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We investigate hybrid structures based on a bilayer quantum spin Hall system in proximity to an s-wave
superconductor as a platform to mimic time-reversal symmetric topological superconductors. In this bilayer
setup, the induced pairing can be of intra- or interlayer type, and domain walls of those different types of pairing
potentials host Kramers partners (time-reversal conjugate pairs) of Majorana bound states. Interestingly, we
discover that such topological interfaces providing Majorana bound states can also be achieved in an otherwise
homogeneous system by a spatially dependent interlayer gate voltage. This gate voltage causes the relative
electron densities of the two layers to vary accordingly, which suppresses the interlayer pairing in regions with
strong gate voltage. We identify particular transport signatures (zero-bias anomalies) in a five-terminal setup that
are clearly related to the presence of Kramers pairs of Majorana bound states.
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I. INTRODUCTION

One of the fundamental prerequisites of topological quan-
tum computing [1] (TQC) is based on the hardware exhibiting
quasiparticles with non-Abelian exchange statistics. The pri-
mary example of such non-Abelian quasiparticles is provided
by Majorana bound states (MBSs), which are zero-energy ex-
citations with anyonic braiding properties. There is a plethora
of theoretical proposals [2–10] predicting favorable condi-
tions for hosting MBSs. Moreover, experimental evidence of
MBSs has been reported in several systems [11–15].

In particular, superconducting hybrid structures have been
proposed to host MBSs. Those hybrids can be realized in
various ways, such as by coupling topological insulators (TIs)
[16–21], semiconducting nanowires [6,7,22–26], or chains of
adatoms [27–32] to an ordinary s-wave superconductor (SC)
via the proximity effect. For our proposal, it is important
to be able to attain a decent proximity effect between a
quantum spin Hall (QSH) insulator—a two-dimensional (2D)
TI—and an s-wave SC. Fortunately, this task has already been
achieved in the laboratory in QSH insulators based on HgTe
in proximity to Al or Nb [33–37].

Inspired by the work of Klinovaja, Yacoby, and Loss
[38], we investigate bilayer QSH systems in proximity to
an ordinary s-wave SC (see Fig. 1 for a schematic). In this
setup, we assume competing SC pairings, namely the direct
pairing within the individual layers and the crossed pairing
between the layers. The latter pairing can be interpreted as a
Cooper pair splitting between the layers [39–42]. Importantly,
a significant interlayer pairing as compared to the intralayer
pairing can only be realized in the presence of interactions.

This requirement can be viewed as a consequence of a deeper
theoretical concept, i.e., that interactions are necessary for
the development of time-reversal symmetric topological su-
perconductivity in low spatial dimensions [43–45].

It has been shown before [38] that Kramers pairs of MBSs
are located at the boundaries between two regions in space
where the two different pairings (direct and crossed) domi-
nate. Remarkably, we demonstrate below how an additional
interlayer gate voltage can provide an experimental knob for
locally tuning the domain boundary of the superconducting
pairing potentials. This approach works because the interlayer
gate voltage effectively suppresses the crossed pairing.

We present analytical results based on an effective model
of helical edge states with proximity-induced pairing, and we
corroborate our findings with numerical data on a microscopic
lattice model of the 2D bilayer system. We start by investi-
gating the spectral properties of the hybrid system. Based on
the two complementary models, we examine the emergence
of MBSs at a spatial interface between two inequivalent
Bogoliubov–de Gennes (BdG) band structures.

Subsequently, we consider a five-terminal setup that allows
us to distinguish all transport processes (electron reflection,
Andreev reflection, electron cotunneling, and crossed An-
dreev reflection) by multiterminal transport characteristics.
Calculating the conductance matrix following the approaches
by Blonder, Tinkham, and Klapwijk (BTK) [46] as well as
Büttiker [47], we find—in the presence of MBSs due to a
domain wall in the superconducting pairing—dips (in the
local conductance) and peaks (in the nonlocal conductance).
By tuning the interlayer gate voltage, this picture can even be
inverted, i.e., we can find peaks for the local conductance and
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FIG. 1. Schematic of the bilayer hybrid system. It shows a bi-
layer consisting of two identical TIs (green slabs). The helical edge
states (with the same helicity) of both TIs are in proximity to an
s-wave superconductor (orange, grounded) and are subject partly
to an interlayer gate voltage V = μ1 − μ2 to control the chemical
potentials of the two TI layers. Intralayer (�1,2) as well as interlayer
(�c) pairings are possible.

dips for the nonlocal conductance. We carefully explain below
to what extent the zero-bias features in the conductance are
indeed related to the emergence of Kramers pairs of MBSs.

The article is organized as follows: In Sec. II, we present
the full model in a tight-binding and effective low-energy
Hamiltonian description. In Sec. III, we examine the spectral
properties of this model, where we show two different gap
closing mechanisms. In Sec. IV, we explain the appearance of
MBSs on a spatial interface between two different band gaps
in the BdG picture. In Sec. V, we present zero-bias anomalies
in local and nonlocal differential conductances. Finally, we
conclude in Sec. VI. Some technical details are moved to
Appendixes A and B.

