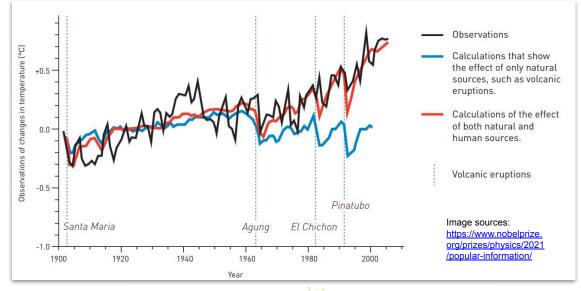
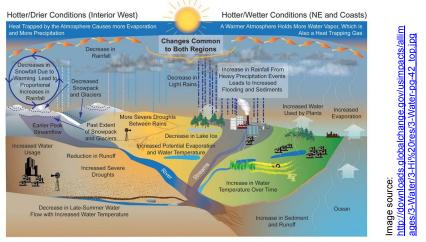
Sustainability in HEP -What we can do

Ben Brüers

DESY Zeuthen

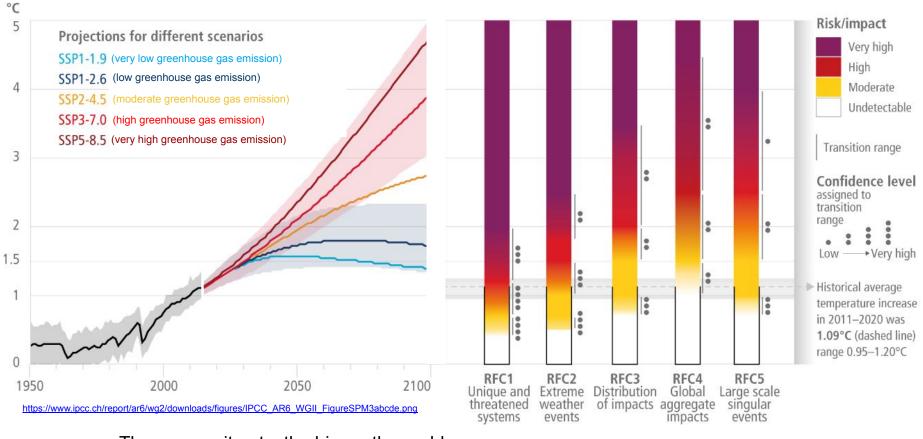

25th of January 2024 *IKTP Institute Seminar*


DESY. HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN Special thanks to: Daniel Britzger, Kristin Lohwasser, Juliette Alimena, Eleanor Jones, Nils Gillwald

Introduction to global warming

- Global warming is a hot topic: Climate scientists are among the <u>most cited scientists</u> in the world
- <u>Nobel prize</u> for contributions to developing climate models in 2021 for research on the greenhouse gas effect and climate analysis to prove anthropogenic impact

- Warmer air can store more water vapour (<u>Clausius-Clapeyron relation</u>)
 - $\circ \rightarrow$ droughts, floodings
 - $\circ \rightarrow$ destroyed crops & infrastructure
 - $\circ \rightarrow$ need more fresh water, diseases
- Rising sea levels from melting pole ice
- Less snow → water reservoirs
- Feedback effects, e.g. less snow
 - \rightarrow less reflection \rightarrow more heating



2

[2] IPCC, 2022: Summary for Policymakers [H.-O. Pörtner, D.C. Roberts, E.S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem (eds.)]. In: *Climate Change 2022: Impacts, Adaptation, and Vulnerability.* Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-33, doi:10.1017/9781009325844.001.

^[1] USGCRP (2014). Georgakakos, A., P. Fleming, M. Dettinger, C. Peters-Lidard, Terese (T.C.) Richmond, K. Reckhow, K. White, and D. Yates. Ch. 3: Water Resources. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 69-112.

How bad will it be?

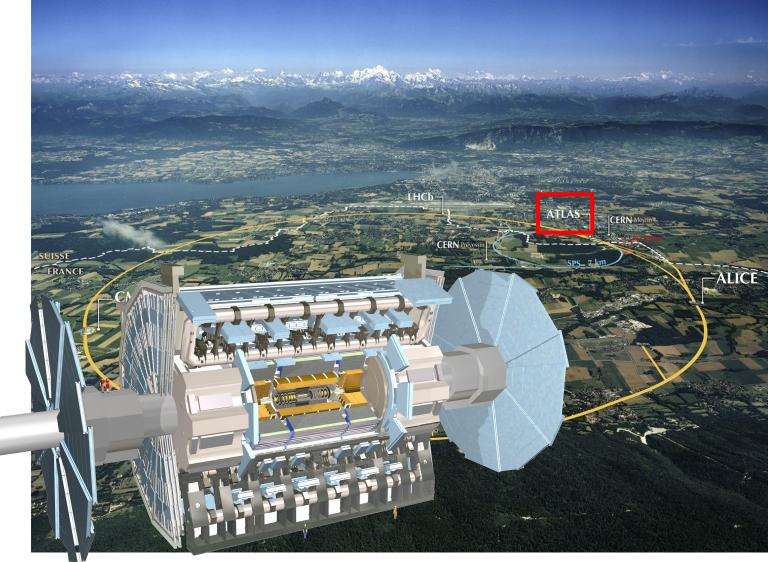
- The warmer it gets, the bigger the problem
 - \rightarrow reduce greenhouse gas emissions as much as possible!
- 300 Gt CO2e can be emitted to stay within 1.5°C at 83% CL
 → 1 T CO2e per person per year until 2050, currently 5-10 T pP in western countries

[1] IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–32, doi:10.1017/9781009157896.001.

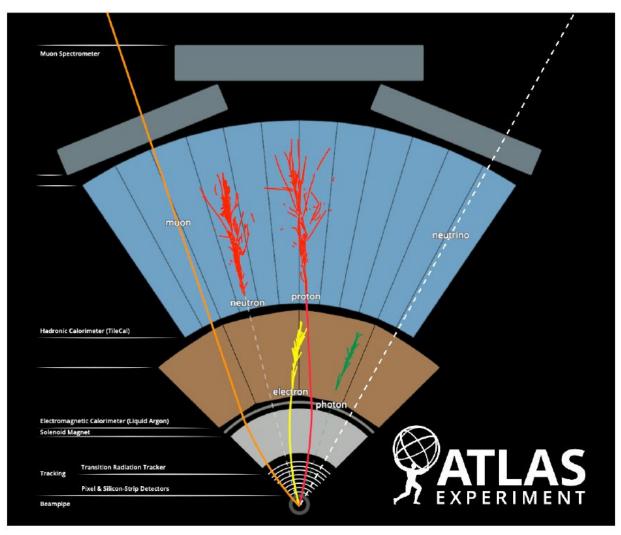
How bad will it be?

