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Bogoliubov Fermi surfaces stabilized by spin-orbit coupling
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It was recently understood that centrosymmetric multiband superconductors that break time-reversal symme-
try generically show Fermi surfaces of Bogoliubov quasiparticles. We investigate the thermodynamic stability
of these Bogoliubov Fermi surfaces in a paradigmatic model. To that end, we construct the mean-field phase
diagram as a function of spin-orbit coupling and temperature. It confirms the prediction that a pairing state with
Bogoliubov Fermi surfaces can be stabilized at moderate spin-orbit coupling strengths. The multiband nature of
the model also gives rise to a first-order phase transition, which can be explained by the competition of intra- and
interband pairing and is strongly affected by cubic anisotropy. For the state with Bogoliubov Fermi surfaces, we
also discuss experimental signatures in terms of the residual density of states and the induced magnetic order. Our
results show that Bogoliubov Fermi surfaces of experimentally relevant size can be thermodynamically stable.
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I. INTRODUCTION

A hallmark of unconventional superconductivity is a nodal
pairing state where the excitation gap vanishes at points or
lines in momentum space [1]. Recently, however, a third
type of node has been proposed: Extended Bogoliubov Fermi
surfaces (BFSs) where the excitation gap vanishes at a sur-
face in momentum space [2,3]. In clean, inversion-symmetric
(even-parity) superconductors that spontaneously break time-
reversal symmetry (TRS), all nodes are generically expected
to be BFSs. Crucial for the appearance of BFSs is that the
superconductivity involves more than one band: Specifically,
the pairing between electrons in different bands generates a
pseudomagnetic field, which “inflates” point and line nodes
of the intraband pairing potential into BFSs. These nodal sur-
faces are robust against perturbations that preserve particle-
hole and inversion symmetries, which can be formulated in
terms of a Z2 topological invariant [2,4–6].

A natural setting for the appearance of BFSs is in sys-
tems where a multiband structure arises from the presence
of discrete low-energy electronic degrees of freedom apart
from spin, e.g., atomic-orbital or sublattice indices. This per-
mits the construction of novel “internally anisotropic” pairing
states where the Cooper-pair wave function has nontrivial
dependence upon the orbital or sublattice indices [3,7,8].
Crucially, for the appearance of BFSs, internally anisotropic
pairing states are typically characterized by both intraband
and interband pairing potentials [3]. Such pairing states have
been proposed for a wide variety of multiband systems of
current interest, such as iron-based superconductors [9–15],
CuxBi2Se3 [16], half-Heusler compounds [2,3,17–24], the
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antiperovskite Sr3−xSnO [25], Sr2RuO4 [26], UPt3 [27,28],
transition-metal dichalcogenides [29,30], and twisted bilayer
graphene [31–33]. This long list of materials—some of which
are believed to support a time-reversal-symmetry-breaking
(TRSB) state—is encouraging for the existence of BFSs.

Although BFSs are robust against symmetry-preserving
perturbations, this topological protection does not guarantee
the existence of such a state. Instead, it is necessary to con-
sider the thermodynamic stability. Since a TRSB combination
of two nodal pairing states eliminates all nodes that are not
common to both states, it is expected to be energetically
favored over time-reversal-symmetric combinations [34]. This
argument does not hold if the resulting TRSB state possesses
a BFS, however, as this implies a nonzero density of states
(DOS) at the Fermi energy, which, at first glance, is unfa-
vorable compared to the line nodes generic for time-reversal-
symmetric states. It was argued in Ref. [2] that a TRSB state
with a BFS could, nevertheless, be energetically favorable in
the presence of sufficiently strong spin-orbit coupling (SOC).
This analysis was restricted to temperatures close to Tc, how-
ever, and so did not account for the effect of the expected
large residual DOS at low temperatures. Moreover, although
the TRSB state becomes more stable with increasing SOC, the
size of the BFS decreases as shown below. It is, thus, unclear
if BFSs can be realized in a limit where they have a detectable
effect on the electronic structure [35]. Another interesting
question raised by the analysis in Refs. [2,3] is what happens
at SOC strengths insufficient for a stable TRSB state.

In this paper, we use mean-field theory to study the
appearance of BFSs in a paradigmatic model of a multiband
system with strong SOC, specifically the Luttinger-Kohn
Hamiltonian of j = 3/2 fermions in a cubic material [36].
The j = 3/2 degree of freedom naturally leads to a multi-
band system and to internally anisotropic pairing. Assuming
pairing in a s-wave J = 2 channel [17], we construct the
superconducting phase diagram as a function of the SOC
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strength and temperature. We focus on a particular set of pair-
ing states belonging to the irreducible representation (irrep)
T2g, which is expected to provide a typical picture for pairing
in a higher-dimensional representation. At vanishing SOC, a
fully gapped time-reversal-symmetric superconducting phase
is realized as was predicted in Ref. [37]. For nonzero SOC,
we obtain a rich phase diagram, which, in particular, contains
a sizable region with TRSB superconductivity. The largest
BFSs that we find lead to a residual zero-temperature DOS
at the Fermi energy of approximately 20% of the normal-state
DOS, which should leave clear signatures in thermodynamic
measurements. We also verify the existence of a subdominant
magnetic order parameter which is induced by the TRSB
superconductivity.

Our paper is organized as follows: In Sec. II, we introduce
our microscopic model and outline the mean-field theory, in-
cluding a discussion of previously known limits of vanishing
and strong SOC. We present the mean-field phase diagram in
Sec. III and study the effect of cubic anisotropy of the SOC.
A key feature of the phase diagram is the first-order transi-
tion into a time-reversal-symmetric superconducting state at
intermediate SOC strength, which we explain in terms of a
simplified model. This is followed in Sec. IV by a detailed
study of the TRSB state and the induced magnetic order
parameter. We summarize our results and draw additional
conclusions in Sec. V.

