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Experimental consequences of Bogoliubov Fermi surfaces
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Superconductors involving electrons with internal degrees of freedom beyond spin can have internally
anisotropic pairing states that are impossible in single-band superconductors. As a case in point, in even-
parity multiband superconductors that break time-reversal symmetry, nodes of the superconducting gap are
generically inflated into two-dimensional Bogoliubov Fermi surfaces. The detection and characterization of
these quasiparticle Fermi surfaces requires the understanding of their experimental consequences. In this paper,
we derive the low-energy density of states for a broad range of possible nodal structures. Based on this,
we calculate the low-temperature form of observables that are commonly employed for the characterization
of nodal superconductors, i.e., the single-particle tunneling rate, the electronic specific heat and Sommerfeld
coefficient, the thermal conductivity, the magnetic penetration depth, and the NMR spin-lattice relaxation rate,
in the clean limit. We also address the question whether the topological invariant of the Bogoliubov Fermi
surfaces is associated with topologically protected surface states, with negative results. This work is meant to
serve as a guide for experimental searches for Bogoliubov Fermi surfaces in time-reversal-symmetry-breaking
superconductors.
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I. INTRODUCTION

The common view of superconductors evokes a condensate
of Cooper pairs formed by electrons with a single internal de-
gree of freedom—the spin. The formation of this condensate
is understood as an instability of the normal-state Fermi sur-
face, which may consist of a single or multiple sheets. In the
latter case, the superconducting pairing amplitude is typically
different on different sheets but beyond this, the presence of
multiple bands does not have any qualitative consequences.
In this picture, the pairing amplitude can have zeros in mo-
mentum space, called nodes. These nodes are either points
or lines in the three-dimensional Brillouin zone. Our inter-
est here is in centrosymmetric, even-parity superconductors.
For these materials, the pairing amplitude generically has
line nodes in the presence of time-reversal symmetry (TRS)
and point nodes if TRS is spontaneously broken [1]. TRS-
breaking states can also have line nodes in high-symmetry
planes.

It has recently been realized that this picture is incomplete.
The pairing of electrons with additional internal degrees of
freedom resulting, e.g., from different orbitals or basis sites,
can lead to qualitatively new pairing states. Such pairing
states have, for example, been proposed for iron-based su-
perconductors [2–9], CuxBi2Se3 [10,11], cubic systems such
as half-Heusler compounds [12–21], UPt3 [22,23], transition-
metal dichalcogenides [24,25], and twisted bilayer graphene
[26–28]. It has been shown that in centrosymmetric multiband
superconductors that break TRS, point and line nodes are
generically replaced by spheroidal and tubular Fermi sur-
faces of Bogoliubov quasiparticles, due to interband pairing
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[29,30]. We speak of “inflated” point and line nodes, respec-
tively, in the following. These two-dimensional Bogoliubov
Fermi surfaces (BFSs) are protected by a topological Z2 in-
variant [31,32], which can be expressed in terms of a Pfaffian
[29,30].

In order to be able to detect BFSs, it is paramount to
determine their experimental consequences. While angular re-
solved photoemission spectroscopy (ARPES) would be ideal
for mapping out the quasiparticle dispersion, it is often not
feasible due to low critical temperatures or bad surface qual-
ity. Hence, we here consider the specific heat, the thermal
conductivity, the magnetic penetration depth, and the NMR
spin-lattice relaxation rate. These probes are routinely used to
determine the nodal structure of unconventional superconduc-
tors since they show characteristic power-law or exponential
temperature dependences at low temperatures. We obtain the
corresponding low-temperature expansions for inflated point
and line nodes with rather general low-energy dispersions,
including linear and quadratic point nodes and line nodes with
linear dispersion. In this work, we focus on the clean limit,
where the energy scale characteristic for the smearing of the
density of states (DOS) by disorder is small compared to all
other energy scales. For ease of reference, we present the main
results in Table I.