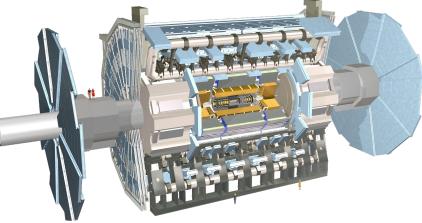


[1] IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–32, doi:10.1017/9781009157896.001.


More reasons why sustainability matters

- <u>Funding</u>: will (likely) be tied to sustainability in the future
 - "A detailed plan for the minimisation of environmental impact and for the saving and re-use of energy should be part of the approval process for any major project." (European Strategy for HEP 2020, Ch. 7, Paragraph A; example: LHCb phase-II upgrade TDR)
- <u>Legal:</u> e.g. <u>German scientists self-committed to be CO2e neutral by 2035</u> & many countries demand to reach the Paris agreement
- <u>Collaboration</u>: several members may be interested in being more sustainable
- <u>Outreach:</u> we should tell the world in the future how sustainable we are and how we got there
- <u>Society:</u>
 - we have extraordinary many smart minds around
 - we can help pioneering ideas and be a role model for society and companies
 - who if not scientists will start paving the way?



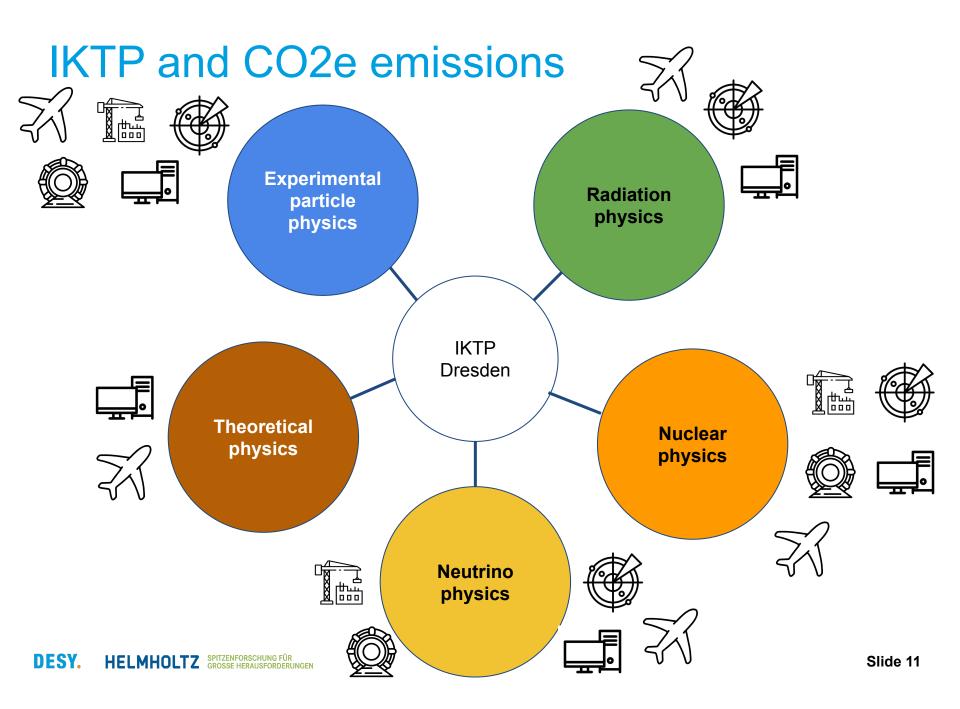


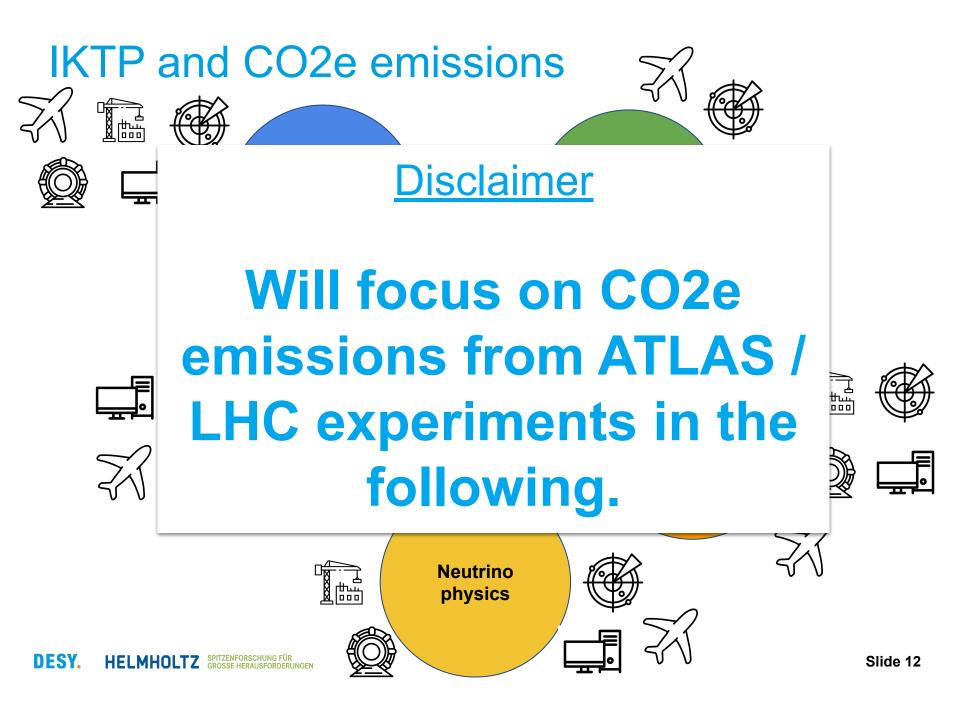
DESY. HELMHÖLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Environmental impacts of an LHC experiment