II. MODEL

We study a hybrid quantum system consisting of two
identical HgTe quantum wells [48] in the QSH regime coupled
to an s-wave superconductor (see Fig. 1). Additionally, we
assume that an interlayer gate voltage allows us to tune the
relative electron densities between the layers. This is a diffi-
cult task in experiments because the SC screens the influence
of the gates. Hence, the geometry of SC and charging gates
has to be chosen in a clever way. We compare our effective
low-energy results to exact numerical data on a microscopic
bulk lattice model of the setup, which, in reciprocal space, is
described by the Bogoliubov de Gennes (BdG) Hamiltonian

Hk =
(

HBL
k �̂

�̂† −T HBL
k T −1

)
=

(
HBL

k �̂

�̂† −HBL
k

)
, (1)

where the matrix structure is in Nambu space, T denotes the
time-reversal operator, and the second equality follows from
time-reversal symmetry (TRS). The bilayer Hamiltonian HBL

k
describing two identical, tunnel-coupled HgTe quantum wells

has the following form in the layer pseudospin space:

HBL
k =

(
HBHZ

k − μ1 ht
k

ht
k HBHZ

k − μ2

)
, (2)

where the interlayer potentials μ1,2 are crucial for some of the
physics discussed in this work. In Eq. (2), HBHZ

k is assumed to
be the Bloch Hamiltonian of the standard Bernevig-Hughes-
Zhang model [49] on a square lattice with lattice constant
ax,y = a = 1, i.e.,

HBHZ
k =

(
hk 0
0 h∗

−k

)
, (3)

where one of the time-reversal conjugate (Kramers)
blocks is given by hk = A[sin(kx )σx − sin(ky)σy] − (Bσz +
Dσ0)[4 − 2 cos(kx ) − 2 cos(ky)] + mσz, and σi are the
standard Pauli matrices in orbital space. In the basis
(|E ,↑〉, |H,↑〉, |E ,↓〉|H,↓〉) the tunneling Hamiltonian
ht

k is diagonal in spin space. Its matrix structure in orbital
space is for spin up given by

ht↑
k = 1

2

(
tE α[sin(kx ) + i sin(ky)]

α[sin(kx ) − i sin(ky)] tH

)
,

(4)

and from TRS we have (ht↑
k )

∗ = ht↓
−k . Finally, the pairing

matrix �̂ has the following structure in the layer pseudospin
space:

�̂ =
(

�1 �c

�c �2

)
, (5)

where �c denotes the crossed Andreev (interlayer) pairing
[39–42,50,51] from Cooper pairs delocalized over the two
layers while �1 and �2 denote (intralayer) pairing within the
layers 1 and 2, respectively. Our Hamiltonian contains intra-
and interlayer pairing terms. In weakly interacting systems,
intralayer pairing is dominant. In the presence of Coulomb
interactions, however, interlayer pairing can gain in impor-
tance. The physical reason behind this gain is that it becomes
energetically more favorable to split the two electrons of the
Cooper pair than to let them remain a common unit [39–41].

If the superconducting pairings �1,2,c as well as the inter-
layer voltage V are much smaller than the bulk insulating gap
of the quantum wells, we expect an effective edge description
along the lines of Ref. [38] to be a good approximation.
There, the insulating bulk of the setup is neglected, thus
only superconducting pairings in the helical edge states of
the QSH bilayer system are considered. For simplicity, we
neglect direct tunneling of electrons between the layers, which
is reasonable for α/a < �1,2,c, and because the tunneling
decays exponentially with the distance of the two samples.

For the effective one-dimensional edge description along
the x-axis, the edge modes are linearized around the Fermi
momentum kF , and the fermion operators are expressed in
terms of slowly varying left- and right-moving fields ψ (x) =
(R1(x), L1(x), R2(x), L2(x), R†

1(x), L†
1 (x), R†

2(x), L†
2 (x))T . The

resulting noninteracting Hamiltonian can be written as

Ĥ = 1

2

∫
dx ψ (x)†Hψ (x), (6)
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FIG. 2. N-S-S′-N junction of a bilayer topological insulator (TI1
and TI2). (a) In region S (l1 � x � 0), we only consider intralayer
superconducting pairing �1,2, whereas in region S′ (0 < x � l2) we
assume a dominating interlayer pairing �c. (b) In both superconduct-
ing regions S and S′, we assume �2

c > �1�2. Here, the difference
between regions S and S′ is a steplike variation of the relative density
of the layers, i.e., a variation of μ1,2. The N sides are characterized
by gapless helical edge states illustrated by arrows and spins in the
figure. Full lines correspond to electron states and dashed lines to
hole states (in a Bogoliubov–de Gennes picture).

with the Hamiltonian density

H = h̄vFk̂(ζ0τ0s3) − μ1

2
ζ3(1 + τ3)s0 − μ2

2
ζ3(1 − τ3)s0

− �1

2
ζ2(1 + τ3)s2 − �2

2
ζ2(1 − τ3)s2 − �cζ2τ1s2, (7)

where the Pauli matrices si (ζi) [τi] act on spin (electron-
hole) (upper-lower QSH system) space and k̂ = −ih̄∂x is
the momentum operator in a real-space representation. With
the symmetric choice of μ1,2 = ±V/2, we parametrize the
appearance of the chemical potentials in Eq. (7) with an inter-
layer gate voltage V corresponding to the chemical potential
difference μ1 − μ2. We allow the superconducting pairing
potentials �1,2(x), �c(x), and the chemical potential offsets
μ1,2(x) to depend on the spatial coordinate x. In the following,
we set h̄ = vF = 1.

Interestingly, our model refers to a superconducting hybrid
system that preserves TRS. Hence, it can be classified by a
topological quantum number N that is completely determined
by the Fermi-surface properties, more precisely by the sign
of the order parameter at the Fermi surfaces in 1D [52]. We
employ this type of classification in the next section.

The characterization and detection of MBSs are the main
tasks of this article. It turns out that transport properties of
hybrid bilayer structures are particularly suitable for the iden-
tification of MBSs. Hence, we investigate below multiterminal
setups in which we assume that (i) the two layers of the bilayer
QSH system are coupled to separate electron reservoirs, and
(ii) all superconducting regions are grounded. In Fig. 2, we
schematically illustrate two setups of that kind that will be
further analyzed below. In particular, both figures illustrate
N-S-S′-N junctions in which the N regions are character-
ized by gapless helical edge states (with the same helicity

in the two layers, for concreteness) and the S/S′ regions
are superconducting regions in which either different pairing
amplitudes dominate or different interlayer gate voltages are
assumed.

