
Laboratory Experiment

Lifetime of Muons

Muons (µ -leptons) from cosmic radiation are stopped in a copper or scintillator block. With the help of
plastic scintillators and electronically measured delayed coincidences, the decay law and the mean lifetime,
τµ, are determined for the stopped particles.

1 Muons from cosmic rays

The practical experiment examines muons from cosmic rays. The primary cosmic radiation consists of
85% high-energy protons (with energies up to 1011 GeV). In collisions of these protons with atomic nuclei
of the earth’s atmosphere charged pions arise. The simplest reactions are:

p+ p→ p+ n+ π+

p+ n→ p+ p+ π−

The charged pions decay to 100% through the weak interaction (Figure 1) with a mean lifetime of 2.60·10−8s
into a muon and a neutrino:

π+ → µ+ + νµ

π− → µ− + ν̄µ

Figure 1: Feynman-diagram of π decay

The positive charge surplus of the primary cosmic radiation is reflected in the µ+/µ− ratio, which is
1.25 to 1.3.
The positively (negatively) charged muon decays with a mean lifetime of [11]

τµ = (2.1969811± 0.0000022) · 10−6s

into two neutrinos and a positron (electron)

µ+ → e+ + νe + ν̄µ

µ− → e− + ν̄e + νµ
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(a) Feynman diagram for muon decay in the
Fermi effective theory

(b) Feynman diagram for muon decay in
the Standard Model

Figure 2: Feynman Digram of µ decay

The Feynman amplitude M describes the transition amplitude of the process. It is derived from the
Feynman rules for interaction vertices and the propagators involved.

The Feynman amplitude MF for Fermi four-point interaction, as shown in Figure 2a, is

MF ∝
√

2GF

whereGF is the Fermi constant which was introduced by Fermi to phenonemologically describe the strength
of the weak force.

The Fermi interaction is in reality not point-like but that only appear point-like due to the fact that
the weak interation is mediated by weak bosons with very large masses according to the Standard Model,
shown in Figure 2b. Thus the muon decays with an intermediate W boson vertices, each proportional to
the weak coupling constant gw, which is the strength of weak interactions, and the weak isospin charge, a
quantum number relating to the weak interaction, I, which is 1/2 for fermions. The Feynman amplitude
for the Standard Model process, where the momentum transfer is much smaller than the W mass, is

MW ∝
g2
wgµν

4m2
W

Comparing the full Standard Model form for the amplitude with the one expected assuming a Fermi
four-point interaction we identify:

√
2GF =

g2
w

4m2
W

(1)

This parameter can also be reated to the vacuum expectation value of the Higgs field the Brout-Englert-
Higgs theory. This theory is based on a mechanism inspired from the spontaneous symmetry breaking
of a continuous symmetry and is essential to explain the generation of the ”mass” property for gauge
bosons[3, 4]. The gauge boson masses are related to the vacuum expectation value of the Brout-Englert-
Higgs Field [10] and the weak coupling constants, for example::

mW =
1

2
vgw (2)

Therefore, from 1 and 2:

√
2GF =

1

v2
(3)

Using the full Feynmann amplitude, the muon lifetime can be calculated as

τµ
−1 = G2

F .
m5
µ

192π3
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which can be used to determine the Fermi coupling constant, GF , of the weak interaction and the vacuum
expectation value, v, of the BEH field. The most precise value of v and equivalently Fermi constant, GF ,
is measured by muon lifetime since the mass of muon is known very precisely.

Task
Calculate the Fermi coupling constant, GF , and vacuum expectation value, v, of BEH Field from the mea-
sured lifetime, along with the error propagation to find the uncertainty in the calculated value. Compare
the calculated values with the literature values.

Muons are produced at an altitude of about 10 km. Because of their high energy they are relativistic
and thus reach the earth’s surface before they decay. The incoming cosmic radiation consists of more than
70% of muons. The flux of muons at sea level is about 170m−2s−1. The stopping blocks, made of copper,
and the plastic scintillators have an area of 0.6m × 0.36m in setup 1 and 0.1m × 0.2m in setup 2. Muon
count rate of about 35 s−1 in both setups are expected. The energy distribution of the muons has its
maximum at about 2 GeV.

