

Photons to search for new phenomena with the ATLAS detector

with an emphasis on the <u>ATLAS-CONF-2022-018</u> preliminary results, first presented at Moriond QCD 2022

José Ocariz, LPNHE-Paris and Université Paris Cité

The ATLAS liquid Argon calorimeter (LAr)

Sampling electromagnetic calorimeter

- measures energy of photons (and e)
- interleaves layers of lead (absorber) and liquid Argon
- longitudinally segmented into three layers
- provides an excellent photon energy resolution :

Hadronic calorimeters

• complement energy measurements (jets and taus)

Energy deposits in calorimeter cells clustered together into "topoclusters"

- dynamical objects that span over all layers
- matching of tracks and clusters to
 - identify photons
 - discriminate from other objects in the calorimeters

Photons and the Higgs boson

The $H \rightarrow \gamma \gamma$ channel provides several of the cleanest signatures for the study of Higgs boson properties

- despite large backgrounds from QCD (di)photons
- clear, narrow m_{jj} signal excellent invariant mass resolution
 - typically in the order of ±1.5 GeV to ±2 GeV
 - can be as low as ±1 GeV for the hardest photon pairs

Higgs boson mass :

- precision measurement, at ±0.17% level
- $H \rightarrow \gamma \gamma$ precision comparable to $H \rightarrow 4l$ that benefits from a very clean S/B but suffers from a low signal rate

- Two-level photon triggers based on
 - readout of towered energy sums around ROIs at L1
 - close-to-complete reconstruction at HLT
- Thresholds on transverse energy are needed to cope with overwhelming rates
 - excellent efficiency plateaus above the thresholds
- Thresholds and criteria vary with luminosity and data-taking periods
- A diphoton trigger combines two separate single-photon triggers

Photon performances: reconstruction and identification

Photons (and electrons) : very similar development of electromagnetic showers in a uniform calorimeter

• (almost) invariant lateral and longitudinal developments

An e/gamma candidate is a "super-cluster" arrangement of topoclusters, compatible with an EM shape

- multivariate selection on a collection of correlated "shower-shape" variables
- for photons, selection is optimized to reject "fake" candidates (mostly neutral hadrons in jets)

Photon-ID:

• high-granularity of the EM calorimeter plays a crucial role

ITKP Dresden June 16, 2022 Photons to search for new phenomena with ATLAS José Ocariz LPNHE-Paris and Université Paris Cité

Photon performances: isolation

Photon isolation rejects further backgrounds on top of photon ID

- fakes are usually surrounded by additional particles
- calorimetric isolation energy :

ΔR=0.4

∆R=0.2

- sum of topocluster transverse energies within a ΔR cone around the candidate
 - corrections to account for various effects (pileup...)
 - the ΔR size impacts diphoton selections
- complemented with a track-based definition for charged particles around candidates

ITKP Dresden June 16, 2022 Photons to search for new phenomena with ATLAS José Ocariz LPNHE-Paris and Université Paris Cité

(made@ITKP) study of diphoton production in pp collisions

- differential cross-sections, as function of $m_{\gamma\gamma}$, $p^T_{\gamma\gamma}$ and angular distributions of the photon pair precision tests of both the SM predictions and phenomenological models

The SM predicts only one particle decaying into pair of photons in the \geq 10 GeV mass range : the Higgs boson :-)

- many such new particles appear in a number of models beyond the Standard Model
 - among others, extended Higgs sectors lead to the prediction of additional neutral Higgses
- could there be other resonant peaks above the SM QCD diphoton spectrum ?