II. MODEL AND MEAN-FIELD THEORY

Our starting point is the Luttinger-Kohn Hamiltonian for
j = 3/2 fermions in a cubic material [36],

h(k) = (α|k|2 − μ)14 + β
∑

i

k2
i J2

i + γ
∑
i �= j

kik jJiJj, (1)

where i = x, y, z and i + 1 = y if i = x, etc., and Ji are the
4×4 matrix representations of the angular momentum opera-
tors j = 3/2. The j = 3/2 fermions can arise due to the strong
atomic SOC, e.g., of spins s = 1/2 and orbital angular mo-
menta l = 1 for p orbitals. In addition to the spin-independent
dispersion coefficient α and the chemical potential μ, the
Hamiltonian in Eq. (1) includes the symmetry-allowed SOC
terms proportional to β and γ . The Hamiltonian has doubly
degenerate eigenvalues given by

εk,± =
(

α + 5

4
β

)
|k|2 − μ

±β

√∑
i

[
k4

i +
(

3γ 2

β2
− 1

)
k2

i k2
i+1

]
. (2)

Note that SOC lifts the fourfold degeneracy of the j = 3/2
manifold away from the � point. Due to the presence of time-
reversal and inversion symmetries, the bands remain doubly
degenerate so that the states in each band can be labeled by a
pseudospin-1/2 index [3].

The description in terms of an effective spin j = 3/2
permits Cooper pairs with total angular momentum J =
0 (singlet) and J = 1 (triplet), but also J = 2 (quintet)
and J = 3 (septet) [17–20,22–24,38–40]. Similar to singlets
and triplets, the quintet and septet pairings correspond to
even- and odd-parity orbital wave functions, respectively. In

particular, this allows for a broader variety of s-wave pairing
states: Besides the usual singlet, there are five additional
quintet states with on-site pairing.

Restricting ourselves to such local pairing states, the
pairing interaction has the general form

Hpair =
∑

j

∑
l

∑
li∈l

Vlb
†
li, jbli, j, (3)

where b†
li, j creates a Cooper pair at site j in channel li

belonging to the irrep l [17]. There are three irreps in the cubic
Oh point group which support s-wave pairing: The singlet
state belongs to the one-dimensional A1g irrep, whereas the
five quintet states are distributed into the two-dimensional Eg

and the three-dimensional T2g irreps.
Within the standard mean-field treatment, the interaction is

decoupled to obtain the effective single-particle Hamiltonian,

HMF =
∑

k

(
1

2
�

†
kH(k)�k +

∑
l

Tr[�l�
†
l ]

Vl

)
, (4)

with the Bogoliubov–de Gennes (BdG) Hamiltonian,

H(k) =
(

h(k) �

�† −hT (−k)

)
, (5)

and the Nambu spinors �k = (ck, c†
−k )T with ck =

(ck,3/2, ck,1/2, ck,−1/2, ck,−3/2)T , where ck,σ is the annihilation
operator for a fermion with momentum k and spin σ .

In this paper, we focus on pairing states in the T2g irrep,
where a general pairing state can be written as

� = �0(lyzηyz + lxzηxz + lxyηxy), (6)

with the amplitude �0, the three-component order param-
eter l = (lyz, lxz, lxy), and the gap matrices ηαβ = (JαJβ +
JβJα )UT /

√
3, where

UT =

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠ (7)

is the unitary part of the time-reversal operator. From
the fourth-order expansion of the corresponding Landau
free energy, four possible ground states are known: l =
(1, 0, 0), (1, 1, 1), (1, i, 0), and (1, ω, ω2) with ω = e2π i/3

(as well as symmetry-related vectors) [34]. The states (1, 0, 0)
and (1, 1, 1) are time-reversal symmetric, whereas the chiral
state (1, i, 0) and the cyclic state (1, ω, ω2) break TRS and,
therefore, support BFSs [3]. In the following, however, we
focus on the submanifold of T2g states spanned by the l =
(1, 0, 0) and (1, i, 0) states by adopting the mean-field ansatz:

� = �yzηyz + i �xzηxz, (8)

with two real variational parameters �xz and �xz. If one of the
parameters is zero, we obtain the TRS-preserving l = (1, 0, 0)
state. On the other hand, a TRSB state is realized if both
parameters are nonzero; in particular, the case of �yz = �xz

corresponds to l = (1, i, 0). Although this restricted ansatz
is artificial for a cubic system, we are motivated by the
observation that the ηxz and ηyz pairing potentials are the
only s-wave quintet states in our cubic model which are also
degenerate in hexagonal and tetragonal crystals. For example,
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a chiral d-wave state with the same symmetry is believed to
be realized in tetragonal URu2Si2 [41]. We, therefore, expect
our conclusions to be applicable to any TRSB superconductor
with two degenerate pairing potentials. The (1, i, 0) state has
an (inflated) equatorial line node, which should lead to a
higher free energy compared to a state with only (inflated)
point nodes. By considering the likely less favorable pairing
state, we, at worst, underestimate the stability of the BFSs.
In fact, performing the same analysis for the pair of Eg states
does not result in qualitative changes in the phase diagram.
The pairing state in the spherically symmetric limit has been
considered in Refs. [22,38,42].

A. Free energy

In a weak-coupling approach, the leading pairing instabil-
ity can be obtained by direct minimization of the Helmholtz
free energy with respect to the mean fields. From the BdG
Hamiltonian (4), we obtain the Helmholtz free energy,

F =
∑

k

Tr[��†]

V0
− 2kBT

∑
k,ν

ln

[
2 cosh

(
Ek,ν

2kBT

)]
, (9)

where V0 is the attractive pairing interaction in the T2g channel
and Ek,ν are the positive eigenvalues of H(k) in Eq. (5).
Inserting the mean-field ansatz from Eq. (8), we numeri-
cally minimize the Helmholtz free energy to obtain the self-
consistent values of �xz and �yz.

To compare with our numerical calculation and previous
results [2], we also use the complementary approach of ex-
panding the free energy in the pairing potential to obtain the
Ginzburg-Landau (GL) free energy [43],

F =
∑

k

Tr[��†]

V0
+ kBT

∑
k,iωn

∞∑
l=1

1

l
Tr[(G0�)l ], (10a)

with

G0 =
(

G(k, iωn) 0
0 G̃(k, iωn)

)
and � =

(
0 �

�† 0

)
,

(10b)

where G and G̃ are the particlelike and holelike Green’s
functions of the normal-state Hamiltonian h(k) and iωn =
i(2n + 1)πkBT are the fermionic Matsubara frequencies. For
this choice of �, all terms with odd l vanish. The GL free
energy can be evaluated analytically, see Appendix A for an
example calculation and the necessary approximations.