III. SPECTROSCOPIC PROPERTIES

In this section, we discuss the spectroscopic features of our
model. We identify BdG band inversions that can be generated
by a variation of �c with respect to �1,2 (at fixed μ1,2) or by
a variation of V = μ1 − μ2 with respect to �c (at fixed �c >

�1,2). Interestingly, Majorana bound states emerge in hybrid
structures of QSH bilayers at interfaces between regions in
space with different band orderings. Before we analyze such
interfaces and the resulting bound states, we discuss different
processes of tuning the band ordering of the BdG excitation
spectrum in our system. The general idea is to identify the
possibilities of gap closings and reopenings as a function of
adjustable parameters of the model. Some of the possibilities
have been realized before (presented in Sec. III A) [38], while
others are not yet mentioned in the literature (presented in
Sec. III B).

A. Gap closing by tuning pairing potentials

First, we consider the effective edge Hamiltonian of Eq. (7)
under the choice μ1,2 = 0, i.e., in the absence of an interlayer
voltage. We look at the translationally invariant case in which
the operator k̂ can be replaced by the wave vector k in Eq. (7).
Furthermore, we assume (for simplicity) that all spatially ho-
mogeneous pairing terms are purely real and positive. Under
this choice of parameters, the energy eigenvalues of the BdG
Hamiltonian are given by

E = ± 1√
2

(
�2

1 + �2
2 + 2�2

c + 2k2

± (�1 + �2)
√

(�1 − �2)2 + 4�2
c

)1/2
. (8)

We note that each energy level has a twofold (Kramers)
degeneracy because of TRS. To identify the points in pa-
rameter space, where the band ordering is changing, we first
consider the gap closing conditions of the spectrum. In this
model, the gap closing happens at k = 0. Therefore, it is
sufficient to look at the energy difference �E (k = 0) of the
lowest “conduction” band and the highest energy state of the
“valence” band, i.e.,

�E (k = 0) = �1 + �2 −
√

(�1 − �2)2 + 4�2
c . (9)

It is easy to see that the gap closes at �2
c = �1�2. The

dispersion relation for different choices of system parameters
is shown by the thick blue and green lines in Fig. 3. Evidently,
a band inversion can be generated by a relative change of �c

with respect to �1,2.
The TRS ensures the superconducting pairings are real and

without loss of generality; we assume them to be positive. By
taking �1 = �2 = �, we can identify two relevant pairing
potentials at the Fermi surface, namely �+ = � + �c and
�− = � − �c. Accordingly, we are able to calculate a topo-
logical invariant for this superconductor that preserves TRS

165420-3



F. SCHULZ et al. PHYSICAL REVIEW B 100, 165420 (2019)

FIG. 3. Illustration of the effective dispersion relation according
to Eq. (8) (thick green and blue lines) combined with the spectrum
of an infinite (in the y-direction) ribbon of width Nx = 50 sites of
a double HgTe quantum well in the QSH phase, where we set the
nonzero parameters A/� = B/� = m/� = 1.0, while we assumed
�1 = �2 = �. The pairing terms �1,2 open a conventional super-
conducting gap, while its counterterm �c competes with them, which
can result in a gap closing. The gap closing happens at �2

c = �1�2.
The color change of the bands (green vs blue) after the reopening of
the gap signals a band inversion.

[52], i.e.,

N = sgn(�+)sgn(�−) = sgn(� + �c)sgn(� − �c),

(10)

where sgn(�+) = sgn(� + �c) is always greater than zero.
Hence, for �c > �, the invariant multiplies to N = −1. In
such hybrid structures, a Kramers pair of Majorana bound
states appears at the boundary of two regions in space with
a different topological invariant N as we demonstrate below.

We have corroborated our results based on the effective
edge Hamiltonian of Eq. (7) by numerical simulations on
the full 2D lattice model specified in Eq. (1) accounting for
possible effects of the finite bulk energy gap on the edge
physics. Our results fully confirm the gap closing and gap
reopening behavior from the competition of �c and �1,�2.
The numerical simulations are shown by the transparent lines
in Fig. 3.

As one of the main results of our present work, we show
next that an interlayer voltage V allows us to switch between
the different SC pairings, thus enabling the flexible tunability
of domain walls and MBSs bound to them.

B. Gap closing by tuning interlayer voltage

In this section, we demonstrate that a gap closing can
also be driven by a voltage, where we use the variation
of the relative chemical potential parameters (V = μ1 − μ2,
where μ1,2 = ±V/2) of the two layers. On the basis of a
spatially homogeneous version of the Hamiltonian stated in
Eq. (7) with the simplification �1 = �2 ≡ �, we obtain the

FIG. 4. Illustration of the dispersion relation according to the
effective model in Eq. (11) in combination with ribbon spectra of
double wells with SC pairings and varying strength of the interlayer
gate voltage. For illustrative reasons, we chose the nonzero pa-
rameters A/� = B/� = m/� = 1.0. The interlayer voltage varies
from V = 0.0, �, 2

√
�2

c − �2, 5� as shown atop the panels. In
all plots, we assume �c = 2�. We can realize the gap closing at
Vc = ±2

√
�2

c − �2 and its reopening for |V | = |μ1 − μ2| > |Vc|.
We illustrate the band inversion also by the colors of the bands.

dispersion relation

E = ±1

2

[
4
(
�2 + �2

c

) + 4k2 + V 2

± 4
√

4�2�2
c + V 2

(
�2

c + k2
)]1/2

, (11)

where V = μ1 − μ2. The gap closing condition can be de-
rived by solving Eq. (11) for k at zero energy, resulting in the
solutions

kE=0 = ±i

2

(
2� ±

√
4�2

c − V 2
)
. (12)

To find the true gap closing condition, we have to identify
(within this set of possible solutions) the ones that are purely
real. Proper solutions are found for two choices of interlayer
voltage, i.e.,

Vc = ±2
√

�2
c − �2. (13)

We refer to the values of V that fulfill Eq. (13) as the critical
Vc. They correspond to gap closings at wave vectors equal to
zero. The choice of a nonsymmetric interlayer voltage leads
to a closing at finite k.