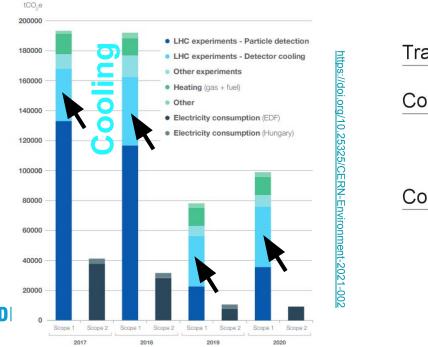
Build the cavern & detector

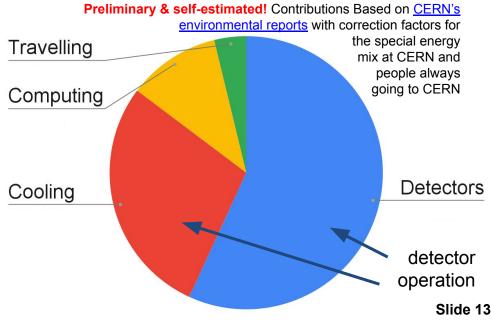
Take the data: LHC & detector operation




Analyse the data

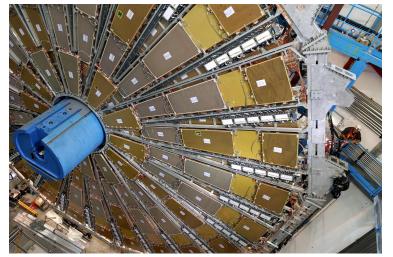
Present your results

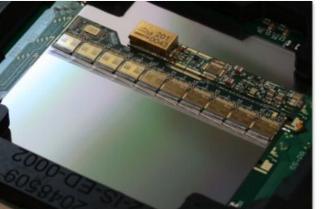




CO2e emissions of an LHC experiment

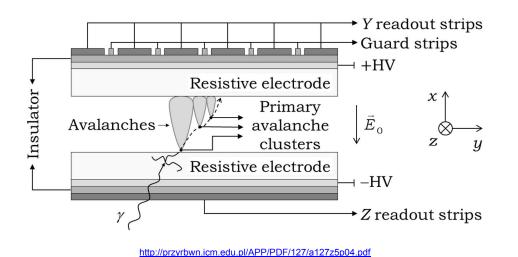
- Numbers estimated w/ CERN's latest report
- Main drivers: gaseous detectors, cooling emitting highly potent greenhouse gases (e.g. C₂H₂F₄)
- Computing: apply correction factor to CERN's numbers, as worlddistributed and electricity more CO₂ intense in most countries
- Similar for travelling, CERN numbers based on CERN's staff, but many physicists regularly travel to CERN

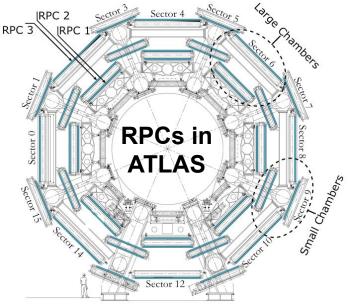



Particle detectors

Overview of detector technologies used

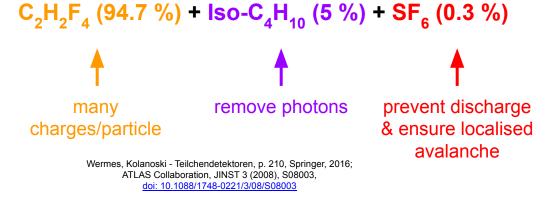
- Typically have a deposition layer and a detection layer
 - Deposition layer can be gaseous, liquid or solid
- Detection layer often produces electrical signal
- Different systems used for particle tracking, particle identification, energy measurements, etc.
- Footprint very device dependent
- Different contributions from construction / operation




https://cds.cern.ch/images/CERN-EX-0609016-02/file?size=large

Resistive Plate Chambers (RPCs)

- Electrode-covered resistive plates enclose gas
- Signal-collection by metallic readout strips on the electrodes
- Features: high resolution in time & space, high readout rates & signal
- RPCs widely used, e.g. ATLAS, CMS, ALICE e.g. for triggering on muon signals

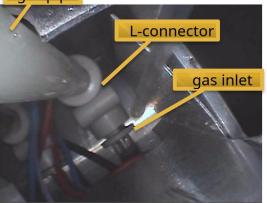


G. Ciapetti et al, 12th Workshop on Electronics for LHC and Future Experiments (LECC 2006), 323-327, <u>http://cds.cern.ch/record/1035895</u>

RPCs in ATLAS

• Gas mixture in ATLAS (similar in ALICE & CMS):

- C₂H₂F₄ (R134A), SF₆ have high global warming potential!
 - GWP = how much tons of CO₂ would heat the atmosphere like 1 T of the gas would?
- GWP of ATLAS gas is ~1400


D. Boscherini, NIM A (2023), 1056, 168479, doi: <u>10.1016/j.nima.2023.168479</u>

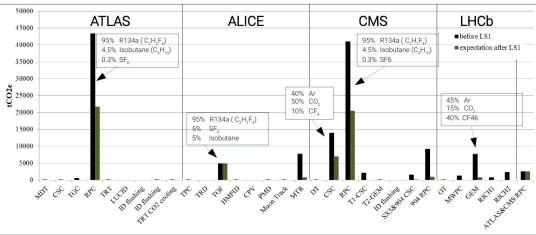
Gas	GWP
CO ₂	1
$C_2H_2F_4$	1430
SF ₆	22800
C ₃ F ₈	8830
C ₆ F ₁₄	9300

Unfortunately :(...

incomplete crack

D. Boscherini.

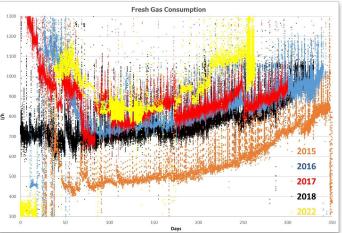
https://indico.cern.ch/event/1123140/co ntributions/4994339/attachments/25156 56/4324912/boscherini-RPC2022.pdf


• Cracks due to chemical / mechanical stress, vibrations and pressure spikes

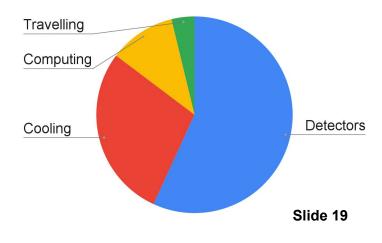
complete crack

RPCs: gas emerging

- ~1000 I/h gas escaping ATLAS \rightarrow high green-house gas emissions
- Similar for other experiments, e.g. CMS
- Leaks in gaseous detectors in ATLAS, CMS, ALICE lead to ~80 % of the direct GHG emissions ("scope 1") of CERN



Lohwasser, Britzger, https://indico.desv.de/event/34904/


D. Boscherini, NIM A (2023), 1056, 168479, doi: 10.1016/j.nima.2023.168479, https://indico.cern.ch/event/1123140/contributions/4994339/attachments/2515656/4324912/boscherini-RPC2022.pdf

R. Guida, M. Capeans, F. Hahn, S. Haider, B. Mandelli, 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013), pp. 1-7, doi: 10.1109/NSSMIC.2013.6829415;

for more on CMS, see G. Pugliese, https://indico.cern.ch/event/1022051/contributions/4325945/attachments/2231022/3780366/CMS_ATLAS_talk_22_4_21.pdf

RPC cracks – What is done in ATLAS?

