSF} = \frac{q_S m_F m_{\mu} \left(SF_L^2 + SF_R^2\right)(1 - x^2 + 2x\log x)}{16m_S^2 \pi^2 (1 - x)^3} - \frac{q_S m_{\mu}^2 SF_L SF_R (1 - 6x + 3x^2 + 2x^3 - 6x^2\log x)}{24m_S^2 \pi^2 (1 - x)^4} \\ & a_{\mu}^{FFV} = \frac{q_F m_{\mu}^2 (VF_L^2 + VF_R^2)(4 - 9x + 5x^3 + (6 - 12x)\log x)}{48m_V^2 \pi^2 (1 - x)^4} - \frac{q_F m_F m_{\mu} VF_L VF_R (1 - x^2 + 2x\log x)}{4m_V^2 \pi^2 (1 - x)^3} \\ & = \frac{q_V m_{\mu}^2 (VF_L^2 + VF_R^2)(7 - 33x + 57x^2 - 31x^3 + 6x^2 (3x - 1)\log x)}{96m_V^2 \pi^2 (1 - x)^4} \\ & + \frac{3q_V m_F m_{\mu} VF_L VF_R (1 - 4x + 3x^2 - 2x^2\log x)}{16m_V^2 \pi^2 (1 - x)^3} \end{aligned}$$

Contributions of Feynman diagrams to g-2

Contributions to electron g-2

Standard Model of Particle Physics

Standard Model Multiplets

$L_{iL} = \begin{pmatrix} \boldsymbol{\nu}_{iL} \\ \boldsymbol{e}_{iL} \end{pmatrix}$	e_{iR}	$oldsymbol{Q}_{iL} = egin{pmatrix} oldsymbol{u}_{iL} \ oldsymbol{d}_{iL} \end{pmatrix}$	u_{iR}	d_{iR}	$W^a_{m{ u}}$	Z_{v}	$A_{\boldsymbol{v}}$	$H = \begin{pmatrix} \boldsymbol{\phi}^+ \\ \boldsymbol{\nu} + \boldsymbol{h} + \boldsymbol{\phi}^0 \end{pmatrix}$
Left-handed SU(2)L lepton doublet	Right-handed SU(2)L lepton singlet	Left-handed SU(2)L quark doublet	Right-handed SU(2)L up quark singlet	Right-handed SU(2)L down quark singlet	W vector boson	Z vector boson	Photon	Higgs SU(2)L doublet

a denotes the W boson index. *i* denotes family index (e.g. e, μ, τ). *L*, *R* denote left, right-handed fermion.

Standard Model Lagrangian (Colourless)

$$\mathcal{L} = W^{a\mu\nu}W^{a}_{\mu\nu} + Z^{\mu\nu}Z_{\mu\nu} + A^{\mu\nu}A_{\mu\nu} + \bar{L}_{iL}(i\gamma^{\nu}D_{\nu} + m_{Li})L_{iL} + \bar{e}_{iR}(i\gamma^{\nu}D_{\nu} + m_{ei})e_{iR} + \bar{Q}_{iL}(i\gamma^{\nu}D_{\nu} + m_{Qi})Q_{iL} + \bar{u}_{iR}(i\gamma^{\nu}D_{\nu} + m_{ui})u_{iR} + \bar{d}_{iR}(i\gamma^{\nu}D_{\nu} + m_{di})d_{iR} + |D_{\nu}H|^{2} + V(H)$$

Z2 Symmetry

Z2-odd fields interact only in pairs: $\psi_{even} \rightarrow \psi_{even}$ $\psi_{odd} \rightarrow \psi_{odd} e^{i\pi}$

Constraints

TECHNISCHE

- Muon g-2 Contributions: FlexibleSUSY
- Dark Matter Limits: MicrOmegas
- Direct Detection Limits: DDCalc
- Particle Collider Constraints: SModelS

Backup Slides

Symmetry Breaking

The kinetic terms of a complex scalar singlet Φ : $\frac{1}{2}(|\partial_{\nu}\phi_{2}|^{2} + |\partial_{\nu}\phi_{1}|^{2} - e'V^{\nu}(\phi_{1}\partial_{\nu}\phi_{2} - \phi_{2}\partial_{\nu}\phi_{1}) + e'^{2}V^{\nu}V_{\nu}(\phi_{1}^{2} + \phi_{2}^{2}))$

$$\frac{1}{2} \left(|\partial_{\nu}\phi_{2}|^{2} + |\partial_{\nu}\phi_{1}|^{2} - e'V^{\nu}(\phi_{1}\partial_{\nu}\phi_{2} - \phi_{2}\partial_{\nu}\phi_{1}) + e'^{2}V^{\nu}V_{\nu}(\phi_{1}^{2} + 2\nu\phi_{1} + \phi_{2}^{2}) + e'^{2}v^{2}V^{\nu}V_{\nu} - e'vV^{\nu}\partial_{\nu}\phi_{2}) \right)$$

Gauge-fixing term removes the mixing between vectors and Goldstones: $\frac{1}{2\xi}(\partial_{\nu}V^{\nu} - \xi e'\nu\phi_2)^2$

$$\begin{array}{c} \textbf{Backup Slides} \\ \textbf{Contributions to g-2} \\ \textbf{Symmetry Breaking} \\ \text{The kinetic terms of a complex scalar } \Phi: \\ \mathcal{L}_{D\Phi} = |D_{\nu}\Phi|^{2} = \left| (\partial_{\nu} - ie'V_{\nu}) \frac{1}{\sqrt{2}} (\phi_{1} + i\phi_{2}) \right|^{2} \\ = \frac{1}{2} \Big(|\partial_{\nu}\phi_{2}|^{2} + |\partial_{\nu}\phi_{1}|^{2} + e'^{2}V^{\nu}V_{\nu}(\phi_{1}^{2} + \phi_{2}^{2}) - e'V^{\nu}(\phi_{1}\partial_{\nu}\phi_{2} - \phi_{2}\partial_{\nu}\phi_{1}) \Big) \\ \mathcal{L}_{D\Phi} = \frac{1}{2} \Big(|\partial_{\nu}\phi_{2}|^{2} + |\partial_{\nu}\phi_{1}|^{2} + e'^{2}V^{\nu}V_{\nu}(\phi_{1}^{2} + 2\nu\phi_{1} + \phi_{2}^{2}) + e'^{2}v^{2}V^{\nu}V_{\nu} \\ - e'V^{\nu}(\phi_{1}\partial_{\nu}\phi_{2} - \phi_{2}\partial_{\nu}\phi_{1}) - e'vV^{\nu}\partial_{\nu}\phi_{2}) \end{array} \\ \begin{array}{c} \Phi \rightarrow (\nu + \phi_{1} + i\phi_{2}) \\ e'\nu \rightarrow m_{\nu} \end{array}$$

We add a gauge-fixing term to our Lagrangian to remove the mixing between vectors and Goldstones:

$$\frac{1}{2\xi}(\partial_{\nu}V^{\nu}-\xi e'v\phi_2)^2$$