The dispersion relation for different values of the transition
parameters V is shown in Fig. 4, where we assume �2

c > �2.
Evidently, a band inversion also happens under this choice of
the variation of parameters. Again, we verify our results by
numerical calculations on the full 2D lattice model given by
Eq. (1). The transparent lines in Fig. 4 represent the numeri-
cal data from microscopic simulations of this voltage-driven
transition from the low-energy model for various values of the
interlayer voltage V , and they confirm the voltage-induced gap
closing at the transition to the trivial superconducting phase
with increasing interlayer voltage V .

165420-4



VOLTAGE-TUNABLE MAJORANA BOUND STATES IN … PHYSICAL REVIEW B 100, 165420 (2019)

In the presence of V , the BdG dispersion relation allows us
to define two effective pairings at the Fermi surface, i.e.,

�̃+ = 1
2

√
V 2 + 4�2 + �c,

�̃− = 1
2

√
V 2 + 4�2 − �c,

where �̃+ is greater than zero, because V is chosen to be real.
Hence, the topological invariant simplifies to

N = sgn(�̃−) = sgn
(

1
2

√
V 2 + 4�2 − �c

)
. (14)

Evidently, the sign of the invariant changes at V = Vc. By
interfacing domains with V < Vc and V > Vc, we again find
Kramers pairs of MBSs that are exponentially localized at the
domain walls with spatially oscillating tails. We elaborate on
these bound states in the following section.

IV. MAJORANA BOUND STATES

In this section, we discuss the emergence of Kramers
pairs of MBSs at the interface of the two S-S′ junctions
in Fig. 2 (in the two layers). These bound states appear at
junctions between sectors with different band orderings. As
described in the previous section, there are two possibilities
to achieve this task: (i) by a variation of �c with respect to
�1,2 and (ii) by a variation of V = μ1 − μ2 at fixed �c >

�1,2. We present results for both cases below. Technically,
we look at a scattering problem of an N-S-S′-N junction in
both cases. Since our system under consideration is time-
reversal symmetric, we always obtain Kramers pairs of MBSs.
However, in our formalism, we employ scattering theory to
identify a fingerprint of a MBS in a given scattering state. This
approach typically yields one of the two Kramers partners
for a particular choice of the scattering state. To identify the
other Kramers partner, we need to look at the time-reversed
scattering state in which the directions of motion and spin are
reversed. The corresponding scattering states are specified in
the next section and Appendix A. The resulting bound states
are then found by solving the secular equation that derives
from the continuity conditions of the spinors and identifying
solutions at zero excitation energy.

A. MBS by variation of crossed pairing

The N-S-S′-N junction under consideration is naturally
divided into four regions in space, which we name I–IV (from
left to right). At each interface a continuity condition of the
wave function has to be fulfilled because our Hamiltonian
describes a set of first-order differential equations. On the
basis of the coordinate system defined in Fig. 2(a), we label
the spinor ψ (x) accordingly, ψI(x) − ψIV(x), and we take into
account three different continuity conditions, i.e.,

ψI(l1) = ψII(l1),

ψII(0) = ψIII(0), (15)

ψIII(l2) = ψIV(l2).

In regions I and IV, we consider free propagating helical edge
states in the bilayer setup in the absence of superconducting

2.0

1.5

1.0

0.5

0.0

-10 -5 0 5 10

FIG. 5. Normalized absolute square of a bound state at zero
excitation energy (i.e., a MBS) at the interface between S and S′

in Fig. 2(a) for three different values of �c. Evidently, the MBS
emerges for �2

c > �2. For the particular choice �c = 2�, we ob-
serve a perfectly symmetric MBS because then the magnitudes of
the gaps in the regions S and S′ are equal. The parameters are chosen
such that �1 = �2 = � = 1/λ, l1 = −10λ, and l2 = 10λ. The real-
istic size of λ varies from hundreds of nanometers to micrometers.

pairing. In region II, �1 = �2 = � is finite but �c = 0. In
region III, we tune the band inversion by �c with respect
to �1 = �2 = �. All calculations are done for a scattering
state with an incoming electron approaching the junction from
region I in TI1. Similar bound states can be determined with
other choices of scattering states. For better illustration, we
only show the bound states in regions II and III. In Fig. 5, we
plot the absolute square of the wave function of a solution to
the secular equation at zero energy for different choices of �c

in region III with respect to finite �1 = �2 = �. As expected,
the MBSs show an exponential decay with a localization
length inversely proportional to the induced superconducting
gaps [λMBS ∝ 1/�E (k = 0)] in both regions, respectively.
Realistic values for a superconducting localization length are
discussed in Sec. VI.

B. MBS by variation of interlayer voltage

A similar analysis can be done for the setup shown in
Fig. 2(b). Again, we divide the N-S-S′-N junction into four
regions in space labeled I–IV. Similar to the previous section,
we investigate a scattering event with an incoming electron
approaching the junction from region I in TI1. Now, the su-
perconducting pairing potentials are chosen homogeneously,
but a steplike variation of the interlayer voltage distinguishes
region II from region III. For simplicity, we set V = 0 in all
regions in space and just vary V in region III. The resulting
bound states are plotted in Fig. 6. They emerge for V > Vc

in accordance with the band inversion properties discussed
in Sec. III B. Interestingly, the bound states shown in Fig. 6
slightly differ from their counterparts in Fig. 5. They are
not centered precisely at x = 0 but rather shifted to the
right-hand side. Additionally, they develop oscillations (as a
function of space) for larger steps in the interlayer voltage.
The oscillations arise only for V > 2�c and their strength
is independent of the normal pairing term �. Since the two
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FIG. 6. Normalized absolute square of a bound state at zero
excitation energy (i.e., a MBS) at the interface between S and S′

illustrated in Fig. 2(b). Both superconducting regions have the same
choice of pairing �c = 2� but they differ by the choice of interlayer
voltage V = μ1 − μ2. In region II we set V = 0, whereas in region
III we vary V from 2