B. Known limits

Previous work has revealed the behavior of the model in
the limiting cases of vanishing and strong SOC [2,3,17,37,39].
We summarize the results in the following.

1. Vanishing spin-orbit coupling

The case of vanishing SOC was studied by Ho and Yip
[37] in the context of pairing in fermionic cold atomic gases.
They found that for s-wave quintet pairing, a TRS-preserving
state is energetically favored compared to a TRSB state. To
understand this limit, we first note that the vanishing SOC
implies that the eigenvalues of the normal-state Hamiltonian
are fourfold degenerate. As such, the pairing potential and the

normal-state Hamiltonian can be simultaneously diagonalized
by a momentum-independent spin rotation. The resulting
eigenvalues are identical to the case of a s-wave singlet gap
and so the gap is uniform across the Fermi surface. For TRSB
pairing states, two of the diagonal entries of the diagonalized
pairing potential vanish, indicating that two of the four degen-
erate Fermi surfaces remain ungapped in the superconducting
state. On the other hand, a TRS-preserving state opens a gap
on all the Fermi surfaces and is, thus, energetically favorable.
In real materials, a nonzero SOC is always present, which
lifts the fourfold degeneracy. We, nevertheless, expect that
for sufficiently weak SOC, the time-reversal-symmetric state
proposed by Ho and Yip [37] persists.

2. Strong spin-orbit coupling

In the limit where the SOC-induced splitting of the bands
is much larger than the pairing potential, an effective single-
band model can be used for the states close to the Fermi
energy [17]. Specifically, we write the effective BdG Hamilto-
nians for the two bands labeled by ± in the pseudospin basis
as

Heff,±(k) =
(

εk,±s0 + δHk,± ±ψ intra
k isy

∓ψ intra ∗
k isy −εk,±s0 − δHT

−k,±

)
, (11)

where sμ are the Pauli matrices in the pseudospin space. The
effective Hamiltonian describes intraband pseudospin-singlet
pairing with potential,

ψ intra
k =

√
3γ

2

�yzkykz + i �xzkxkz√∑
i

[
β2k4

i + (3γ 2 − β2)k2
i k2

i+1

] . (12)

The interplay of the quintet pairing with the normal-state
spin-orbit texture gives the intraband potential a d-wave form
factor, reflecting the J = 2 total angular momentum of the
Cooper pairs and imposes a sign difference between the bands.
The nodal structure of the intraband potential favors a TRSB
combination of the quintet states as this gaps out nonintersect-
ing line nodes thereby enhancing the average gap magnitude
and, thus, lowering the free energy [34]. Since the ηyz pairing
potential leads to line nodes on the ky = 0 and kz = 0 planes,
whereas the ηxz state has line nodes on the kx = 0 and kz = 0
planes, the l = (1, i, 0) state is characterized by point nodes
along the kz axis and a line node on the kz = 0 plane.

The diagonal blocks of the effective BdG Hamiltonian in
Eq. (11) obtain a correction term δHk,± from including the
effect of interband pairing to second order in perturbation
theory [2,3,39]. This correction has the general form

δHk,± = γk,±s0 + hk,± · s, (13)

where γk,± renormalizes the band dispersion and is always
nonzero in the presence of interband pairing, whereas hk,±
describes an effective pseudomagnetic field that is only
present for TRSB states. The two contributions can be written
as

γk,± = 1

2(εk,+ − εk,−)
Tr[Pk,±��†Pk,±], (14)

hk,± = 1

2(εk,+ − εk,−)
Tr[sPk,±��†Pk,±], (15)
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−μ

0

0 kF,0

(a)
β = 0

×4

0 kF,− kF,+

(b)
−4|α|/9 < β < 0

×2

×2

0 kF,−

(c)
β < −4|α|/9

×2

×2

E

k

FIG. 1. Representative dispersion relations for the spherically
symmetric model described by Eq. (17). (a) Without SOC, the bands
are fourfold degenerate, and there is a single Fermi surface with wave
vector kF,0 = √

μ/α. Note that we take α > 0 so that the band has
positive effective mass. (b) Turning on the SOC lifts the fourfold
degeneracy, yielding two doubly degenerate quadratically dispersing
bands with positive effective mass. There are now two Fermi surfaces
with wave vectors kF,± = √

μ/(α + 5β/4 ± β ). (c) For β < −4α/9,
the effective mass of one of the bands becomes negative, and there is
only a single Fermi surface.

where Pk,± are projection operators on the normal-state
Hilbert spaces of the ± bands. The pseudomagnetic field is
crucial for the appearance of BFSs as can be seen from the
dispersion in the effective low-energy model,

Ea,b,± = a|hk,±| + b
√

[εk,± + γk,±]2 + ∣∣ψ intra
k

∣∣2
, (16)

where a and b are independently chosen to be ±1, giving
four bands. In the absence of the pseudomagnetic field,
a node occurs where the square root vanishes, but the
pseudomagnetic field is generally nonzero at these momenta.
This lifts the pseudospin degeneracy by shifting the
pseudospin-up and pseudospin-down bands in opposite
directions and leads to the formation of BFSs [2,3].

Although this increases the free energy of the TRSB state, for
sufficiently small |hk,±|, it should not cause a transition to a
TRS-preserving phase since the energy difference between
the lowest TRSB and TRS-preserving states is generically
finite. In particular, from Eq. (15) we expect that a TRSB
state with BFSs is stable for |�yz|, |�xz| � |εk,+ − εk,−|.

III. PHASE DIAGRAM

We start by considering the case of spherically symmetric
SOC, i.e., β = γ , and later generalize to the case of cubic
anisotropy. In the spherical limit, the normal-state Hamilto-
nian simplifies to

h(k) = (α|k|2 − μ)14 + β(k · J)2. (17)

Representative examples of the normal-state band structure
are shown in Fig. 1.