The mean lifetime decay law is exponential and reads

N(t) = N(t0)e−(t−t0)/τ

The decay spectrum as a function of time can be determined by stopping the cosmic muons in the stop-
ping block and measuring the time between the entry of the muon in the stopping block and the emission
of the electron or positron from the decay. Further explanations of the muon decay and introductions to
particle physics are available in [1, 2, 5].

The µ− capture by nuclei

A negative muon coming to rest in matter is captured by the electromagnetic field of an atom and reaches
the ground state of the atom (K-shell) in less than 10−12 s. The wavefunction of the muon overlaps with
that of the nucleus so that the muon can be absorbed by the nucleus. The capture of the negative muon

µ− + p→ n+ νµ

in this case competes with free decay. µ− capture shortens the effective lifetime of µ. It results to:

1

τ
=

1

τ0
+

1

τc
(4)

where τc is the µ− capture lifetime. Because the muons of cosmic radiation are from a mixture of positive
and negative muons, one expects the following time behavior for the number of disintegrated muons:

N(t) = N(µ−, t0)e−(t−t0)/τ0e−(t−t0)/τc +N(µ+, t0)e−(t−t0)/τ0 (5)

because the positive muons do not undergo capture.

Nucleus or average lifetime
material τµ [µs]

Scintillator ≈2.1 ± 0.1
Al 0.865 ± 0.004
Cu 0.1636 ± 0.0008
Pb 0.0746 ± 0.0006

Table 1: Effective lifetimes of µ− for some materials
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Table 1 shows the effective lifetime values of µ− for some selected materials. Copper and scintillator
material are available as stopping material in the practical experiment. For the time spectrum with a time
> 1µs, the proportion of µ− decays after capture in copper is negligible (Figure 3). After that time you
measure only free µ+ decays. In the scintillator stopper, the time distributions of µ+ and µ− decays are
so close together that in practice the average value of both lifetimes is determined.
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Figure 3: Simulation study of different events in the setup: Time until electron detection after a muon
event for different electron producing processes according to a Geant4 simulation of the detector. The
results are given for the upper scintillator (SC1) and the lower scintillator (SC2) respectively.

Comprehensive questions 1

1. Which are the elementary particles?

2. Which fundamental interactions of elementary particles are the basis of all processes in physics?

3. What conserved quantities are there?

4. Which are the fundamental coupling constants?

5. Which equation describes the energy loss of muons in matter?

6. How can you detect muons?

7. How is the muon lifetime defined?

8. Why do the muons have to be stopped in this experiment?

9. Why do positive muons disintegrate in matter with the same lifetime as free muons?

10. Why are the mean lifetimes of free µ+ and µ− the same?
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2 Measuring principle and measuring setup 1

Figure 4: Principle sketch of the experiment 1

The experimental setup consists of two copper plates of thickness 1 cm and two scintillators above
and one below the copper plates (in the following, the signals and the spectra registered by the two
upper scintillators are marked ’top’ and the signals/spectra registered by the lower scintillator are marked
’bottom’). The scintillating light is read out by photomultiplier tubes (PM) and converted into an electric
signal,
A muon stopped in the copper target is indicated by signal 123̄, i.e. detector 1 and 2 respond but not
detector 3. This is taken as a start signal for timing in a TDC (Time-to-Digital Converter).
The stop signal for the TDC is signal 23̄ for the upward-emitted positron and 2̄3 for the downward-emitted
positron, see Fig 4.
The start signal in the TDC opens a time window of 10 µs within which the stop signals must arrive. As
a result, accidental coincidences (for example due to the low-energy content of cosmic radiation, such as
electrons) are considerably reduced.
The signals of the photomultipliers are converted by a discriminator into uniformly shaped signals with an
output width of 40 ns. In addition, the discriminator suppresses low signal level signals > -100 mV (e.g.
noise) since the electronic pulse is negative.