√
3� to 10�. Further parameter choices are

�1 = �2 = � = 1/λ, l1 = −10λ, and l2 = 10λ. Typical parameter
settings are discussed in Sec. VI [33–37].

edges are connected only by the crossed Andreev pairing, a
symmetric shift of μ1,2 closes the gap at k = 0. For V > 2�c,
the Fermi momentum is away from k = 0, which leads to
a real (oscillating) part in the momentum [see Eq. (12)].
This can be seen in analogy to a spin-orbit coupling induced
gap opening for a one-dimensional nanowire [22]. For more
details, we refer to Appendix B.

V. TRANSPORT PROPERTIES

In this section, we aim to identify signatures of MBSs
that are observable in transport measurements. Similar to
the previous section, we look at different types of N-S-S′-N
junctions and calculate the corresponding scattering problem.
Importantly, helicity puts tight constraints on the allowed
scattering processes. For an incoming electron from region I
in TI1 we have to take into account eight different scattering
processes. In Table I, we list them all and state which ones

TABLE I. List of allowed (a) and forbidden ( f ) scattering pro-
cesses for a helical bilayer hybrid system assuming an incoming
electron from the lhs in TI1. The first column defines the process, the
second column the corresponding scattering coefficient (SC), and the
last column the helicity constraint (HC) of this process.

Scattering process SC HC

electron reflection in TI1 re1 f
electron reflection in TI2 re2 f
electron transmission in TI1 (EC) te1 a
electron transmission in TI2 (CEC) te2 a
Andreev reflection in TI1 (LAR) rh1 a
Andreev reflection in TI2 (CAR) rh2 a
hole transmission in TI1 th1 f
hole transmission in TI2 th2 f

are allowed/forbidden by helicity. The allowed scattering pro-
cesses are given by specific names: electron cotunneling (EC),
crossed electron cotunneling (CEC), local Andreev reflection
(LAR), and crossed Andreev reflection (CAR). We stress that
the reflection process of CAR is due to the one-dimensional
system shown in Fig. 2. For the transport picture related to
Fig. 1 one can see this process also as transmission of a hole
to TI2.

The complete scattering states are composed of four
terms (for the four different regions). They take the explicit
forms

ψI(x) = 
e1eik1
e x + re1 
e2e−ik1

e x + re2 
e4e−ik2
e x

+ rh1 
e6e−ik1
h x + rh2 
e8e−ik2

h x,

ψII(x) =
8∑

i=1

ai 
uie
ikix,

ψIII(x) =
8∑

i=1

bi 
vie
ik′

i x,

ψIV(x) = te1 
e1eik1
e x + te2 
e3eik2

e x

+ th1 
e5eik1
h x + th2 
e7eik2

h x, (16)

where the momenta in the different regions in space are stated
in Appendix A. In Eq. (16), the vectors 
ei in the two N regions
are eight-dimensional Euclidean basis vectors. The vectors 
ui

and 
vi that appear in the scattering states for the regions S
and S′ are too cumbersome to spell them out explicitly. We
specify them in Appendix A. The continuity conditions stated
in Eq. (15) have to hold again. This set of equations allows us
to calculate all coefficients of the scattering states [Eq. (16)],
in particular, the transmission and reflection coefficients, ti
and ri, respectively.

The spin helical leads in our setup provide a stringent
selectiveness in scattering processes listed in Table I. In a
five-terminal setup, in which the left N region and the right
N region are each separately contacted by two electron reser-
voirs in each TI and the regions S and S′ are grounded, we
investigate the (local and nonlocal) differential conductance
dIi/dVj . The indices i and j run from 1 to 4 (over the
numbering of the four electron reservoirs connected to TI1
and TI2). The current Ii corresponds to the current that leaves
or enters reservoir i and the voltage Vj corresponds to a bias
applied locally to reservoir j.

For concreteness, let us specify the allowed scattering
processes for an incoming right-moving electron in TI1: (i)
EC from reservoir 1 (connected to the lhs of TI1) to reservoir
3 (connected to the rhs of TI1). This process is reflected
by a finite net current G31

EC(V1 − V3) between reservoirs 1
and 3. (ii) CEC from reservoir 1 to reservoir 4 (connected
to the rhs of TI2). This process is reflected by a finite net
current G41

CEC(V1 − V4) between reservoirs 1 and 4. (iii) LAR
at reservoir 1 with corresponding current 2GLARV1. (iv) CAR
between reservoirs 1 and 2 (connected to the lhs of TI2) with
corresponding current G21

CAR(V1 + V2) [53].
If we continue the thought for any possible incom-

ing particle at any desired reservoir, the full multiterminal
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current-voltage relation can be written in compact form as

⎛
⎜⎝

I1

I2

I3

I4

⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎣

G′
1 G12

CAR −G13
EC −G14

CEC

G21
CAR G′

2 −G23
CEC −G24

EC

−G31
EC −G32

CEC G′
3 G34

CAR

−G41
CEC −G42

EC G43
CAR G′

4

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎝

V1

V2

V3

V4

⎞
⎟⎠, (17)

where the diagonal terms of the conductance matrix are given by

G′
1 = 2GLAR + G21

CAR + G31
EC + G41

CEC,

G′
2 = 2GLAR + G12

CAR + G42
EC + G32

CEC,

G′
3 = 2GLAR + G43

CAR + G13
EC + G23

CEC,

G′
4 = 2GLAR + G34

CAR + G24
EC + G14

CEC. (18)