Beyond the bulk properties discussed so far, it is natural
to consider surface-bound electronic states since topological
invariants are often associated with surface states through
a bulk-boundary correspondence. Such surface states could
then be probed by tunneling experiments. One example
are flat surface bands in noncentrosymmetric superconduc-
tors, which should lead to a zero-bias peak in tunneling
[13,38–42]. However, we are not aware of a mathematical
argument for (or against) surface states associated with the
Z2 invariant of BFSs. In this work, we use numerical exact
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TABLE I. Leading terms of the temperature dependence of the temperature-dependent part of the penetration depth, �λ, the electronic
contribution to the specific heat c and the thermal conductivity κ , the electronic Sommerfeld coefficient γ = c/T , and the NMR spin-lattice
relaxation rate 1/T1T for uninflated and inflated nodes with exponents g = 2 (linear point nodes) and g = 1 (linear line nodes and double-Weyl
point nodes). For the thermal-conductivity tensor, only the temperature-dependent scalar prefactor is shown. The g = 1 results in this case
only apply to linear line nodes, not to double-Weyl point nodes. The results on c, κ , and γ for inflated nodes disregard corrections due to the
temperature dependence of the gap. Overall proportionality factors independent of temperature T and pseudomagnetic field h are omitted. For
comparison, expressions for a superconductor with constant gap � are given in the last column [1,33–37]. For 1/T1T , the nonzero nuclear
resonance frequency ω0 must be reintroduced for a constant gap. Since it typically corresponds to temperatures on a order of a few millikelvin,
we have assumed ω0 � kBT � � [37].

g = 2 (point nodes) g = 1 (line/double-Weyl nodes)

Observable Uninflated Inflated Uninflated Inflated Full gap

�λ T 2 T 2 T T e−h/kBT �1/2

T 1/2 e−�/kBT

c, κ T 3 h2 kBT + 7π2

5 (kBT )3 T 2 h kBT + 6
π2 h2 e−h/kBT �5/2

T 3/2 e−�/kBT

γ T 2 h2 + 7π2

5 (kBT )2 T h + 6
π2

h2

kBT e−h/kBT �5/2

T 5/2 e−�/kBT

1
T1T T 4 h4 + 2π2

3 h2(kBT )2 T 2 h2 + 4h kBT e−h/kBT �

T ln kBT
ω0

e−�/kBT

diagonalization of a Bogoliubov–de Gennes Hamiltonian for
a slab to search for surface states, with negative results.

The remainder of this paper is organized as follows: In
Sec. II, the low-energy form of the quasiparticle DOS is
derived for various types of nodes. We also comment on
single-particle tunneling, which directly probes the DOS.
Based on the results, we obtain low-temperature expansions
for the magnetic penetration depth, the electronic contribution
to the specific heat, the NMR spin-lattice relaxation rate,
and the electronic contribution to the thermal conductivity
in Sec. III. The question of surface states associated with
the topological Z2 invariant is considered in Sec. IV. We
summarize our results and draw conclusions in Sec. V.

II. DENSITY OF STATES

In this section we derive the DOS close to various types of
nodes. Our strategy is to expand the quasiparticle dispersion
about the Fermi energy (zero by convention), to leading order.
This allows us to obtain analytical results that exhibit para-
metric dependences and exponents of power laws. We start
with uninflated and inflated point nodes with a rather general
triaxial power-law dispersion and then consider uninflated and
inflated line nodes with a power-law dispersion. We shall see
that line nodes can be viewed as limiting cases of point nodes.

A. General point nodes

Neglecting interband pairing to start with, point nodes
generically appear in high-symmetry directions for broken
TRS. (We do not consider accidental nodes here, which can
occur anywhere in the Brillouin zone.) At any such point node,
the direction orthogonal to the normal-state Fermi surface is
special—in this direction, the superconducting contribution to
the quasiparticle dispersion vanishes. The dispersion is thus
generically linear to leading order and given by Ek = vF k⊥,
where vF is the normal-state Fermi velocity and k⊥ is the
momentum component normal to the Fermi surface. The two
directions orthogonal to k⊥ are tangential to the normal-state
Fermi surface. The quasiparticle dispersion in these directions
describes how the superconducting gap opens.

Denoting the momentum relative to an uninflated point
node by q in such a way that q3 describes the direction
orthogonal to the normal-state Fermi surface, we expand the
quasiparticle dispersion around the node as

E0
q = ±

√
α2

1 |�0|2|q1|2m + α2
2 |�0|2|q2|2n + v2

F q2
3, (1)

where α1, α2 > 0 are constants, �0 is the global scale of the
pairing amplitude, and 2m, 2n > 0 are exponents that need not
be integers. We set h̄ to unity throughout the paper.