 Avoid new leaks → changes to gas distribution system undertaken

Fixing leaks

- Difficult to access
- Seal cracks with glue

 → need to be very precise
 → cracks may reappear
- Leaks form fast, hard to keep up with repairs
- New technique w/ special expansive foam
 - \rightarrow faster & easier
 - \rightarrow appears to seal crack for good
 - \rightarrow large scale application started

D. Boscherini, NIM A (2023), 1056, 168479, doi: <u>10.1016/j.nima.2023.168479</u>, https://indico.cern.ch/event/1123140/contributions/4994339/attachments/2515656/4324912/boscherini-RPC2022.pdf

ATLAS collaboration, arXiv:2305.16623

Dresden involvement in fixing leakages!!!

Thank you Orcun!! (& Frank!!)

RPCs: other mitigation techniques

Recirculation

- don't let gas escape detector, but reuse it
- requires return pipes, purification
- have gas exhaust in purification step

Recuperation

- elaborate "cleaning" of gas returned from detectors
- only makes sense if little leaks in detectors

https://indico.desy.de/event/36020/

Replacement

• use gases w/

- less climate impact
- difficult to find gas which is safe and good for detection
- may need physical detector adaption

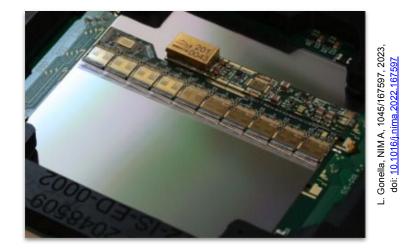
<u>Removal</u>

- eliminate emitted greenhouse gases
- very expensive

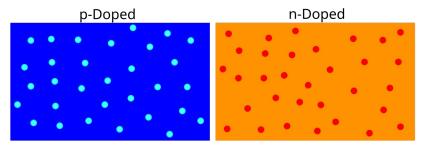
RPCs: other mitigation techniques

R. Guida. https://indico.cern.ch/event/1123140/contributio s/4994277/attachments/2517501/4328439/RP GHG recuperation RGuida v0.pd M. Bruno, Master's thesis, Torino, 2023, https://webthesis.biblio.polito.it/secure/28358/1/ tesi.pdf

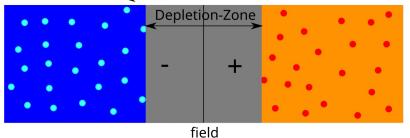
- **Recuperation**
 - elaborate "cleaning" of gas returned from detectors
 - only makes sense • if little leaks in detectors
 - https://indico.desy.de/event/36020/
- **Replacement**
- E) use gases w/ E less climate impact
 - difficult to find gas • which is safe and good for detection
 - may need physical detector adaption

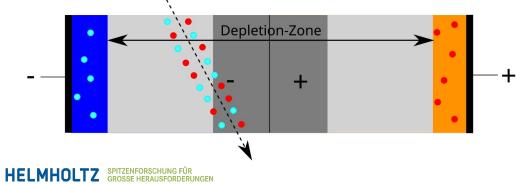


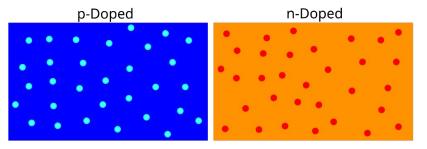
- \rightarrow first results promising
- \rightarrow already in use in CMS now saving 10% of fresh gas
- Replacement of $C_2H_2F_4$ / SF_6 ? \rightarrow Testing e.g. $C_3H_2F_4$, $C_3H_2CIF_3$
 - difficult to find gas that keeps read-out efficiency high and Ο sparking probability/ageing low
- Short-term: dilute gas mixture with 30% CO₂, increase SF₆ to 0.5-1%?
 - 1% SF₆ very promising, reduces CO2e by ~14% on 20y Ο scale, for 500y larger GWP
 - studying if can reduce SF_6 to 0.5% \rightarrow overall reduced Ο GWP

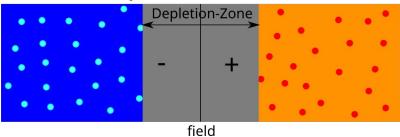

G. Rigoletti.

G. Proto. https://indico.cern.ch/event/1123140/contributions/5000800/attachments/2517497/4328395/R PC 2022 3.pdf

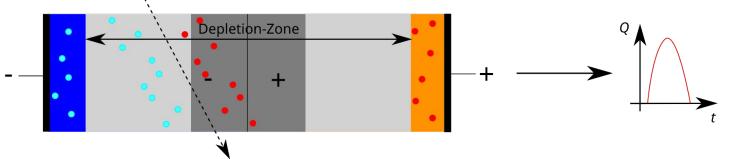

- Also use other detector systems apart from gaseous detectors at the LHC
- Among them: semiconductor detectors
 - Embedded emissions from producing the wafer & read-out chips
 - But by far not the largest emissions...

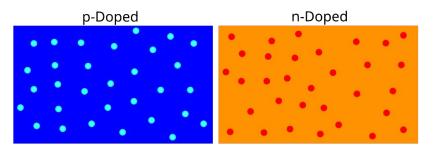

Penetrating particles deposit charges in semiconductor detector

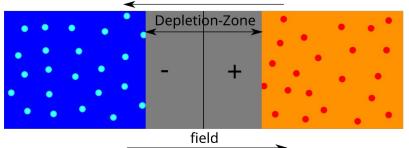


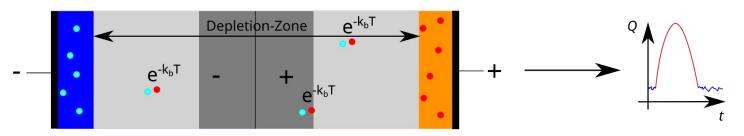


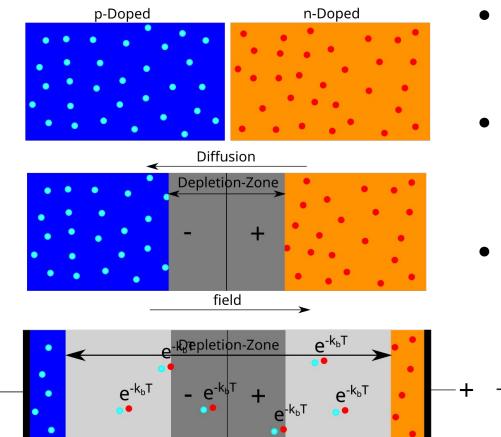
DESY.