In Fig. 2, we present the phase diagram as a function
of temperature and SOC strength. Figures 3(a)–3(f) show
the band structure around the Fermi surface in the [100]
direction where we anticipate the appearance of nodes from
the projected gap in Eq. (12). Any gaps in the spectrum
along this direction at nonzero SOC strength are, therefore,
due entirely to the interband pairing potential. To obtain
comparable results over a wide range of SOC strengths, we fix
the critical temperature Tc and vary the attractive interaction
V0 such that the second-order coefficient of the GL free
energy vanishes at the chosen Tc. This eliminates effects due
to the changing DOS at the Fermi energy as the SOC is
varied.

Starting at β = 0, we find the fully gapped TRS-preserving
state (“nodeless TRS”) predicted by Ho and Yip [37]. Switch-
ing on the SOC, we observe that the gap just below the critical
temperature has nodes (“nodal TRS”), but the nodeless TRS
state is recovered at lower temperatures. The nodal behavior
arises as the SOC lifts the fourfold degeneracy of the bands,

T
/T

c

βk2
F /(kBTc)

0

0.2

0.4

0.6

0.8

1

−9.9 −9.6 −9.3 −9 −8.7
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c

d

nodeless TRS

nodal TRS

TRSB
C2TRSB C4

βk2
F /(kBTc)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−10 −8 −6 −4 −2 0
0
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7

8
|Δ

|/(
k

B
T

c
)

a b

c

d

e

f

nodeless TRS

nodal TRS

FIG. 2. Phase diagram for the T2g pairing states given by Eq. (8) on the SOC-temperature plane. The color code indicates the gap magnitude√
�2

xz + �2
yz where brighter colors mean larger gaps and white means no superconductivity. The horizontal line at T/Tc = 1 denotes the critical

temperature Tc predicted by GL theory. Lines of first-order (second-order) phase transitions are indicated in red (orange). The blue dot in both
panels indicates the point of TRSB from GL theory, and the red dot in the panel on the right denotes the onset of the first-order phase transition
estimated by GL theory. The left panel is a zoom of the box in the right panel. The SOC strength β is plotted as an effective spin-orbit energy
βk2

F /(kBTc ) where k2
F = μ/(α + 5β/4).
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FIG. 3. (a)–(f) Band structure in the vicinity of the Fermi energy for parameter sets indicated by the corresponding labels in Fig. 2 along
the [100] direction where we expect nodes in a nodal state. The Fermi wave vectors are given by kF,± = √

μ/(α + 5β/4 ± β ).

making a distinction between inter- and intraband pairings
possible. Close to the critical temperature, the strength of the
pairing potential is much smaller than the band splitting so
that the gap at the Fermi surface is controlled by the nodal
intraband pairing potential in Eq. (12). However, as the pairing
potential grows upon lowering the temperature, the interband
potential shifts the nodes away from the Fermi surfaces at
kF,± = √

μ/(α + 5β/4 ± β ) as seen in the band structure at
point (f) in Fig. 3. At a critical value of the pairing potential,
the nodes meet and annihilate, marking the recovery of the
nodeless TRS phase.

A further increase in SOC leads to an enhancement of the
critical temperature over the one anticipated from the second-
order coefficient of the GL free energy, implying a first-order
transition between the normal and the superconducting states.
The presence of the first-order phase transition is confirmed
by computing the position of the tricritical point from GL
theory, i.e., the point where the fourth-order coefficient turns
negative. We find very good agreement between the numerical
calculation and our GL theory (cf. the red dot in the right
panel of Fig. 2). In this region, the magnitude of the pairing
potential

√
�2

xz + �2
yz is much larger than expected from BCS

theory, and the very large interband pairing potentials ensure
a full gap as shown by points (d) and (e) in Fig. 2. We, hence,
refer to this state as the “large-gap” phase, in contrast to the
other, “small-gap” phases. The origin of the first-order phase
transition is discussed in Sec. III B.

Upon increasing the SOC strength beyond βk2
F ≈

−8.4kBTc, there is an abrupt drop in the magnitude of the gap,
and the nodeless TRS phase gives way to a nodal state. Close
to Tc, this state marked by “nodal TRS” has a gap that is well
approximated by Eq. (12) and exhibits line nodes [point (e)
in Figs. 2 and 3]. Further below Tc, we enter a phase which
breaks TRS but where the two gap parameters �yz and �xz

have unequal magnitude. We label this the “TRSB C2” state
because the unequal gap magnitudes yield a spectrum with
only C2 rotational symmetry about the z axis. The magnitudes
of �yz and �xz converge as the SOC is increased, thus,
realizing the “TRSB C4” state where the spectrum has C4

rotational symmetry about the z axis. This is the l = (1, i, 0)
state and is consistent with predictions of the strong-SOC limit
discussed in Sec. II B 2. The intermediate TRSB C2 state can
be visualized as a continuous rotation of the vector l from
(1, 0, 0) to (1, i, 0), see Fig. 4. The boundary of the TRSB
C4 phase shows reentrant behavior, but it is realized at all
temperatures for βk2

F ≈ −9.7kBTc. Both the TRSB C4 and the
C2 phases display BFSs.

The critical value of the SOC strength for which the
TRSB state becomes stable just below Tc is estimated from
an expansion of the GL free energy to fourth order at
βk2

F ≈ −8.957kBTc. This estimate is shown as the blue dot in
both panels of Fig. 2 and is in excellent agreement with the
mean-field theory. A previous analysis [2] had estimated this
critical strength to be βk2

F ≈ −11.572kBTc (expressed in our
units) and, therefore, overestimated it by about 30%. The dis-
agreement stems from the approximate treatment of the band
splitting in Ref. [2]. Nevertheless, we confirm that the TRSB
state is realized at moderate values of the SOC strength.

A. Effects of cubic anisotropy

Cubic anisotropy is introduced in our model by setting
γ �= β in the Luttinger-Kohn Hamiltonian. In Fig. 5, we show
the pairing state realized just below the critical temperature as
a function of β and the cubic anisotropy parameter γ − β.
Note that the transition into the large-gap phase is of first
order and the critical temperature, therefore, exceeds the
temperature at which the second-order coefficient in the GL
expansion changes sign. As can be seen, there is a pronounced
asymmetry between the cases of |γ | > |β| and |γ | < |β|: The
region of first-order transitions into the large-gap phase is sup-
pressed for |γ | > |β| and disappears entirely for sufficiently
strong γ , and the TRSB state occurs at smaller values of the
SOC strength |β|. These trends are reversed for γ > β.