Along the lines of BTK [46], we can relate the nonlinear conductance dIi/dVj of our hybrid system (for simplicity, at zero
temperature T = 0) to corresponding reflection and transmission probabilities through

dI
dV

= e2

h
×

⎡
⎢⎢⎢⎢⎣

G1(eV1) R12
CAR(eV2) −T 13

EC (eV3) −T 14
CEC(eV4)

R21
CAR(eV1) G2(eV2) −T 23

CEC(eV3) −T 24
EC (eV4)

−T 31
EC (eV1) −T 32

CEC(eV2) G3(eV3) R34
CAR(eV4)

−T 41
CEC(eV1) −T 42

EC (eV2) R43
CAR(eV3) G4(eV4)

⎤
⎥⎥⎥⎥⎦ (19)

with R = |r|2, T = |t |2, and the diagonal terms
G1 = 1 + RLAR(eV1),

G2 = 1 + RLAR(eV2),
(20)

G3 = 1 + RLAR(eV3),

G4 = 1 + RLAR(eV4).

Equation (19) nicely illustrates the beauty of the helical
bilayer system. The five-terminal setup allows us to mea-
sure individually the transmission/reflection probabilities of
each scattering process. This remarkable feature solely stems
from the particular constraints due to helicity summarized in
Table I. In the following sections, we argue that this particular
advantage of our system (compared to nonhelical analogs)
gives rise to unique transport signatures that can be related
to the presence/absence of (Kramers partners of) MBSs at the
S-S′ interface.

A. Transport in the absence of interlayer voltage

Since MBSs are bound states at zero excitation energy
E = 0, we first focus on the corresponding scattering coef-
ficients. In particular, we try to identify zero-bias anoma-
lies in the structure illustrated in Fig. 2(a). Fortunately, it
is possible to derive and display analytical results for all
relevant transmission/reflection probabilities. Under the pa-
rameter choice μ1 = μ2 = 0, �1 = �2 = �, and l1 < 0 < l2,
we obtain

RE=0
LAR = (e4�l1 − e4�l2 )2

N2
, (21)

RE=0
CAR = 4e4�(l1+l2 ) sinh2(2�cl2)

N2
, (22)

T E=0
EC = 16e4�(l1+l2 ) cosh2(�cl2) cosh2[�(l1 − l2)]

N2
, (23)

T E=0
CEC = 16e4�(l1+l2 ) sinh2(�cl2) sinh2[�(l1 − l2)]

N2
(24)

with N = (e2�l1 + e2l2(�−�c ) )(e2�l1 + e2l2(�+�c ) ). Let us first
interpret these results before we discuss concrete signatures
thereof in the differential conductance. Evidently, for �c = 0,
the probabilities RCAR and TCEC vanish because the two QSH
layers are totally disconnected in this case. Then, regions
II and III are identical, which is the reason why the finite
probabilities RLAR and TEC follow tanh2 ((|l1| + l2)�) and
1 − tanh2 ((|l1| + l2)�), respectively. For the increasing su-
perconducting region, LAR is getting more dominant and EC
is suppressed.

More interesting physics arises, of course, for finite �c.
Remarkably, the length scales l1 and l2 enter into the transport
coefficients in a nontrivial way. By a comparison of the
exponentials in the transport coefficients in Eqs. (21)–(24), we
identify a new condition for a transport phase transition, given
by �c = (1 + |l1|

l2
)�. At this point, all transport processes at

E = 0 have the same probability 1/4. For larger values of
�c, we find vanishing LAR, EC, CEC, and a perfect CAR
at E = 0. Therefore, we see that this perfect CAR is in one-
to-one relation with the presence of MBSs in our system. The
resulting local (dI1/dV1) and nonlocal (dI1/dV2) differential
conductances as a function of biases V1 and V2, respectively,
are shown in Fig. 7.

Evidently, the pronounced zero-bias dip (peak) in the lo-
cal (nonlocal) differential conductance can serve as a clear
signature of the presence of Kramers pairs of MBSs in
our system. However, it is interesting to realize that for
transport properties, the condition for zero-bias features is
slightly altered compared to the spectroscopic properties dis-
cussed in the previous section. This peculiarity has been
realized in simpler hybrid structures based on single-layer
quantum spin Hall systems before [54]. While for the spec-
troscopic appearance of zero-energy bound states, the cri-
terion �c > � is relevant (for the choice �1 = �2 = �),
the zero-bias features in transport only emerge if �c > (1 +
|l1|
l2

)�. In the latter case, the different weights of spatial
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FIG. 7. Local (nonlocal) differential conductance dI1/dV1

(dI1/dV2) as a function of eV1/� (eV2/�) for different values of �c.
A zero-bias dip (peak) arises exactly at the transport phase transition
(see the text) where �c = (1 + |l1|

l2
)�. For higher values of �c, both

differential conductances reach the values of e2/h. We chose the
parameters such that �1 = �2 = �, l1 = −2λ, and l2 = 3λ.

inhomogeneities matter with respect to the length scales l1
and l2.

B. Transport in the presence of interlayer voltage

For finite interlayer voltage, our analytical results for the
transport probabilities are too lengthy to be explicitly written
down here. Therefore, we first graphically display the relevant
reflection (RLAR and RCAR) probabilities in Fig. 8 as a function
of the excitation energy before we turn to the presentation of
the corresponding differential conductance.

At the critical interlayer voltage defined by Vc via Eq. (13)
we realize a qualitative change in the transmission/reflection
properties. For V < Vc, at small excitation energies, transport
is dominated by CAR because of our choice of pairing po-
tentials �c = 2� in Fig. 8. This behavior drastically changes

FIG. 8. Scattering probabilities for different values of V . We
clearly observe the emergence of zero-bias peaks or dips (in RLAR

and RCAR) for interlayer voltages characterized by V > Vc, while
the cotunneling probabilities (TEC and TCEC) are negligible within
the subgap regime. We set the other parameters to �1 = �2 = �,
�c = 2�, l1 = −2λ, and l2 = 8λ. Here, Vc = 2

√
3�.