Except at the point nodes, the quasiparticle bands are
twofold degenerate, which can be described by a pseudospin
1/2. Interband pairing generates a pseudomagnetic field h
[29,30], which couples to the pseudospin and splits the de-
generacy of the bands. If interband pairing is small com-
pared to the energy difference between the bands, the former
can be treated perturbatively in an effective single-band model
close to each Fermi sheet. As shown in Refs. [29,30], the
leading term in h is of second order in the interband pairing
and is thus typically small. Furthermore, it is generically
nonzero at the nodes and hence can be represented, to leading
order, by a constant. The dispersion in the vicinity of the
(former) point nodes then becomes

Eq = ±h ±
√

α2
1 |�0|2|q1|2m + α2

2 |�0|2|q2|2n + v2
F q2

3, (2)

where h = |h|. Here and in the following, the two signs can
be chosen independently, giving four bands.

The evaluation of the DOS

D(E ) =
∫
R3

d3q

(2π )3
δ(E − Eq) (3)

is outlined in Appendix A 1, with the result

D(E ) = 2
√

π

(2π )3

1

mn(α1|�0|)1/m(α2|�0|)1/nvF

× 

(

1
2m

)


(

1
2n

)


(

1
2 + 1

2m + 1
2n

) (|E + h|1/m+1/n + |E −h|1/m+1/n)

≡ cm,n

2
(|E + h|g + |E − h|g), (4)
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FIG. 1. Density of states for various values of the exponent
g = 1/m + 1/n.

where

g = 1

m
+ 1

n
> 0 (5)

is a characteristic exponent, which will play an important
role. The DOS is the sum of two contributions from the
quasiparticle bands with positive and negative signs in front
of the pseudomagnetic field in Eq. (2). Figure 1 shows the
DOS for various values of g.

If g is an even integer the DOS D(E ) is an analytic function
of energy. However, even integers larger than 2 are unlikely
to occur since they would require the gap to open with a
fractional exponent smaller than unity in at least one direction.
The case g = 2 is most naturally realized by m = n = 1,
which corresponds to a point node with linear dispersion in
all directions. We will get back to this case below.

All other cases with integer m and n yield g < 2 so that
the DOS is not analytic at E = ±h. However, the DOS can
always be expanded into power series for E < h and for
E > h separately, giving

D(E ) = cm,n hg
∞∑
j=0

(
g

2 j

)
×

{(
E
h

)2 j
for 0 � E � h,(

E
h

)g−2 j
for E > h,

(6)

where the binomial coefficient is defined for any real upper
argument as(

a

n

)
= a(a − 1)(a − 2) · · · (a − n + 1)

n!
(7)

for n = 1, 2, . . . and
(a

0

) = 1. The series over j terminate if
and only if g is a positive integer. For later convenience, we
also note the derivative

D′(E ) = cm,n ghg−1
∞∑
j=0

{( g−1
2 j+1

)(
E
h

)2 j+1
for 0 � E � h,(g−1

2 j

)(
E
h

)g−2 j−1
for E > h.

(8)

In the limit of uninflated point nodes, we of course obtain
D(E ) = cm,n Eg.

B. Special cases

For the most common case of inflated point nodes with
linear dispersion,

Eq = ±h ±
√

α2
1 |�0|2q2

1 + α2
2 |�0|2q2

2 + v2
F q2

3, (9)

we have m = n = 1 and g = 2. The dispersion is linear in
all three directions, but typically with different velocities. For
sufficiently high symmetry of the direction of the point node,
the dispersion is isotropic in the tangential directions, i.e.,
α1 = α2. The DOS reads

D(E ) = c1,1(E2 + h2), (10)

with

c1,1 = 1

(2π )3

8π

α1α2|�0|2vF
. (11)

The pseudomagnetic field h simply adds a constant to the
quadratic DOS found for uninflated nodes.