Signal Rate [s−1]
1, 2, 3, 4 65 · · · 85

12, 34 20 · · · 25
23̄, 2̄3 40 · · · 70

123̄ 2 · · · 3

Table 2: Typical rates in experimental setup 1

The coincidence unit provides the required coincidence signals. The TDC sets the time window and
converts the time between the start and stop signal into a digital signal. The events are read out by the PC
and stored to disk. For the data analysis, a sum of the upper and lower time spectrum with 256 channels
each is available. The width of a channel is 1µs/24,000.
The settings of the PM’s must be optimized on the internship day. Further details of the experimental
setup can be found in [6].
The data acquisition is done with a LabView program. Typical count rates for the detector array are listed
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in Table 2.
Disintegrated positive muons are detected in the order of 1 min−1 in the upper spectrum and 0.5 min−1

in the lower spectrum.

Comprehensive questions 2

1. How does a scintillator work?

2. How does a PM work? What happens when the high voltage is increased?

3. What does the discriminator do?

4. What does coincidence mean?

5. How much energy does a muon typically lose in the scintillator?

6. Why is a precise adjustment of the photomultiplier important for the lifetime measurement?

3 Measuring setup 2

Figure 5: Principle sketch of the experiment 2

The structure consists of a block of plastic scintillators of the total size 2.0 × 0.1 × 0.1 m3 (material
NE 110 from Nuclear Enterprise, manufactured in 1981, converted to this block in 2005). At each end,
a photomultiplier is mounted, each connected to the scintillator with only a pad of soft plastic material
(about 10 mm thick) as a light guide. The output signals of the photomultipliers are each sent to a
discriminator with the adjustable threshold of the order of 100 mV. The resulting signals 1 and 2 are
sent to a coincidence unit. The coincidence signal 1·2 indicates that a particle of cosmic radiation has
passed through or has been stopped or that a particle of environmental radioactivity has been stopped.
All coincidences 1·2 are sent as the start signal of a TDC with 256 channels of channel width 1µs/24,000.
If a stopped muon decays within 10 µs in the scintillator block, the decay electron is likely to emit a light
signal which again leads to coincidence (1·2)delay over both photomultipliers whose signal is used as a
stop of the TDC. The sum of the delayed coincidences leads to the lifetime spectrum of the positive and
negative muons.

4 Determination of the lifetime - Introduction to statistical
methods

The simplest way to evaluate an exponential decay law would be to logarithmically plot the measurements
and draw a regression line. Statistical methods additionally provide information about the errors of the
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particular result and are i.e. more reliable than ”paper and pencil”. The methods described below are
essential also in todays research in particle physics.

4.1 The Maximum Likelihood Method

The maximum likelihood principle is a method that serves to estimate from measured data {x1, · · · , xN} an
unknown quantity, here in the lifetime of the muons. For this purpose, the probability density distribution
P (~x|a) of the measured values must be known as a function of the desired quantity a. The likelihood
function L(a|x1, · · · , xN ) is then the product of the individual probabilities of the measured values:

L(a|x1, · · · , xN ) =

N∏
i=1

P (xi|a) (6)

The function L(a) for given measured values xi is a function of the desired parameter a and indicates the
probability (a posteriori probability) of obtaining the measured values for a given choice of the parameter
a. The best estimate of a is the value â, which maximizes L(a). In practice, it is easier to maximize the
logarithm of L. This leads to the equation:

d lnL

da

∣∣∣∣
a=â

= 0 (7)

4.1.1 Apply the max-log-likelihood method to the exponential decay law

If a process obeys the exponential law of decay, the probability density is to measure a decay time ti as a
function of the mean lifetime τ

P (ti|τ) =
1

τ
e−ti/τ (8)

(the integral over all possible decay times from 0 to ∞ yields just 1). This probability density is correct
for any (unbinned) measurement of the time (difference to methods 2 and 3). The following equations
thus relate to N independent measured values ti (i = 1 · · ·N). From this, the average lifetime τ can be
determined. The logarithmic likelihood function is:

lnL = ln

( N∏
i=1

(1

τ
e−

ti
τ

))
=

N∑
i=1

ln
(1

τ
e−

ti
τ

)
=

N∑
i=1

(
− ti
τ
− ln τ

)
Differentiation yields:

d lnL

dτ

∣∣∣∣
τ=τ̂

=
∑(

ti
τ̂2
− 1

τ̂

)
= 0

⇒ τ̂ =
1

N

∑
ti

(9)

The lifetime estimate is thus the average of all measured times.