In Fig. 6, we show temperature-dependent phase diagrams
along two lines γ = 2β and γ = β/2. Along the cut γ = 2β,
there is no first-order phase transition. The change in gap
magnitude along the nodeless to nodal transition is steep but

|Δyz|

|Δxz|
TRSB C4

|Δyz|

|Δxz|
TRSB C2

|Δyz|

|Δxz|
TRS

FIG. 4. Sketch of the pairing amplitudes |�xz| and |�yz| and of
the gap structure in the nodal TRS, TRSB C2, and TRSB C4 phases,
see Fig. 2. The TRSB C2 state breaks both TRS and C4 symmetry.
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FIG. 5. Phase diagram just below the critical temperature as a
function of SOC strength and cubic anisotropy. “(1, 0, 0) small”
and “(1, 0, 0) large” refer to the TRS-preserving phase, whereas
“(1, i, 0)” specifies the TRSB C4 phase with BFSs.

not abrupt. This transition is accompanied by the disappear-
ance of nodes. The intermediate C2 phase is also heavily
suppressed. Along the other cut γ = β/2, we do not recover
the small-gap phase within the boundaries of the graph. There-
fore, we also do not observe the point of TRSB as predicted
by GL theory.

The phase diagram in Fig. 5 can be understood by looking
at the expression for the effective intraband pairing Eq. (12).
We find that the magnitude of the intraband pairing is propor-
tional to γ , i.e., larger (smaller) γ means stronger (weaker) in-
traband pairing compared to interband pairing. The existence
of the large-gap phase depends on the ratio between intra- and
interband pairings as we will discuss in the next section.

B. Origin of the first-order transition

The first-order phase transition into the large-gap phase
shown in Figs. 2, 5, and 6 is one of the most surprising
features of the phase diagram of our model. The inclusion of
cubic anisotropy reveals that it is not generic, however, but
rather depends upon the balance between the two spin-orbit
terms. In this section, we show that the first-order transition
is controlled by the relative strengths of the intra- and inter-
band pairing potentials, which, in turn, depends on the SOC
strengths as noted above.

The first-order transition can be understood based on a
simplified model with two bands in which we fix the ratio of
the inter- and intraband pairing potentials. In this model, the
normal-state bands have the dispersions ξk,± = (1 ± δ)εk −
μ, where δ parametrizes the band splitting and the precise
form of εk is unimportant. The splitting parameter δ plays a
role analogous to the SOC strength in the full model where the
band splitting is characterized by differing effective masses of
the Luttinger-Kohn bands as illustrated in Fig. 1.

Since the interband and intraband pairing potentials are
obtained by projecting � from Eq. (8) into the band basis,
the relative strength of the interband and intraband pairing
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FIG. 6. Phase diagrams on the SOC-temperature plane along two
lines (a) γ = 2β and (b) γ = β/2. The color code represents the gap
magnitude where brighter colors mean larger gaps and white means
no superconductivity. Lines of first-order (second-order) phase tran-
sitions are indicated in red (orange). For γ = 2β, panel (a), there is
no first-order phase transition at Tc. Below Tc, we find a large-gap
phase, but the transition to it is not of first order. For γ = β/2, panel
(b), the large-gap phase occurs. The critical temperature is strongly
enhanced, and larger gaps are found. In both panels, the blue dot at
Tc is the point of TRSB, and the red dot at Tc is the tricritical point as
predicted by the GL free energy.

potentials is determined by details of the normal-state band
structure. To represent this aspect, we write the pairing poten-
tial in the band basis as

� = η

(
r

√
1 − r2√

1 − r2 −r

)
, (18)

where η is the magnitude of the pairing potential, and the
coefficient r controls the relative strength of intra- and in-
terband pairings: r = 0 corresponds to pure interband pairing
and r = 1 to pure intraband pairing. The intraband pairing has
opposite signs in each band, in agreement with Eq. (12). Since
the first-order transition only occurs into a TRS-preserving
state, in the following, we assume that r and η are real. Note
that for the pairing potential in Eq. (18), the ratio between
intra- and interband pairings is momentum independent. In
contrast, in the full model, this quantity varies across the
Fermi surface. We can nevertheless define this ratio for the
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FIG. 7. Phase diagram of the simple model as a function of the
pairing ratio r and the band splitting δ. In this model, first-order phase
transitions are only possible for x > xc because only then there is a
region where F4 < 0.

full model in terms of the Fermi-surface average,

r2 = 1

�2
xz + �2

yz

∫
d�

4π

∣∣ψ intra
k

∣∣2
. (19)

The GL expansion of the free energy of the simple model
gives a Taylor series in the parameter η,

F = F2η
2 + F4η

4 + O(η6), (20)

where expressions for the coefficients F2 and F4 can be
obtained from Eqs. (10a) and (10b). A negative sign of the
fourth-order coefficient F4 indicates that the transition into the
superconducting state is of first order. We show the variation
of the sign of this coefficient as a function of the parameters
r and δ in Fig. 7. For sufficiently small intraband pairing
strength r, we find that F4 is positive at small band splitting
δ, becomes negative for increasing δ, and finally returns to a
positive value. Assuming that higher-order terms in the GL
expansion can be ignored, this indicates that the phase tran-
sition becomes discontinuous beyond a critical band splitting,
but a continuous transition is recovered as the band splitting
is further increased.

The conclusions for the simple model are broadly in agree-
ment with the phase diagrams for the full model in Figs. 2
and 5. Equation (19) gives r = 1/

√
5 for the full model

in the spherical limit. According to the simple model, the
phase transition at this value of r becomes discontinuous at
|x| = |δμ/(kBTc)| ≈ 2.460, which is in very good agreement
with the location of the tricritcal point for the full model
at |x| ≈ 2.594 (red dot in Fig. 2) where the effective band
splitting is given by δ = β/(α + 5β/4). The simple model
also explains the asymmetric effect of the cubic anisotropy
seen in Fig. 5: For |γ | > |β|, the intraband pairing potential
is enhanced, which, in turn, increases the value of r and,
thus, suppresses the first-order transition. Conversely, |γ | <

|β| reduces the intraband pairing potential and, thus, r and
favors the first-order transition.