As the second special case, we consider quadratic disper-
sion in both tangential directions, as found, for example, for
pairing belonging to the irrep E1g of D6h [30]. Furthermore,
this case can be realized by fine tuning a system with lin-
ear point nodes to a topological transition [43]. Generaliz-
ing the previous derivation, we treat the general anisotropic
dispersion

Eq = ±h ± (
α2

1 |�0|2q4
1 + α2

2 |�0|2q4
2

+ 2α2
12|�0|2q2

1q2
2 + v2

F q2
3

)1/2
. (12)

The evaluation of the DOS is relegated to Appendix A 2. The
result is

D(E ) = π
√

2

(2π )3

1√
α1α2|�0|vF

G(α)(|E + h| + |E − h|),
(13)

where α ≡ α2
12/α1α2 and

G(α) ≡ − 1√
1 − α

[
F

(
π

4
− φ+,

2

1 − α

)

− F

(
π

4
− φ−,

2

1 − α

)]
. (14)

Here, F is the incomplete elliptic integral of the first kind and

φ− = arcsin α

2
, (15)

φ+ = π − arcsin α

2
. (16)

In the limit α = 0, we have φ− = 0, φ+ = π/2, and thus

G(0) = F

(
π

4
, 2

)
− F

(
−π

4
, 2

)
= 1

2
√

2π

2

(
1

4

)
. (17)

Thus the DOS is

D(E ) =
√

π

(2π )3

1√
α1α2|�0|vF

1

2

2

(
1

4

)
× (|E + h| + |E − h|)

= c2,2

2
(|E + h| + |E − h|), (18)

consistent with Eq. (4) for m = n = 2.
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On the other hand, the limit α = 1 corresponds to an
isotropic double-Weyl node. Here, G(1) in Eq. (14) is under-
stood as

G(1) = lim
α→1

G(α) = π√
2
, (19)

so that

D(E ) = π2

(2π )3

1√
α1α2|�0|vF

(|E + h| + |E − h|). (20)

Clearly, the inclusion of the term 2α2
12|�0|2q2

1q2
2 in the disper-

sion does not change the dependence on energy and pseudo-
magnetic field but only the prefactor.

Equation (13) for general α can be rewritten as

D(E ) = 2π
√

2

(2π )3

1√
α1α2|�0|vF

G(α) ×
{

h for |E | � h,

E for |E | > h,

(21)

which is constant at low energies and has kinks at E = ±h.
We will discuss the consequences of these properties below.
For uninflated double-Weyl point nodes, the DOS reduces to
the absolute-value function D(E ) ∝ |E |.

Next, we turn to line nodes. For any point k0 on a line
node, there are three orthogonal characteristic directions: the
normal one, where the quasiparticle dispersion agrees with
the normal state, a tangential direction parallel to the line
node, where the dispersion is of course flat, and another
tangential direction in which the gap opens. We denote the
corresponding momentum components relative to k0 by q3,
q1, and q2, respectively.

We consider a circular line node of radius kF , with disper-
sion with a general exponent n in the orthogonal direction. The
special case of linear dispersion appeared in the mirror plane
for the T2g pairing state with gap amplitudes �0(1, i, 0) in
Refs. [29,30], for which the superconducting gap has kz(kx +
iky) symmetry. The quasiparticle dispersion reads

Eq = ±h ±
√

α2
2 |�0|2q2n

2 + v2
F q2

3. (22)

In evaluating the DOS, we have to include the q1 integral
along the line node, which gives a factor of 2πkF . The result
is

D(E ) = 4π3/2

(2π )3

kF

n(α2|�0|)1/nvF

× (|E + h|1/n + |E − h|1/n)


(

1
2n

)


(

1
2 + 1

2n

)
≡ cline,n

2
(|E + h|g + |E − h|g), (23)

with g = 1/n (details are given in Appendix A 3). For the
most relevant case with linear dispersion, n = 1 and g = 1,
we obtain the same functional form as for double-Weyl point
nodes but with a different prefactor, which for line nodes is
proportional to the length 2πkF of the node.

This correspondence turns out to be more general: The case
of a line node can be viewed as a special case of the general
point node, where the exponent m of the dispersion in one
of the tangential directions is sent to infinity, leading to a flat
dispersion. Equation (4) for m → ∞ has the same form as

Eq. (23) for a line node but the prefactor is different since it
contains the integral along the line node in the second case.