Searches for new particles with the diphoton channel (I)

- ATLAS and CMS have searched for diphoton resonances, in mass ranges above the Higgs mass
 - analysis strategies very similar to the ones optimised for the 125 GeV Higgs boson
 - a smooth, monotonically-decreasing background, dominated by QCD diphotons

- A large number of statistically independent mass subranges are explored
- owing to the excellent performances on photon performances, in particular energy calibration
- the rate of local fluctuations is compatible with the global expectations
 - beware of over-interpretations :-)
- results are interpreted as limits in the production and decay rate of a hypothetical, new, heavy, "X" particle
 - the exclusion limits span from 200 GeV to ~2.5 TeV

60

70

100

110

m_{γγ} [GeV]

120

Searches for new particles with the diphoton channel (II)

- ATLAS and CMS have also searched for diphoton resonances, in mass ranges below the Higgs mass
 - analysis strategies again very similar to the ones optimised for the 125 GeV Higgs boson
 - splitting the sample into photon conversion categories important to account for the Z background

- Several proposals for resonant Axion-Like Particles within the LHC mass reach
 - pNGBs associated to a spontaneously broken approximate symmetry above the TeV scale
- main interest as a possible DM mediator due to its weakly interacting nature
- ALPs below the Higgs mass would couple predominantly to gluons and photons
 - LHC is the natural laboratory to search for them !
- existing search gap in $\gamma\gamma$ channel resonance searches
- goal: push the current 65 GeV limit towards lower masses, close the gap as much as possible !

ITKP Dresden June 16, 2022

Photons to search for new phenomena with ATLAS José Ocariz LPNHE-Paris and Université Paris Cité

The "standard" ATLAS diphoton analysis has been mostly optimized for the study of the Higgs boson

$$\bigcirc H \searrow \bigcirc$$

$$m_{\gamma\gamma} = \sqrt{2 E_{T,1}^{\gamma} E_{T,2}^{\gamma} [\cosh{(\eta_2 - \eta_1)} - \cos{(\Phi_2 - \Phi_1)}]} \; ,$$

- Most photons are emitted back-to-back
- Their E^T spectrum are largely within the trigger plateaus
- Standard photon isolation has very good performances
- A diphoton candidate is just the combination of two single-photon candidates

$$m_{\gamma\gamma}pprox \sqrt{p_{T,1}^\gamma p_{T,2}^\gamma}\Delta R$$
 .

To attain small X0 masses, two conflicting possibilities :

- reach lower E^T values
 - (but the trigger...)
- reach smaller angular separations
 - (but the isolation...)

Analysis strategy

- Main limiting factors to reach diphoton masses below 65 GeV :
 - diphoton trigger E_{τ} thresholds at 20 GeV
 - reduces signal acceptance
 - limits background modelling with analytical functions due to steep trigger turn-on
- decrease in photon identification and isolation efficiencies for low-ET photons

This analysis follows standard ATLAS diphoton selections

- data recorded with unprescaled diphoton triggers
- trigger thresholds and criteria evolved during Run-2
 - 20 GeV E_{τ} thresholds for most data (except for 21.6 fb^{-1} in 2016 with a 22 GeV threshold)
 - additional trigger-level isolation criteria in 2017+2018
- two reconstructed photon candidates with E_{τ} >22 GeV
 - within the $|\eta|$ acceptance
 - passing tight identification criteria
 - passing tight isolation criteria (calorimetric+track)
- isolation computed in a $\Delta R < 0.2$ cone around the candidate

Events at low mass have large transverse momentum $p_{ au}^{\ \gamma\gamma}$

- add a boosted diphoton selection : $p_{\tau}^{\gamma\gamma} > 50 \text{ GeV}$
- results in a smooth background spectrum down to 10 GeV

- Signal MC control samples :
 - EFT framework: scalar "Higgs-like" resonance
 - gluon-fusion production only
 - generated with MadGraph at LO+0,1,2 jets
- Invariant diphoton mass resolution described with a Double Sided Crystal Ball (DSCB) function
 - narrow-width approximation (fixed $\Gamma = 4.07 \text{ MeV}$)
 - DCSB parameters are linear functions of the mass point being tested
 - biases on fitted signal yields below the ±1% level on the full mass range