The simple model and our full results agree in showing
that a second-order transition is recovered at sufficiently large
values of the band splitting δ. The reappearance of the second-
order transition in the full model, however, does not occur
with a tricritical point but rather with a discontinuous jump in
the minimum of the free energy from a large value of the gap

magnitude (�2
xz + �2

yz )1/2 (large-gap phase) to a minimum
at a small value of the gap magnitude (small-gap phase).
Properly capturing this behavior in the simple model would
require extending the GL expansion in Eq. (20) to, at least,
eighth order in η.

IV. PROPERTIES OF THE
TIME-REVERSAL-SYMMETRY-BREAKING STATE

We now investigate features of the TRSB C4 state. We
choose the parameter set labeled by (c) in Figs. 2 and 3. In this
case, we can set �xz = �yz = �0, and so, the pairing potential
is � = �0 (ηyz + iηxz ).

A. Bogoliubov Fermi surfaces

First, we map out the BFSs by searching for vanishing
energy eigenvalues. Thanks to rotational symmetry around the
z axis and inversion symmetry, we can restrict ourselves to the
first octant. The resulting nodal surfaces are shown in Fig. 8.
In the TRSB C4 state, the magnitude of the pseudomagnetic
field in Eq. (15) is

|h(k)| = 4|�0|2
(εk,+ − εk,−)2

β

√
|k|4 − 3

(
k2

x + k2
y

)
k2

z . (21)

The size of the BFSs scales with the magnitude of the pseu-
domagnetic field. Since this field is inversely proportional to
the band splitting squared, which grows as |k|2, the inner
BFS is larger than the outer one, see the inset of Fig. 8.
The pseudomagnetic field has the largest magnitude close to
the boundary with the TRSB C2 state since this corresponds
to the smallest band splitting for which the TRSB C4 state
is stable. Here, the BFSs have the largest volume and are,
therefore, clearly distinguishable from line and point nodes.

The existence of BFSs leads to a nonzero DOS at zero
energy, which is not expected for clean superconductors. We
compute the DOS numerically from the mean-field disper-
sion and analytically using the low-energy dispersion from

0
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FIG. 8. BFSs for the parameters labeled by (c) in Figs. 2 and 3
(heavy black lines). The colored lines denote the normal-state Fermi
surfaces of the + and − bands. k⊥ is the radial component of the
momentum on the kxky plane.
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FIG. 9. DOS in the superconducting state for the parameters
labeled by (c) in Figs. 2 and 3, based on a full two-band calculation
(black curve) and on a low-energy single-band approximation (green
curve). The results of the two approaches agree very well. The
residual DOS at zero energy is as large as 20% of the normal-state
DOS at the Fermi energy N0 = √

μ/2(α + 5β/4)3/2.

Eq. (16). In the absence of cubic anisotropy, close to the Fermi
surface, h(k), γk, and ψk,± only depend upon the polar angle
θ . The DOS in the ± band is, thus,

ρ±(E ) = N0,±
∑
a,b

∫ π

0

|E − a|h±(θ )|| sin θ dθ√
[E − a|h±(θ )|]2 − |ψ±(θ )|2 ,

(22)

where we have assumed the normal-state DOS N0,± to be
constant in the range of the superconducting gap. Evaluating
Eq. (22), we find excellent agreement with the numerical
results, as shown in Fig. 9. In particular, we clearly see a
large residual DOS at zero energy in the superconducting
gap of up to 20% of the normal-state DOS. The flat DOS
at zero energy results from the lifting of the pseudospin de-
generacy by the pseudomagnetic field h. This shifts the DOS
for each pseudospin species, leading to the scaling ρ(E ) ∝
(|E + |h|| + |E − |h||)/2 instead of ρ(E ) ∝ |E | as would be
the case for line nodes. This gives a constant DOS for −|h| <

E < |h| as previously reported in Ref. [35]. The effect of
the pseudomagnetic field is also seen in the splitting of the
coherence peaks: In the absence of the pseudomagnetic field,
we expect a single coherence peak at |E | = �0. Upon adding
the pseudomagnetic field, it is split into four coherence peaks
at �0 + |h±(θ = π/4)| and �0 − |h±(θ = π/4)|, where θ =
π/4 is the angle of maximum gap. Since the pseudomagnetic
field has different magnitude at the two Fermi surfaces, these
two peaks are, in turn, weakly split.

A residual DOS in an unconventional superconductor can
also arise due to the presence of impurities [1]. We can
estimate the required concentration of impurities to achieve a
zero-energy residual DOS as large as 20% of the normal-state
DOS within the self-consistent Born approximation. Using
the exact results for the polar phase of 3He, which also
has an equatorial line node, we estimate that the required
concentration of impurities would approximately result in a

0
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FIG. 10. (a) Gap parameter and (b) induced magnetic order
parameter as functions of temperature in the TRSB phase and with
the SOC labeled by (c) in Figs. 2 and 3.

40% suppression of Tc compared to the clean limit. It should
be possible to rule out the effect of impurities by considering
the residual DOS as a function of Tc for different samples. We
also emphasize that the splitting of the coherence peaks seen
in Fig. 9 cannot be explained by impurity effects.

B. Induced magnetic order parameter

As pointed out in Ref. [3], the pseudomagnetic field can be
interpreted as manifesting a subdominant secondary magnetic
order parameter, which is induced by the superconductivity.
This subdominant order is related to the time-reversal odd part
of the gap product,

��† − UT �∗�T U †
T = 4

3�2
0

(
7Jz − 4J3

z

) ≡ 2 �2
0Jz. (23)

In Fig. 10, we show the expectation value of Jz together
with the superconducting gap as functions of temperature. The
superconductivity and magnetism appear together but their
temperature dependence close to the critical temperature is
notably different: Whereas the gap magnitude scales as �0 ∼
|T − Tc|1/2, the expectation value of Jz scales as 〈Jz〉 ∼ |T −
Tc|. This linear temperature dependence close to Tc reflects its
relation to the gap product in Eq. (23).