In the absence of circular symmetry, the parameters α2, vF ,
and kF change along the line node but Eq. (23) should still
hold with these parameters understood as averages. Such a
functional form has been found for a microscopic model in
Ref. [44].

Mazidian et al. [43] have derived the DOS for supercon-
ductors with crossing uninflated line nodes with a linear or
quadratic dispersion. The DOS contains logarithmic functions
of energy but can be approximated by power laws with
noninteger exponents g ≈ 0.8 for crossing linear line nodes
and g ≈ 0.4 for crossing quadratic line nodes [43].

In practice, point and line nodes as well as nonequivalent
point nodes can coexist. The DOS is then simply the sum
of their contributions and at low energies the contributions
with the smallest exponent g dominate [44]. In the following
section on observables, we therefore focus on the case of
equivalent nodes. The extension to nonequivalent nodes is
essentially trivial.

III. OBSERVABLES

In this section, we present results for a number of observ-
ables that directly reflect the DOS and that are commonly
used for the characterization of nodal superconductors. Recall
that we treat the effect of interband pairing through the pseu-
domagnetic field h in effective single-band models [29,30].
Hence, the standard derivations [35,45] of these observables
go through. While the specific heat is solely determined by
the free energy and thus by the DOS, the other observables
also depend on the coupling of the quasiparticles to the
corresponding probe. For example, the contributions to single-
particle tunneling depend on the tunneling matrix elements
and the NMR relaxation rate depends on the coupling between
electron and nuclear spins. In order to obtain simple closed-
form results [1,35,46], we make the usual assumption that
these couplings are constant. A more quantitative treatment
should not affect the functional form of the leading tempera-
ture dependence but may change the next-to-leading order.

A. Single-particle tunneling

The tunneling current between a normal conductor and the
superconductor of interest provides a direct measure of the
DOS of the latter if the energy dependence of the DOS of
the normal conductor can be neglected. For simplicity, we
also assume that the DOS of the superconductor becomes an
energy-independent constant D0 in its normal state. In this
case, the current is given by [35]

Isn = Gnn

e

∫ ∞

−∞
dE

D(E )

D0
[nF (E ) − nF (E + eV )], (24)

where Gnn is the differential conductance if the superconduc-
tor is driven into the normal state, nF (E ) is the Fermi-Dirac
distribution function, and V is the applied bias voltage. The
differential conductance is then

Gsn = dIsn

dV
= −Gnn

∫ ∞

−∞
dE

D(E )

D0

dnF (E + eV )

dE
. (25)
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In the zero-temperature limit, one obtains

Gsn = Gnn

∫ ∞

−∞
dE

D(E )

D0
δ(E + eV ) = Gnn

D(−eV )

D0
. (26)

Thus low-temperature tunneling directly measures the super-
conducting DOS. In the presence of BFSs, Eq. (4) implies

Gsn = Gnn
cm,n

2D0
(|eV + h|g + |eV − h|g). (27)

In particular, the differential conductance is finite at zero bias,
V = 0. At nonzero temperatures, the features are smeared out
over an energy scale of kBT .

B. Magnetic penetration depth

The penetration depth λi in the i = x, y, z plane is related
to the components of the response kernel K by λi ∝ 1/

√
Kii

[36,45,47–49], where the kernel K links the charge current to
the vector potential, j = −(e2/mc)KA. The kernel K can be
decomposed into a diamagnetic part Kd and a paramagnetic
part K p. The former is independent of temperature, while the
latter satisfies [36,47–49]

Kd ∝
∑

n

∫
d3k

(2π )3
vnk ⊗ vnk

dnF

dE
, (28)

where n is the quasiparticle-band index, vnk = ∂Enk/∂k is the
quasiparticle velocity, and ⊗ denotes the Kronecker product.
Introducing the DOS, the diagonal components can be written
as [50]

Kd
ii ∝

∫ ∞

0
dE D(E )

〈(
∂E

∂ki

)2
〉

E

dnF

dE
, (29)

where 〈· · · 〉E is the average over all states at a given energy
E . The averaged squared velocity can be highly anisotropic. In
accord with our goal to find leading temperature dependences,
we replace the average by its value at the Fermi energy,
v̄2

i . (The averages can be evaluated explicitly. A few cases
are treated in Appendix B in the context of the thermal
conductivity.) We can now write