If it is only possible to observe the decay times up to a time T , then the probability density function
must be modified accordingly (to achieve a normalization to 1):

P (ti|τ) =
1

τ
e−ti/τ

1

1− e−T/τ

7



Hence, the logarithm of the likelihood function becomes:

lnL =
∑(

− ti
τ
− ln τ − ln(1− e−T/τ )

)
(10)

By differentiation and zeroing one obtains for τ :

d lnL

dτ

∣∣∣∣
τ=τ̂

=
∑(

ti
τ̂2
− 1

τ̂
+

1

τ̂2

Te−T/τ̂

1− e−T/τ̂

)
= 0

⇒ τ̂ =
1

N

∑
ti +

1

N

∑ Te−T/τ̂

1− e−T/τ̂

⇒ τ̂ =
1

N

∑
ti +

Te−T/τ̂

1− e−T/τ̂

(11)

The transcendental equation for τ can only be solved numerically or graphically, which is not a problem
with today’s calculation methods.

In the lab experiment, it must be known what the mean decay time in each channel is (the channel
center is a good approximation) and how many channels are taken for averaging. If you take e.g. the
channels 19 to 118, i.e. 100 channels, T is 4.167 µs. With this value for T, τ must be determined from∑
ti/N according to the above equation.
In this method, instead of N different times, Ni events are registered in channel i at a time ti. Each

measured value has the statistical uncertainty Ni. For K channels, the total number N =
∑
Ni for τ and

the error (from error propagation) result:

τ̂ =
1

N

K∑
k=1

Nk · tk + correction term (12)

στ̂ =
1

N

√∑
Nk · t2k (13)

4.1.2 Application of the max-log likelihood method to a Poisson distribution

The probability of observing N events when f events are expected is described by the Poisson distribution.
If, in the case of a fixed τ , one expects fi entries in time channel i, then the following probability density
distribution determines the probability of actually measuring Ni entries. The distribution is

P (Nf |fi) =
fnii · e−fi

Ni!
(14)

The standard deviation of the Poisson distribution for the observed Ni around its mean value fi is

σi =
√
fi (15)

In contrast to the first method we now consider bins of times (ti, ti+∆t). The probability of measuring
Ni events in a particular channel i is used. This probability is assumed to be a Poisson distribution around
an expected value fi. This expectation value depends on the position and width of the considered channel
(ti,∆t), as well as on the selected parameter τ and the normalization N0 of the exponential function
f = N0

τ · e
−ti/τ . The expected value fi is a function of these four parameters, fi = fi(ti,∆t, τ,N0). With

N events in total and K bins in the histogram, the following applies:

fi(ti,∆t, τ,N0) =

∫ tt+∆t

t=ti

N0

τ
e−t/τdt ≈ N0

τ
· e−(ti+∆t/2)/τ ·∆t (16)

N0 = N0(τ) =
N

e−t1/τ − e−(tK+∆t)/τ
(17)

andN =

K∑
i=1

Ni =

∫ tK+∆t

t=t1

N0

τ
e−t/τdt (18)
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Thus, the probability of measuring Ni entries in channel i is:

P (Nf |τ) =
fnii · e−fi

Ni!
(19)

The best estimate τ for the measured data is sought. This is the maximum of the likelihood function

L(τ |N1, · · · , NK) =

K∏
i=1

P (Ni|τ) (20)

depending on τ . This corresponds to the determination of the minimum of 2 lnL. Since this is not
analytically solvable, 2 lnL is plotted as a function of τ . In the minimum of 2 lnL one finds the estimated
τ . The uncertainty of the estimate, i.e. the standard deviation στ̂ can also be deduced from the graph: In
the case of a deviation of στ̂ from the estimated value, 2 lnL has increased by one unit compared to the
minimum [7, 8, 9]. The value of 2 lnL results

−2 lnL = −2
∑
i

Ni ln fi + 2
∑
i

fi + 2
∑
i

ln(Ni!) (21)