ITKP Dresden June 16, 2022 Photons to search for new phenomena with ATLAS José Ocariz LPNHE-Paris and Université Paris Cité

Background composition

Non-resonant backgrounds:

- irreducible $(\gamma\gamma)$ from QCD diphoton production 0
- reducible $(\gamma j + j\gamma + jj)$ from QCD with 1 or 2 jets misidentified as photon Ο
- other backgrounds (i.e. from electrons) found to be negligible Ο
- Extract composition from double-ABCD method (aka 2x2D)
 - using Isolation and Identification on each photon
 - irreducible shapes extracted from Sherpa QCD diphoton Ο
 - reducible shapes extracted from control regions in data Ο
 - photon candidates failing a subset of identification criteria

Irreducible $\gamma\gamma$ Reducible γ -jet Identified as a photon

- Background shape qualitatively divided into two regions:
 - fast turn-on region for masses below ~20 GeV
 - described with an exponentially-saturating function ("Flat")
 - slowly decreasing region above, with a mild change in curvature between the mid- and higher- mass regions
 - described with the product of a power-law ("PowLaw") times an "Activation" function

Spurious signal and GPR

- Estimation of bias arising from the choice of the background model :
- signal-plus-background fits to background-only templates
- any fitted signal yield is denoted "spurious signal" (SS) and is a systematic uncertainty
- Background templates are affected from low statistics :
- the Gaussian Process Regression (GPR) method
 - mitigates statistical fluctuations on the background shape Ο
 - GPR decreases the SS systematics uncertainty Ο
 - the bias from the GPR methodology is also accounted for Ο

ITKP Dresden June 16, 2022 José Ocariz LPNHE-Paris and Université Paris Cité Photons to search for new phenomena with ATLAS

Source	Uncertainty
On $\sigma_{\rm fid} \cdot \mathcal{B}(X \to \gamma \gamma)$ [%]	
Pile-up modeling	\pm 3.5 (at 10 GeV) – \pm 2 (beyond 15 GeV), mass dependent
Photon energy resolution	\pm 2.5 – \pm 2.7, mass dependent
Scale and PDFs uncertainties	$\pm 2.5 - \pm 0.5$, mass dependent
Trigger on close-by photons	± 2 (at 10 GeV) – < 0.1 (beyond 35 GeV), mass dependent
Photon identification	± 2.0
Isolation efficiency	± 2.0
Luminosity (2015–2018)	± 1.7
Trigger	± 1.0
Signal shape modeling	< 1
Photon energy scale	negligible
Background modeling	
Spurious signal (relative to δS)	30-65 events (10-30 %), mass dependent

Most systematic uncertainties are percent-level or smaller

- the dominant systematics arises from the background modelling uncertainties
 - spurious signal (SS) and GPR bias combined

Warning:

- The measurement of the signal production cross-section is performed in a fiducial volume: Ο
 - defined at generator level from the signal MC simulation samples
 - $p_T^{\gamma\gamma} > 50 \text{ GeV}$
 - $E'_{\tau} > 22 \text{ GeV}$ for each photon
 - particle-level isolation $E_{\tau}^{iso} < 0.05 \times E_{\tau}$ within a $\Delta R < 0.2$ cone

ITKP Dresden June 16, 2022 Photons to search for new phenomena with ATLAS José Ocariz LPNHE-Paris and Université Paris Cité

- Search performed in the [10,70] GeV mass range
- binned likelihood fit in the [9,77] range
 - (at least 5σ lever-arm from edges)
- parameter of interest: $\sigma_{fid} \times BR(X \rightarrow \gamma \gamma)$ good description of the data with the background model
 - no significant deviation wrt the SM
 - largest deviation at 19.4 GeV, with 3.1 σ local significance
 - $(1.48\pm0.02)\sigma$ global significance, evaluated with pseudo-data \cap