Penetrating particles deposit charges in semiconductor detector \rightarrow drift signal

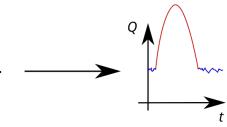





• Penetrating particles deposit charges in semiconductor detector \rightarrow drift signal



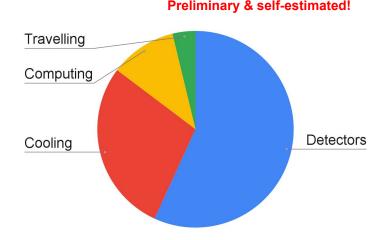
• Leakage current from thermally produced electron-hole pairs



• Penetrating particles deposit charges in semiconductor detector \rightarrow drift signal

- Leakage current from thermally produced electron-hole pairs
- High leakage current

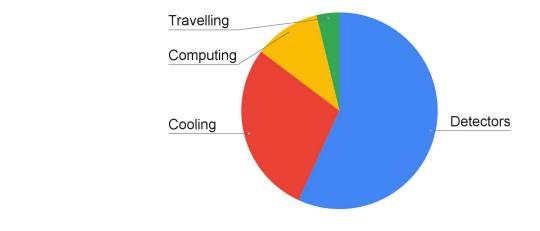
 (e.g. from radiation damage)
 → heat → more leakage
 current → more heat
- Need to cool detector to prevent thermal runaway!


Cooling contributions to CO2e

- In ATLAS and CMS, cooling systems of silicon detectors use high GWP gases C₃F₈ / C₆F₁₄
- C₆F₁₄ also used in many other places
 - ATLAS cooling cables and TRT
 - ALICE PHOS crystals
 - CMS ECAL
 - LHCb RICH cooling
- Unfortunately, have leaks
- Work on-going to reduce them
 - \rightarrow use CO2-cooling

DESY.

- \rightarrow switching off detectors
- → refurbishments in longer maintenance periods


Lohwasser, Britzger, https://indico.desy.de/event/34904/

GROUP	GASES	tCO ₂ e 2021	tCO ₂ e 2022		Gas	GWP
Perfluorocarbons (PFCs)	$CF_4, C_2F_6, C_3F_8, C_4F_{10}, C_6F_{14}$	55 921	68 989	3, doi: 003		4
	HFC-23 (CHF ₃) HFC-32 (CH ₂ F ₂)			, 2023	CO_2	Ĩ
Hydrochlorofluorocarbons (HFCs)	HFC-134a (Č ₂ H ₂ F ₄) HFC-404a HFC-407c	36 557	86 211	RN Environment Report, Vol. 3, 2023, doi: 10.25325/CERN-Environment-2023-003	R134A	1430
	HFC-410a HFC-507			nent Rej RN-Env	SF_6	22800
Other F-gases	SF_6 , NF_3	16 838	18 355			
Hydrofluoroolefins (HFO)/HFCs	R-449 R1234ze NOVEC 649	86	199	CERN Envi 10.25328	C ₃ F ₈	8830
		13 771	10 419	Ğ	C ₆ F ₁₄	9300
Total Scope 1		123 174	184 173			

L. Zwalinski, HighRR Lecture Week - April 2016, https://indico.cern.ch/event/524795/contributions/2236586/attachments/1347371/2032209/20161004_ECFA_det_cool_final.pdf Slide 29

Preliminary & self-estimated!

Computing

What do we use computers in HEP for?

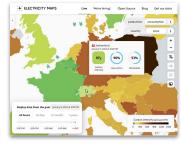
- This presentation ;)
- Data processing
 - Filtering data, applying calibrations, calculating new variables, reducing information, compressing data, ...
- Simulation
 - E.g. Monte-Carlo simulations of LHC collision events \rightarrow theoretical calculation + detector simulation
- Use distributed computing systems such as the WLCG

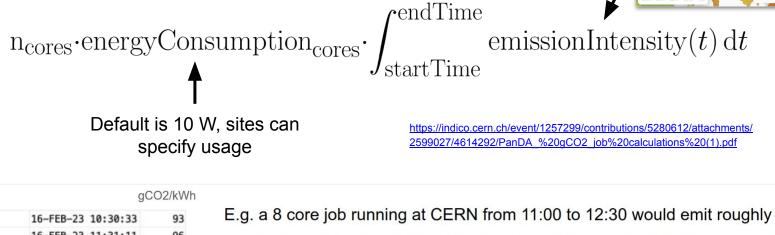
https://wlcg.w

Emissions from computing

- Example: Ben's PhD time
 → Write efficient code and test it!
- Watch out! CO2e/CPU hour largely varies, depending on what you <u>include/assume</u>!

Pre	iminary!	
سا	Calculated using Green-Algorithms.org	CO2e
	Grid (WLCG)	39 t
	HTCondor	0.2 t
	Other	0.12 t
	Travel - Train	0.7 t
	Travel - Plane	0.9 t
	<u>SUM</u>	<u>41 t</u>

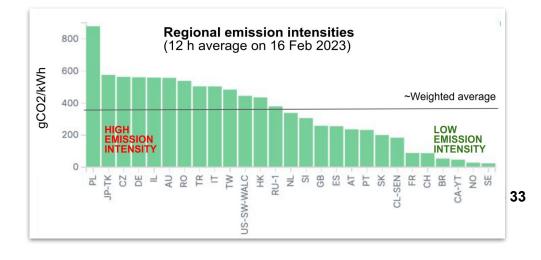

Estimate of Ben's PhD's CO2e


 Computed CO2e emission as in <u>Adv.</u> <u>Sci. 8 (12) p. 2100707</u> (available at <u>https://www.green-algorithms.org/</u>)

- Automatic calculation of CO2e on distributed computing system desirable
 - Done for NAF at DESY
 - Now also done for ATLAS' grid

ATLAS WLCG CO2e emission tool

СН	16-FEB-23	10:30:33	93
СН	16-FEB-23	11:31:11	96
CH	16-FEB-23	12:31:01	86


8 * 0.5h * 10W * 93 gCO2/kWh + 8 * 1h * 10W * 96 gCO2/kWh = 11.4 gCO2

- Estimate CO2e of computing jobs
- Emission intensity depends on country

SPITZENFORSCHUNG FÜ

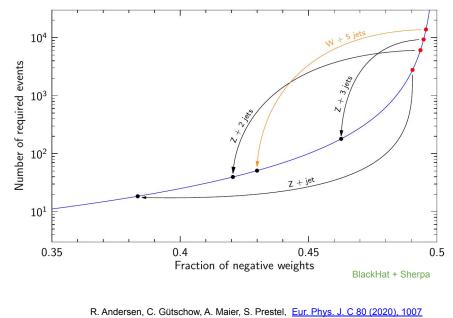
Calculate average CO2e over all • available sites

DESY.