The finite expectation value of Jz generically leads to
a finite pseudomagnetic field in Eq. (15) and, thus, to a
momentum-dependent spin polarization. To understand the in-
terplay between magnetism and superconductivity, we include
a magnetic order parameter mz in the channel that couples to
superconductivity in the GL expansion. To that end, following
[43], we redefine:

� =
(
Mz �

�† −MT
z

)
, (24)

in Eq. (10b), where Mz = mzJz. The lowest-order coupling
between the superconducting and magnetic order parameters
occurs at third order and has the form

iF3mz(�xz�
∗
yz − �∗

xz�yz ), (25)

which clearly indicates that the TRSB superconducting state
induces the magnetism. The lengthy expression for the coef-
ficient F3 is presented in Appendix B. In particular, we must
introduce a cutoff � of the attractive pairing interaction to
account for particle-hole asymmetry in the normal state. In
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the limit where the band splitting and cutoff are much larger
than kBTc (i.e., the conditions under which the TRSB state is
stable), the coefficient simplifies to

F3 = N0

μ

48

5

[
1 − ln 2�eγ

πkBTc

3(1 − β̃2)
− 1

4
ln

(
1 + �2

β̃2μ2

)]
, (26)

where N0 = √
μ/2(α + 5β/4)3/2 is the normal-state DOS

at the Fermi energy, β̃ = β/(α + 5β/4), β̃μ is the band
splitting, and γ is the Euler-Mascheroni constant. To under-
stand this result, we note that the magnetic order paramater
mz couples to Jz, which is not diagonal in the band basis
but has both interband and intraband components. The in-
traband component directly couples to the pseudomagnetic
field generated by the interband pairing potentials and gives
a cutoff-independent contribution to F3. On the other hand,
the interband components of the magnetic order couple to
both the intraband and the interband pairing potentials and
give the cutoff-dependent contribution, see Appendix B for
details. These two contributions have opposite signs and the
contribution from the interband component is likely dominant
when � � kBTc.

It is interesting to compare our results to the more familiar
case of coupling between ferromagnetic and superconducting
order parameters in a single-band TRSB superconductor [1].
A similar GL expansion of the free energy in that case also
gives a third-order coupling term with coefficient proportional
to N0/μ, which implies that the magnetization in the su-
perconducting state is on the order of �2

0/μ
2 and is, hence,

expected to be weak. This property is thought to be generic
for TRSB superconductors [44,45]. In the present case, it
can be understood as being due to the fact that the j = 1/2
and j = −3/2 quasiparticles do not participate in the pairing.
The spin of these unpaired quasiparticles then compensates
the polarization of the Cooper pairs as is the case for a
spin-1/2 superconductor where only the up spin is paired
and the unpaired down spin compensates the polarization [1].
The presence of a BFS, therefore, does not imply a strong
magnetization of the superconductor.

V. SUMMARY AND CONCLUSIONS

In this paper, we have used BCS mean-field theory to
study the evolution of the quintet superconducting state in
the paradigmatic Luttinger-Kohn model as a function of the
SOC strength. We find a rich phase diagram in the SOC-
temperature plane. For weak SOC, a time-reversal-symmetric
superconducting state is realized. Upon increasing the SOC
strength, the transition into the superconducting state becomes
first order. The origin of the first-order transition is the
competition between inter- and intraband pairings, which is
controlled by the cubic anisotropy of the SOC; for sufficiently
anisotropic SOC, the first-order transition can be completely
suppressed. Upon further increasing the SOC strength, first
a second-order transition is recovered, and finally a TRSB
pairing state is stabilized. At low temperatures, the TRSB state
displays reentrant behavior as well as a first-order transition
into the TRS-preserving state.

The TRSB state exhibits BFSs and a residual DOS at
the Fermi energy, which can be as large as 20% of the

normal-state DOS. The TRSB pairing state induces a sub-
dominant magnetic order parameter, which we find to be
small even if the residual DOS is sizable, consistent with the
general result that TRSB superconductors have weak intrinsic
magnetization.

Our analysis establishes that a pairing state with BFSs can
be thermodynamically stable, even when the residual DOS at
the Fermi energy due to the BFSs is a sizable fraction of the
normal-state DOS. This result is encouraging for experimental
searches for BFSs as it shows that the residual DOS due to
the BFSs can be of detectable magnitude. Since the size of
the BFSs is controlled by the ratio of the interband pairing
potential to the band splitting, materials where this ratio is
as large as possible are the best candidates. This suggests that
heavy-fermion superconductors are promising. It is, therefore,
intriguing that a residual DOS has been observed in URu2Si2

[41] and UTe2 [46,47].
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APPENDIX A: EVALUATION OF THE
GINZBURG-LANDAU FREE ENERGY

The GL free energy in Eq. (10) can be evaluated an-
alytically using natural approximations. For a single-band
superconductor, it is usually assumed that the DOS at the
Fermi energy is constant such that the sum over momenta
in Eq. (10a) can be recast into an integral over energy. We
adapt this method to our two-band model by rewriting the
eigenenergies in Eq. (2) in terms of an “unsplit” dispersion
ε0(k) and a cubic form factor f (k̂) with unit vector k̂,

εk,± =
(

1 ± f (k̂)

α + 5β/4

)
ε0(k) ± f (k̂)

α + 5β/4
μ, (A1)

where

ε0(k) =
(

α + 5β

4

)
|k|2 − μ, (A2)

f (k̂) = β

|k|2
√∑

i

[
k4

i +
(

3γ 2

β2
− 1

)
k2

i k2
i+1

]
. (A3)

In the spherical limit β = γ , the form factor reduces to
f (θ, φ) = β, which is angle independent. Then, assuming
constant normal-state DOS, we make the replacement,

∑
k

→ N0

∫
S2

d�

4π

∫ ∞

−∞
dε0, (A4)
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where N0 = √
μ/2(α + 5β/4)3/2 is the unsplit normal-state

DOS at the Fermi energy.
In the case of the fourth-order term, the integral over

energy ε0 and the following summation over iωn results
in a sum of polygamma functions which does not yield
particular insight and is not reproduced here. Nevertheless,
below we demonstrate how to obtain GL coefficients with
the outlined approach for the example of the lowest-order
coupling between the superconducting and the magnetic order
parameters.