Limits set on the $\sigma_{fid} \times BR(X \rightarrow \gamma \gamma)$ of a resonance decaying to two photons

Prelimina

Background-only fi

√s = 13 TeV, 138 fb⁻¹

Ö11000

Entries 10000

9000

8000

7000

Warning: this figure is Auxiliary Material not available yet on the public web page

New Physics scenario being considered:

- all heavy states are beyond the reach of the LHC
 - no deviations from the SM behavior are expected in the TeV range
- a scalar *a*, singlet of the SM gauge group, naturally lighter than the EW scale exists
 - *a* is abundantly produced in proton-proton collisions
 - *a* decays promptly into a pair of SM particles with a narrow width
- a "KSVZ-ALP" model is considered, inspired by the simplest QCD axion model of the scalar *a* :

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \left[\alpha_3 c_3 G^a \tilde{G}^a + \alpha_2 c_2 W^i \tilde{W}^i + \alpha_1 c_1 B \tilde{B} \right]$$

- barring a huge hierarchy among the anomaly coefficients:
 - for $m_a \leq m_z$, the relevant two-body decays of *a* are to photons and to jets
 - the width into gluons dominates over the one into photons
 - the total width is dominated by its coupling to gluons and is always small compared to its mass

Limits recast into the ALP parameter space

• strongest limits on a hypothetical resonance produced in gluon fusion that decays to two photons

Other searches probing the same mass range:

- light-by-light scattering in heavy ion collisions significantly limited by the production mechanism
- dijet searches disfavoured by mass resolution

Other diphoton searches in proton proton collisions:

- CMS 13 dominates down to 70 GeV (35.9 fb^{-1})
- ATLAS extends the limit down to 65 GeV (80 fb⁻¹)

A large piece of the $\gamma\gamma$ gap is now covered !

ATLAS searched for boosted resonances in the diphoton channel, with masses in the 10 to 70 GeV range

Analysis strategy:

- strongly relies on the excellent performance of the EM calorimeter
- novel selection of boosted diphoton pairs to reach masses below the trigger turn-on
- observed data in agreement with the SM-only (no excess) hypothesis
- largest deviation found at 19.4 GeV
 - corresponding to a 3.1 σ (1.5 σ) local (global) significance
- limits on $\sigma_{fid} \times BR(X \rightarrow \gamma \gamma)$ from 4 fb to 17 fb the total uncertainty is dominated by statistics
- \bullet
 - impact of background modelling mitigated by GPR

This analysis provides the strongest upper limits up to date using pp collisions:

- on the cross-section times branching ratio of a resonance that decays to two photons
- in the mass range below 65 GeV, and down to 10 GeV
- and in the ALP parameter space in that same mass range

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2022-018/

Backup:superclusters

All e[±], γ: Add all clusters within 3 × 5 window around seed cluster.

Electrons only:

Seed, secondary cluster match the same track.

Add topo-clusters with a track match that is part of the conversion vertex matched to the seed cluster.

Seed cluster

New Physics scenario being considered:

- all heavy states are beyond the reach of the LHC
 - no deviations from the SM behavior are expected in the TeV range
- a scalar *a*, singlet of the SM gauge group, naturally lighter than the EW scale exists
 - *a* is abundantly produced in proton-proton collisions
 - *a* decays promptly into a pair of SM particles with a narrow width
- a "KSVZ-ALP" model is considered, inspired by the simplest QCD axion model of the scalar *a* :

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \left[\alpha_3 c_3 G^a \tilde{G}^a + \alpha_2 c_2 W^i \tilde{W}^i + \alpha_1 c_1 B \tilde{B} \right]$$

- barring a huge hierarchy among the anomaly coefficients:
 - for $m_a \leq m_z$, the relevant two-body decays of *a* are to photons and to jets
 - the width into gluons dominates over the one into photons
 - the total width is dominated by its coupling to gluons and is always small compared to its mass