Towards more sustainable computing

- Reduce & reuse
- Users:
 - write efficient code
 - test & think before sending jobs
 - don't produce samples never used
 - $\circ \rightarrow$ show users CO2e footprint?
 - $\circ \rightarrow$ training programs / courses?
 - $\circ \rightarrow$ virtual "budget" of emitted CO2e?
- Computing centers:
 - buy efficient hardware
 - use efficient cooling systems
 - reuse waste heat if possible
 - use hardware for long time, recycle
 - Operate when energy is "green"?

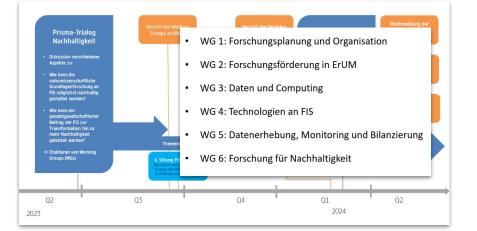
13-inch MacBook Pro life cycle carbon emissions


73%	Production
7%	Transport
19%	Use
<1%	End-of-life processing

https://www.apple.com/environment/pdf/products/note books/13-inch_MacBookPro_PER_Nov2020.pdf

Reduce footprint of Monte Carlo simulation?

- Monte Carlo simulations give us e.g. simulated LHC collision events
- Each event contains particle types, momenta, etc. & weight w
- $\Sigma w = \sigma$ (total cross-section) $\Sigma w^2 =$ stat. uncertainty
- Weight can be negative (e.g. @NLO)
 → more events for same stat. accuracy
- Idea of Andersen, Maier et al: redistribute event weights
- For an event with w < 0: can always find phase space region with Σw > 0
 - redistribute weights in this region such that all weights > 0
- Method looks promising & being tested


R. Andersen, A. Maier, <u>Eur.Phys.J.C 82 (2022) 5, 433</u> J. R. Andersen, A. Maier, D. Maître <u>arXiv:2303.15246</u> A. Maier, https://indico.desy.de/event/40118/

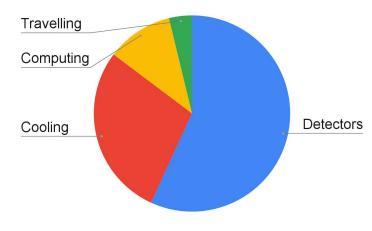
There is more on sustainable computing!

- Data preservation, e.g. FAIR principles, e.g. <u>PUNCH 4 NFDI</u>
 - Keep data such that it is reusable!
- Code preservation, e.g. git
- Data storage, e.g. tape vs disk
- German-wide initiative by <u>ErUM Data Hub</u>
 → workshop in May / June 2023
 - Paper <u>arXiv: 2311.01169</u>
 - Many interesting ideas / discussions
 - E.g. central computing center
- Input from BMBF at workshop
 - More sustainable research
 - New funding opportunities
 - Strategy currently being defined

https://erumdatahub.de/

Salome Shokri-Kuehni,

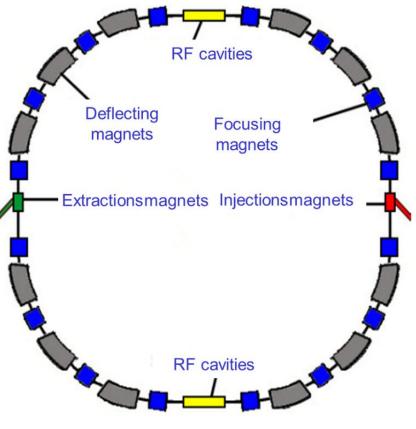
Transportation is not free of emissions...


- Mobility / transportation is very important for our business
- Need to get to work, present work at conferences, discuss next steps with colleagues, collaborate internationally
- Emissions depend strongly on the form of transportation we use

CO2e emission per km [g]

What to do regarding travelling?

- CO2e from business travel / commuting depends on institute
- Conference travel / collaboration meetings lead to lots of CO2e
 - e.g. LHCb collaboration weeks: ~0.5 tCO2e / participant
- Strong reduction if reduce travelling & distance
- Don't forget: in-person meetings very efficient
 → do travel! But trade-off if worth it

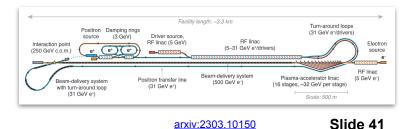


Preliminary & self-estimated!

LHCb collaboration, phase-II TDR, 2022, https://cds.cern.ch/record/2776420/files/LHCB-TDR-023.pdf

DESY. HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Accelerators & construction


Sustainability and accelerators

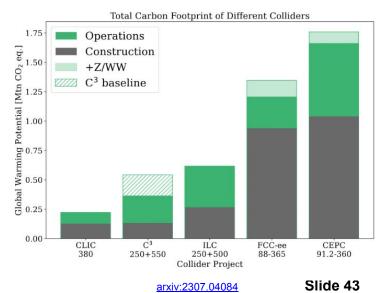
- Accelerators consume much more electricity than experiments
 - Cavities, magnets, cooling
 - >50 % of CERNs energy usage
- Much effort to reduce footprint of next machine
- More efficient, high(er) temperature magnets
 - Few Kelvin can make large difference!
 - Use permanent magnets, <u>rare-earth caveat</u>?
- More efficient klystrons being developed
- Waste heat <u>recovery</u>?
- Power re-use, e.g. <u>energy recovery linacs</u>?
 <u>arxiv:2207.02095</u>
- Wake field acceleration? <u>arxiv:2303.10150</u>

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

DESY.