APPENDIX B: THIRD-ORDER TERM

In this Appendix, we outline the derivation of the leading
term in the GL expansion that couples the superconducting
and magnetic order parameters. In the spherical limit β = γ ,
the Green’s functions of the particlelike and holelike excita-
tions of the normal state have the explicit forms

G0(k, iωn) =
∑
±

G±
1 ± [(k̂ · J)2 − 5/4]

2
, (B1)

G̃0(k, iωn) =
∑
±

G̃±
1 ± [(k̂ · JT )2 − 5/4]

2
, (B2)

where unit matrices have been suppressed and we have intro-
duced the single-band Green’s functions,

G± ≡ 1

iωn − εk,±
, (B3)

G̃± ≡ 1

iωn + εk,±
. (B4)

Mz

Δ Δ†

G G

G̃

FIG. 11. General form of the diagrams that are generated by the
third-order term of the GL free energy. Note that Mz always connects
two lines of the same kind, whereas � connects to one particle- and
one holelike line.

The magnetic and superconducting order parameters are
given by

Mz = 2
3 mz

(
7Jz − 4J3

z

)
, (B5)

� = �0(ηyz + iηxz ), (B6)

respectively, and are arranged in the matrix � as shown in
Eq. (24). With these definitions, the trace in the third-order
coefficient can be expanded in products of G± and G̃±. We
denote this product without the prefactors as F3 such that

kBT
∑
k,ωn

1

3
Tr[(G�)3] = F3mz|�0|2. (B7)

Figure 11 shows the general diagrammatic form of the gener-
ated term for which there are 12 possibilities. However, four
of these have vanishing coefficients so that only eight terms
remain in two groups of four,

F3 = kBT
∑
k,ωn

{6 sin2(2θ )(−G−G̃−G+ − G−G+G̃+ + G̃−G+G̃+ + G−G̃−G̃+) + [5 + 3 cos(4θ )](−G̃−G+G+ + G−G̃+G̃+

+ G̃−G̃−G+ − G−G−G̃+)}, (B8)

where θ is the polar spherical angle of k. There is no contribution where the Green’s functions all have the same band index,
which shows that the coupling to the magnetic order parameter requires interband pairing. The combination of Green’s functions
appearing in the first line couples the interband component of the magnetic order parameter to one interband and one intraband
component of the superconducting pairing potential. On the other hand, the combination of Green’s functions in the second line
couples the intraband component of the magnetic order parameter to two interband components of the superconducting order.
The latter terms correspond to the coupling of the magnetic order parameter with the pseudomagnetic field in the low-energy
effective model. Using the approximation from Eq. (A4), we find that only this term gives a nonzero contribution,

kBT
∑
ωn

∫ ∞

−∞
dε0(−G−G̃−G+ − G−G+G̃+ + G̃−G+G̃+ + G−G̃−G̃+) = 0, (B9)

kBT
∑
ωn

∫ ∞

−∞
dε0(−G̃−G+G+ + G−G̃+G̃+ + G̃−G̃−G+ − G−G−G̃+) = − 1

πkBTc
β̃ Im

[
ψ (1)

(
1

2
+ iβ̃μ

2kBTcπ

)]
, (B10)

where ψ (n)(z) is the polygamma function of order n and β̃ = β/(α + 5β/4). Performing the angular integration, we obtain

F3 = −N0
24

πkBTc
gM |�0|2β̃ Im

[
ψ (1)

(
1

2
+ iβ̃μ

2πkBTc

)]
≈ N0

μ

48

5
gM |�0|2, (B11)

where the last approximation is valid when the band splitting β̃μ is much larger than kBTc.
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The coefficient F3 is on the order of N0/μ ≈ N ′
0, i.e., the derivative of the DOS at the Fermi energy. This suggests that we

should also include the contributions due to the particle-hole asymmetry of the normal-state electronic structure, which should
also be proportional to the derivative of the DOS. To this end, we expand the DOS up to first order in energy N (ε0) ≈ N0[1 +
ε0/(2μ)]. We have already evaluated the contribution of the constant term; including the energy-dependent term, however,
typically leads to the divergence of the Matsubara sum. We, therefore, introduce an energy cutoff such that the sum is restricted
to |ωn| < � where � is the cutoff energy of the attractive pairing interaction [48]. Evaluating the different sets of Green’s
functions in Eq. (B8), we obtain

kBT
∑

|ωn|<�

∫ ∞

−∞
dε0

ε0

2μ
(−G−G̃−G+ − G−G+G̃+ + G̃−G+G̃+ + G−G̃−G̃+) = −H�/(2kBT π ) + ln 4

μ(1 − β̃2)
, (B12)

kBT
∑

|ωn|<�

∫ ∞

−∞
dε0

ε0

2μ
(−G̃−G+G+ + G−G̃+G̃+ + G̃−G̃−G+ − G−G−G̃+)

= 1

2μ
(2 Re[H−1/2+(iβ̃μ)/(2kBT π )] − 2 Re[H(iβ̃μ+�)/(2kBT π )]), (B13)

where Hz is the analytic continuation of the harmonic number. Combining these results with the contribution of the constant-DOS
term, we obtain

F3 = N0gM |�0|2 24

5π

{
− β̃

kBTc
Im

[
ψ (1)

(
1

2
+ iβ̃μ

2πkBTc

)]
− 2π

3

H�/(2kBTcπ )+ln 4

μ(1−β̃2)
+ π

μ
Re[H−1/2+(iβ̃μ)/(2kBTcπ )−H(iβ̃μ+�)/(2kBTcπ )]

}

≈ gM
N0

μ

48

5

[
1 − ln 2�eγ

πkBTc

3(1 − β̃2)
− 1

4
ln

(
1 + �2

β̃2μ2

)]
, (B14)

where the second line is valid in the limit �, β̃μ � kBTc and γ is the Euler-Mascheroni constant.
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