FIG. 9. Local (nonlocal) differential conductance dI1/dV1

(dI1/dV2) as function of eV1/� (eV2/�) for different values of V
(in units of �). A zero-bias dip (peak) arises only for V > Vc (green
dashed line). In contrast to Fig. 7, we now find a dip instead of a
peak at zero bias in the presence of MBSs. We set the other pa-
rameters to �1 = �2 = �, �c = 2�, l1 = −2λ, and l2 = 8λ. Here,
Vc = 2

√
3�.

for V > Vc. Then, LAR dominates for E/� ≈ 0. This comes
from the fact that the energetic distance between the Fermi
energies of the two layers (μ1,2) is greater than the gap opened
by the crossed pairing. The oscillations at larger excitation
energies E/� � 1 are Fabry-Pérot resonances due to quasi-
particle interference. The width of the zero-bias peaks or dips
can be varied by the system size. The larger the supercon-
ducting regions, the smaller is the width of the feature at zero
excitation energy.

The corresponding differential conductances are shown in
Fig. 9. Interestingly, we can identify a dip in the nonlocal
conductance dI1/dV2 in the regime of large interlayer voltage
in which a MBS emerges at the step in V . This dip should be
put in contrast to the peak that we observe in Fig. 7 where the
MBS is tuned by a steplike variation of �c. Hence, we observe
that zero-bias anomalies (peaks or dips) signal the presence of
MBSs in the five-terminal setup.

C. Length dependence of the MBS features

We have introduced in Sec. V A an effective transport
phase transition weighted by the length scales l1 and l2. Now
we show that the length scales of region II (|l1|) and the length
of region III (l2) can affect the MBS and its conductance fea-
tures. Therefore, we take a parameter choice where the MBS
and its signatures already exist, and we vary the length of
region III. We show in Fig. 10 the resulting local conductance
with the related MBS for three sizes of region III.

Interestingly, we find that with the decrease of region III,
the dip of the conductance vanishes. Coincidentally, the MBS
gets shifted to the left interface, but still peaks at x = 0.
The reason for the length dependencies is that the scattering
process of a particle at zero energy is not only influenced
by the magnitude of the potential but also by the length of
the acting potential. The new condition of the emergence of
a zero-bias anomaly on an N-S-S′-N junction is given by
the strength of the order parameter times the corresponding
length.

165420-8



VOLTAGE-TUNABLE MAJORANA BOUND STATES IN … PHYSICAL REVIEW B 100, 165420 (2019)

FIG. 10. Normalized absolute square of a bound state at zero
energy at the interface in Fig. 2(a) for three different sizes of region
III, while we assumed �c = 2� for �1 = �2 = � and V = 0. In
addition, we show the corresponding local conductance dI1/dV1.
The bound state gets shifted to the left interface with decreasing
length, while the conductance also vanishes. We used for illustrative
reasons the size of region II |l1| = 2λ, and we do not display the free
propagating waves in the normal regions.

VI. SUMMARY AND CONCLUSION

In this article, we have compared the low-energy model of
a bilayer hybrid system of helical edge states with induced
superconducting pairing to numerical data on a microscopic
tight-binding model, confirming the validity of the effective
model and the competition between a direct pairing and a
crossed pairing superconducting gap. Going beyond previous
work on a similar setup, we have introduced an interlayer volt-
age that can suppress the crossed pairing driving the system
from the crossed pairing phase to the direct pairing phase by
merely tuning the voltage. This feature represents a simple
experimental knob for tuning the topological phase of the
system. With the help of a spatially varying inter-layer volt-
age, domains with different effective pairings hosting Kramers
pairs of MBSs are shown to be achievable. Additionally, we
have discussed a five-terminal setup for a proposed transport
experiment. We have shown that the emergence of the MBS is
in accordance with zero-bias anomalies in local and nonlocal
differential conductance. The zero-bias behavior is character-
ized by peaks or dips in the differential conductance. Finally,
we have also addressed the question of how the lengths of
the different scattering regions can affect transport signatures
and the emergence of Kramers pairs of MBSs in distinct
ways.

Let us conclude with a brief discussion of the feasibility
of our proposal. We require that the distance d of the two
QSH layers should be smaller than the coherence length λ

of the superconductor (e.g., for Al, λ ≈ 1.6 μm). Moreover,
interedge tunneling should be avoided. In a previous work
on bilayer QSH insulators, some of us have shown that
interlayer tunneling almost vanishes for a barrier thickness of
d > 10 nm [48]. Thus, there is a window of interlayer distance
d that is favorable for our idea.
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APPENDIX A: MBS WAVE FUNCTIONS IN THE ABSENCE
OF AN INTERLAYER GATE VOLTAGE

To get more insight into the shape of the MBS, we ex-
amine here the structure of the wave vectors in more detail.
First, we take into account the setup shown in Fig. 2(a).
Region I implies the free TI edge states of both samples
with right- and left-moving electrons or holes following the
dispersion E = ±k1,2

e,h (h̄ = vF = 1). The related wave vec-
tors for electrons and holes in region II, from x = l1 (l1 <

0) to x = 0, with energies in the superconducting gap are
given by

k± = ±i
√

�2 − E2. (A1)

We identify an exponential decay into region II with a decay
length inversely proportional to the superconducting gap λII =
1/� at zero energy.