Emissions from construction

- Construction is an essential part of our work
- Need buildings to work in, host detectors, etc.
- Many of the experiments / accelerators in HEP are underground → need tunnels and excavated areas
- Digging, drilling, building (in particular concrete) have a large CO2e footprint
- E.g. building 1m² emits ~550 kgCO2e
- Cannot improve emissions that already went into construction, but can take care of future constructions
- Recent study by the ARUP company: CO2e of <u>tunnel building</u> for CLIC / ILC
 - 150 ktCO2e 300 ktCO2e
 from tunnels, shafts, caverns



Sustainability and the future

- Sustainability important for next HEP projects
 → it's not about stopping science/HEP, but
 doing it in a sustainable way
- <u>Life-cycle assessment</u>
 - \rightarrow identify large CO2e sources
 - \rightarrow determine most efficient next machine
 - electricity consumption of next projects compared for Snowmass <u>arxiv:2208.06030</u>
 - recent paper comparing construction / operations CO2e: <u>arxiv:2307.04084</u>
 - Estimate absolute numbers; also try to establish a "CO2e / physics" case
- Beware: use established methods, inputs from reliable sources, comparisons must be fair!
 → much room for getting numbers wrong (e.g. arxiv:2208.10466)

S. Gessner et al, https://indico.cern.ch/event/1160140/contributio ns/5014540/attachments/2503851/4301660/CE RN_sustainability_ITF_Turner_Gessner.pdf

DESY. HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Other on-going, uncovered projects

- ECOGAS collaboration (eco-friendly gas detectors)
- Multiple computing projects:
 - Software optimisation (e.g. in the SWIFT-HEP project, <u>HEP software foundation</u> <u>training</u> and other coding trainings e.g. <u>DESY sustainable coding workshop</u>, <u>Pythia</u> <u>merging optimisation</u>, <u>Avoiding negative event weights</u>)
 - Highly efficient computing centers (e.g. Prevessin computing centre, <u>Green IT cube</u> <u>Darmstadt</u>, etc.)
 - Use waste heat of computing centers and re-use of cooling water (e.g. Prevessin, DESY, <u>KIT</u>, ...)
- The <u>KITTEN project</u>: store energy when it is "green", re-use later
 → aim for 100% green operation of KARA accelerator (Karlsruhe)
- Setting up energy use assessment tools (e.g. <u>ISO 50001 @ CERN</u>)
- Organising conferences with low GHG (e.g. <u>PhD school Vienna</u>, <u>Women in</u> <u>Physics Canada</u>)
- Improving sustainability in commuting (e.g. Freiburg)
- DI
 And many, many more! (see e.g. <u>Sustainability in HEP conference</u>, <u>HECAP</u>) Seite 44

Summary and conclusion

- There is scientific evidence for human activities increasing average temperatures on the planet
 → Will make habitated areas uninhabitable
- HEP contributes to the CO2e emissions, e.g. CERN emits ~360 ktCO2e / year or ~30 tCO2e / scientist (assume 12000 scientist)
 - Can largely be reduced by fixing gas leaks
 - <u>Compares to astronomer</u> with ~20-40 tCO2e / scientist
- Much activity on-going in HEP community to reduce footprint of current and upcoming projects
- What can I do?
- (!) Make efficient use of your resources
- × °
- \circ $\;$ Think about emissions sources and how to reduce them
- Involve greenhouse gas emissions & their minimisation in current & the planning of future projects
 - Raise awareness

CLIMATE CHANGE WILL NOT WAIT FOR US TO FINISH OUR RESEARCH.

LET'S TAKE Action Now!

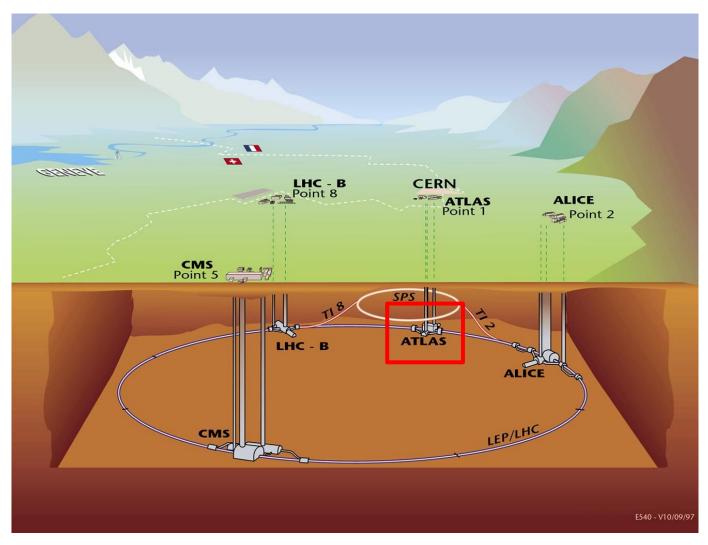
Backup slides

DESY. HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

What can we do about global warming?

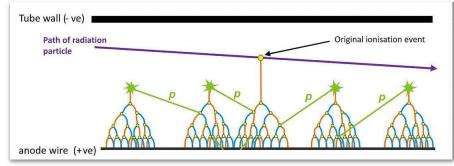
If we want to tackle global warming, we must look for solutions everywhere:

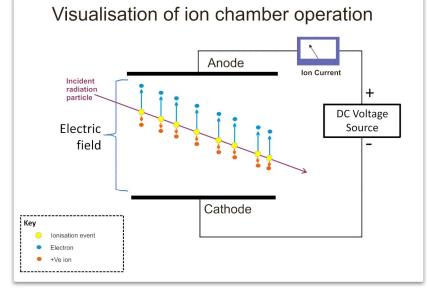
- Make carbon footprint & reusability a design parameter
- Develop more energy efficient detectors & accelerators
- Reduce travelling or use more sustainable transportation
- Introduce climate panels
- Introduce climate / CO₂ budgets similar to monetary budgets
- Calculate & publish CO₂ consumption of publications

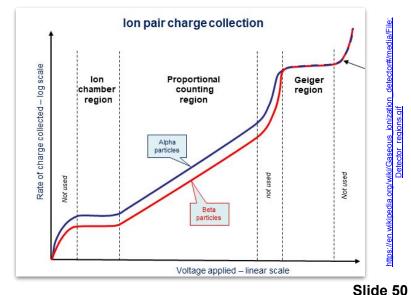

- Carbon footprints for computing jobs:
 - show CO_2 monitor
 - stricter rules on usage (grid retries, ...)
 - Prefer "green" grid sites
- CO₂ friendly coding: Profiling & (compiler) optimization, ...
 - faster code's nicer anyway!
- Check physics: Less systematics? More skimming? ...
- ...