= −2
∑
i

Ni ln fi + 2N + 2
∑
i

ln(Ni!) (22)

the term 2N + 2
∑
i ln(Ni!) does not depend on τ . For the determination of τ it is therefore sufficient to

use the term
2
∑
i

(−Nilnfi) (23)

4.1.3 Application of the max log likelihood method to a Gaussian distribution

The Gaussian distribution results from the Poisson distribution for the limiting case of large expected values
f . For a good approximation, f should be larger than 10. In our case, that means that the expectation
values of the individual channel contents should be fi > 10. Applied to the practical experiment results
for the Gaussian distribution:

P (Ni|τ) =
1√

2πσ2
i

e
− (Ni−fi)

2

2σ2
i (24)

where fi and N0 are as above:

fi = fi(ti,∆t, τ,N0) =

∫ tt+∆t

t=ti

N0

τ
e−t/τdt ≈ N0

τ
· e−(ti+∆t/2)/τ ·∆t (25)

N0 = N0(τ) =
N

e−t1/τ − e−(tK+∆t)/τ
(26)

σi = σ(fi) =
√
fi ≈

√
Ni (27)

To determine the best estimate , one proceeds analogously to the Poisson distribution.
The maximum of the likelihood function

L(τ |N1, ·, Nk) =

k∏
i=1

P (Ni|τ) (28)

is to be determined, which in turn corresponds to the determination of the minimum of 2 lnL. This should
also be determined graphically.
2 lnL results in:

−2 lnL =
∑
i

ln(2πσ2
i ) +

∑
i

(Ni − fi)2

σ2
i

(29)
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The term
∑
ln(2πσi)

2 follows from the approximation in Eq. 27 and does not depend on τ . For the
determination of τ̂ it is therefore sufficient to use the term

χ2 =
∑
i

(Ni − fi)2

σ2
i

(30)

The determination of the minimum of χ2 as a function of one or more variables is called χ2 or least squares
method. For gaussian distributed random variables this function follows the χ2 distribution.
Further literature on statistical methods of data analysis is available [7].

Comprehensive questions 3

1. What does likelihood mean?

2. What does χ2 mean intuitively?

3. What do the χ2 method and the Max. Likelihood method have in common?

4. Why do you use −2 lnL()?

5 Discussion on the time spectrum

5.1 Contributions to the time spectrum

There are possibly 4 contributions to the time spectrum:

1. Real signal from electrons/positrons from muon decays in the Cu absorber or the scintillator: these
should have an exponential time spectrum with decay constant of T ≈ 2 µs.

2. Signal from protons or other particles created by the through-flying muon in the scintillator or target:
these signals appear rapidly after the muon traversed the setup and the background is large at times
shorter than 100 ns but small at times larger than 100 ns.

3. Signal from muons captured in atoms of the Cu target or the scintillator: these signals may be
electrons from the muon decay inside the atom, or photons from atomic transitions. These processes
also have a very short time constant in the range 0.1 ns - 10 ns

4. After-pulsing of the PMT, which is caused by positive ions in the dynode volume which travel back-
wards in the electric field and kick out new electrons from the dynodes: this gives pulses after the
through-flying muon pulse in the top scintillator; unfortunately, their time constant is also about 1-3
µs, similar to the muon lifetime signal.

As observed form Figure 5, muon decay takes place for t > 10 ns. For times t < 10 ns there are
processes other than muon capture which contribute to backgrounds.

5.2 Minimising background contributions

When an analysis cut of time T > 2-3 µs is applied the background from 2) and 3) is basically eliminated,
but there is still a contribution from 4), which we assume to be small. A better measurement would need:

• two PMTs on each scintillator to trigger on their coincidence and reduce accidental signals from
after-pulsing of a single PMT

OR

• a measurement of the after-pulse spectrum and a combined likelihood fit with all backgrounds 2+3+4
together with the exponential signal
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(a) Log of energy deposited vs time (b) Energy deposited vs time

Figure 6: Simulation of energy deposited vs time for 10 million primary particles in a scintillation detector
setup with GEANT4
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