In region III from x = 0 to x = l2, where the crossed
pairing enters the game, we obtain the following wave vectors:

k±,± = ±i
√

(� ± �c)2 − E2. (A2)

Again, we identify an exponential decay into region III, in-
versely proportional to the gap |� − �c|, illustrated in Fig. 3.
Since we consider the MBS, which has zero excitation energy,
we find a vanishing real part Re [k±] = 0. This implies that
there is no oscillating part in the wave function. The imaginary
part of the wave vectors at zero energy vanishes for �c =
�, which is also an indication for the phase transition. The
exponentially decaying MBS in Fig. 5 has a perfect symmetric
shape for �c = 2�, which comes from the fact that in this
case the energy gaps in both regions have the same magnitude
and conclusively the same decay length.

Assuming a symmetric length of regions II and III around
x = 0 (l1 = −l2 = −L) and employing continuity conditions,
we find the zero-energy wave function up to a normalization
factor:

ψI(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
re1

0
re2

0
rh1

0
rh2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)
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ψII(x) = A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosh(2�cL) cosh(�L̃1) + cosh(�L̃3)
0

− sinh(2�cL) sinh(�L̃1)
0
0

i[cosh(2�cL) sinh(�L̃1) − sinh(�L̃3)]
0

−i sinh(2�cL) cosh(�L̃1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

ψIII(x) = A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 [cosh(�L̃3 + �cx) + cosh(�L̃1 + �cL̃2) + cosh(�L̃1 − �cL̃2) + cosh(�L̃3 − x�c)]

0
−[sinh(�cx) sinh(�L̃3) + sinh(�L̃1) sinh(�cL̃2)]

0
0

i[cosh(�cL̃2) sinh(�L̃1) − cosh(�cx) sinh(�L̃3)]
0

−i[cosh(�L̃1) sinh(�cL̃2) − sinh(�cx) cosh(�L̃3)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

ψIV(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

te1

0
te2

0
th1

0
th2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)

where A = 2e2L(2�+�c )

(e4�L+e2�cL )(e2L(2�+�c )+1) , L̃1 = L + x, L̃2 = 2L − x,

and L̃3 = 3L − x. The beauty of the scattering wave-function
approach can also be seen in Eqs. (A4) and (A5) by comparing
the process-related entries on both sides.

We assume the incident electron is a right mover coming
from TI1, which restricts us to only four allowed scattering
states, mentioned in the main text. Those processes are related
to the four nonvanishing entries of the wave function. The
resulting MBS arises at the interface at x = 0. For simplicity,
we only display scattering states in regions II and III [
II(x)
and 
III(x)]. The resulting bound state does not yet have the
properties of a MBS. To create the MBS, we first write the
bound state in the compact form


(x) = [�(x + l1) − �(x)]
II(x)

+ [�(x) − �(−x + l2)]
III(x). (A7)

Next we superpose the bound state Eq. (A7) with its charge-
conjugated partner. Note that the charge-conjugation operator
must satisfy the condition

CHBdGC−1 = U †
c H∗

BdGUc = −HBdG, (A8)

which is fulfilled by C = UcK = ζ1K, where K denotes the
complex conjugation and Uc is a unitary transformation. Con-
clusively, we can construct two MBSs by the superpositions


MBS,1(x) = 
(x) + C
(x),
(A9)


MBS,2(x) = i[
(x) − C
(x)].

It turns out that the charge-conjugated wave function C
(x) is
exactly the wave function for the bound state when we assume
an incoming hole in TI1. Interestingly, we obtain another

MBS that is related to a symmetry, which we call sample
symmetry S = τ1. This symmetry changes the sample space
if it acts on the Hamiltonian, so that there are two additional
MBSs, namely


MBS,3(x) = S
MBS,1(x),
(A10)


MBS,4(x) = S
MBS,2(x).

These MBSs correspond to bound states if we assume an
incoming electron in TI2 with the superposition of its charge-
conjugated wave function. Those states are orthogonal to each
other. Finally, we find with the TRS operator, T = is2K, eight
different MBSs located at the interfaces. They can be specified
as


MBS,1(x) = 
(x) + C
(x),


MBS,2(x) = i[
(x) − C
(x)],


MBS,3(x) = S[
(x) + C
(x)],


MBS,4(x) = Si[
(x) − C
(x)],
(A11)


MBS,5(x) = T [
(x) + C
(x)],


MBS,6(x) = T i[
(x) − C
(x)],


MBS,7(x) = T S[
(x) + C
(x)],


MBS,8(x) = T Si[
(x) − C
(x)].

APPENDIX B: MBS WAVE FUNCTIONS IN THE
PRESENCE OF AN INTERLAYER GATE VOLTAGE

Here, we display the momenta for the region with the
interlayer gate voltage, and we examine the wave vectors for
zero energy. We use the setup in Fig. 2(b), where we assume
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�c > � in region II and an additional interlayer gate voltage
in region III. Again, regions I and IV represent the free edge
states in TI1 and TI2. The related wave vectors in region II
are given by Eq. (A2), and they were already discussed in
Appendix A. In region III, we vary the interlayer gate voltage.
The resulting momenta in Eq. (16) are given by

k±,±(E ) = ±1

2

(
4E2 + V 2 − 4�2 − 4�2

c

± 4
√

4�2�2
c − V 2(�2 − E2)

)1/2
, (B1)

where the interlayer gate voltage is defined as V = μ1 − μ2.
The creation of the scattering state for an incoming right-
moving electron in TI1 is done in the same manner as in
Appendix A. We get more information of the MBS in Fig. 6
by looking at the momenta in region III. Figure 11 shows
the imaginary and real parts of Eq. (B1) at zero energy in
dependence on V/�c under the assumption that �c = 2�.
This result explains why we find in region III an oscillating
part together with an exponential decay.

4

2 

0

-2

-4

c

FIG. 11. Real part (blue, dashed line) of the wave vectors at E =
0, in dependence on the symmetric interlayer voltage V in units of
�c = 2�. One sees a splitting of the vectors at V = 2�c. Imaginary
part (red, solid line) of the wave vectors at E = 0. For values V �
2�c, the imaginary part stays constant.
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