But most importantly:

Make sustainability and the impact on global warming part of everyday work!

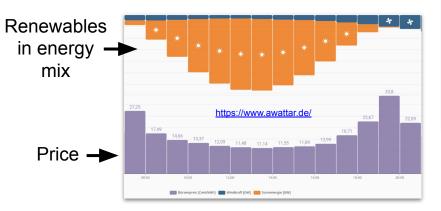

DESY. HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

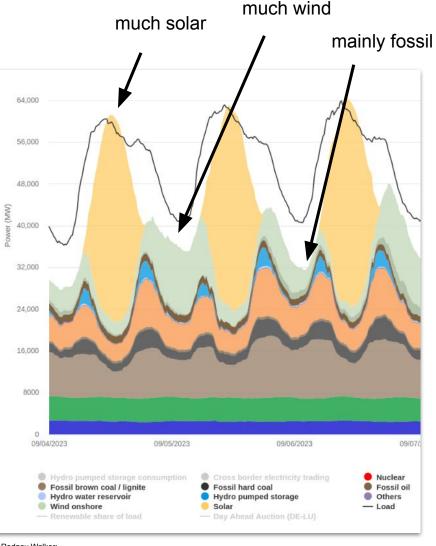

ATLAS at the LHC



Gaseous detectors

- Enclose gas in electric field
- Incoming particles ionise gas
- Electrons / holes drift to electrodes → signal
- Charge/particle depends on gas
- If field gradient large: multiplication of initial charges
- Multiplication side effect: photons
 - \rightarrow initiate additional showers
 - \rightarrow modify signal, prolong dead time
 - \rightarrow avoid \rightarrow add special gases

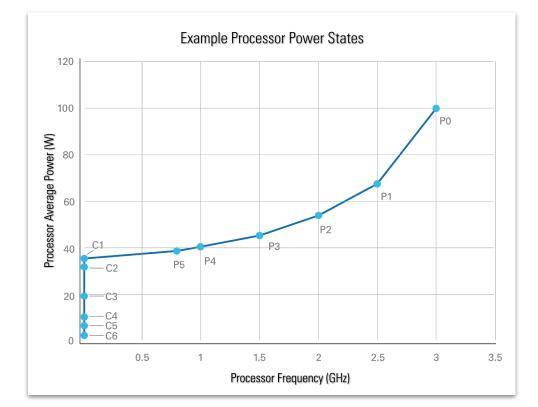




arXiv: 2311.01169

Compute when energy is "green"?

- "Green" electricity production varies: weather, day/night, ...
- Operate computing centers when energy is green → lower footprint!
- "Green" electricity price is cheaper! (caveat: only w/ spot market prices)
- Needs reliable forecasting
- Requires flexible reaction of computing centers
- Kill jobs? → waste invested CPU
- Turn computers off? \rightarrow lifetime :(

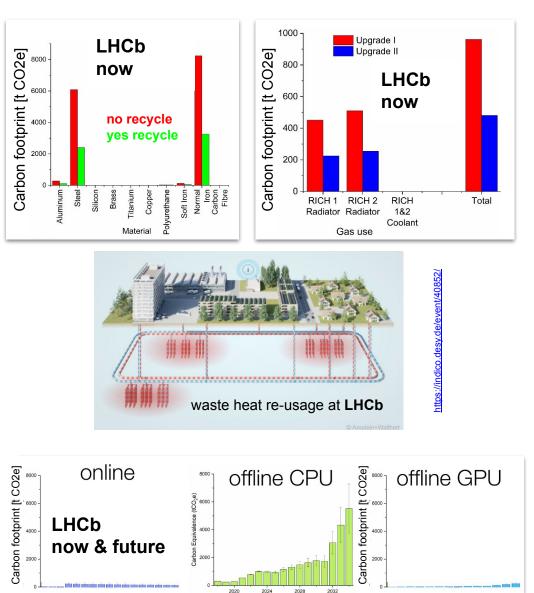

Rodney Walker: https://indico.desy.de/event/37480/contributions/140510/attachments/82246/108365/Meinerzhagern_comp_ Ops(2).pdf

How to adjust computing consumption?

DESY

- Reduce CPU clock frequency!
- Used e.g. to save battery
- Non-linear increase of power with CPU frequency + baseline offset from periphery → can increase efficiency?
- Frequency reduction tested
 → no performance degradation
 → but jobs take longer
- Longer jobs not a problem if running O(days) anyway

	Frequency [GHz]	Power [W]	Calculations / W [HS06]	Calculations / nominal	lann,
	1.5	286	3.79	98%	ias Hartmann
	2.15	330	4.32	111%	MD, Thomas
JE	2.85	524	3.88	100%	T2 AMD,

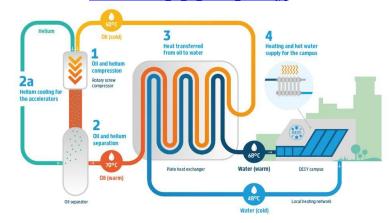

Rodney Walker: https://indico.desy.de/event/37480/contributions/140510/attachments/82246/108365/Meinerzhagern_comp Ops(2).pdf

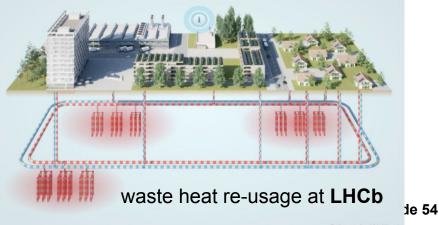
Sustainability in other HEP experiments

- CO2e emissions of LHCb in run-3 discussed in phase-2 TDR
- Estimates of gaseous detectors, power consumption, computing, travelling + mitigation ideas
- Initiative from management
- Waste heat used to heat houses
- Estimating post-upgrade CO2e
- Entire community getting interested, e.g. Belle-II, ALPS-II
- **CMS, ALICE** have numbers, but no report (AFAIK; ATLAS, too)

DESY.

HELMHOL¹




Heat recovery

- DESY hosts multiple accelerators, e.g. PETRA, FLASH, XFEL
- FLASH, XFEL use liquid helium for cooling of superconductors
- Recover heat from helium cooling & heat ~¹/₃ of the campus
- Heat recovery being extended to cooling of "normal" conducting magnets from PETRA
- Similarly at LHCb: use waste heat of computing center to heat private houses

https://mbb.desy.de/sites_desygroups/sites_extern/site_mbb/content/e203714/Bildschirmfot o2021-06-22um09_57_57_medium_medium.jpg