Kd
ii ∝ v̄2

i

∫ ∞

0
dE D(E )

dnF

dE
. (30)

At low temperature, Kd is small compared to K p, and we
obtain

λi ∝ 1√
K p

ii + Kd
ii

∼= 1√
K p

ii

(
1 − Kd

ii

2K p
ii

)
(31)

and thus

λi
∼= λi0 − βi

∫ ∞

0
dE D(E )

dnF

dE
, (32)

where βi is a constant proportional to v̄2
i . If the DOS at the

Fermi energy, D(0), vanishes, λi0 is the penetration depth in
the limit T → 0. However, for inflated nodes, the integral
contains another nonvanishing term for T → 0, which exper-
imentally cannot be separated from λi0. High-precision mea-
surements of the temperature dependence of λi are insensitive
to the temperature-independent part [36]. We therefore first

consider the temperature-dependent part �λi(T ) ≡ λi(T ) −
λi(0).

For a DOS of the general form of Eq. (4), it is useful to
split the integral at E = h. Substituting u ≡ E/h and defining
t ≡ kBT/h, integration by parts yields

λi = λi0 − βi

[
D(uh)

eu/t + 1

∣∣∣∣
∞

0

−
∫ 1

0
du

dD

du

1

eu/t + 1

−
∫ ∞

1
du

dD

du

1

eu/t + 1

]
. (33)

The first term in the angular brackets generates the new
contribution to the zero-temperature penetration depth. For
the other terms, we insert the series expansions in Eq. (8) for
dD/du = h D′(E ) and

nF (E ) =
∞∑

p=1

(−1)p+1e−pE/kBT (34)

for the Fermi-Dirac function. The result is [51]

λi = λi0 + βi cm,n hg

2
+ βi cm,n ghg

∞∑
j=0

∞∑
p=1

(−1)p+1

×
[∫ 1

0
du

(
g − 1

2 j + 1

)
u2 j+1 e−pu/t

+
∫ ∞

1
du

(
g − 1

2 j

)
ug−2 j−1 e−pu/t

]

= λi0 + βi cm,n hg

2
+ βi cm,n ghg

∞∑
j=0

∞∑
p=1

(−1)p+1

×
[(

g − 1

2 j + 1

)(
t

p

)2 j+2[

(2 j + 2) − 


(
2 j + 2,

p

t

)]

+
(

g − 1

2 j

)(
t

p

)g−2 j




(
g − 2 j,

p

t

)]
, (35)

with the incomplete Gamma function


(a, b) =
∫ ∞

b
dy e−y ya−1. (36)

It will prove useful to express this function as


(a, b) ≡ e−b ba P(a, b). (37)

In Eq. (35), the series over p can be performed in the term
only containing the complete Gamma function. Subtracting
the temperature-independent part, we obtain

�λi = βi cm,n ghg
∞∑
j=0

(
g − 1

2 j + 1

)
t2 j+2 
(2 j + 2)

×
(

1 − 1

22 j+1

)
ζ (2 j + 2)

+βi cm,n hg
∞∑
j=0

∞∑
p=1

(−1)p+1 e−p/t

(
g

2 j + 1

)
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×
[

(2 j + 1)P

(
g − 2 j,

p

t

)

− (g − 2 j − 1)P

(
2 j + 2,

p

t

)]
, (38)

where ζ (z) is the Riemann zeta function.
The function P(a, b) has the series expansion

P(a, b) = 1

b
+ a − 1

b2
+ a2 − 3a + 2

b3

+ a3 − 6a2 + 11a − 6

b4
+ O(1/b5). (39)

For inflated nodes, �λi is thus generally a double series of
terms proportional to tm e−n/t with integers m and n. At low
temperatures, kBT � h, i.e., t � 1, the exponential factors
satisfy e−n/t � e−n′/t for n > n′. In particular, a term with
exponential factor is small compared to the bare power tm.

The limit h → 0 for uninflated nodes is not trivial since t
contains h. It is more easily calculated directly from Eq. (32).
Integration by parts gives

λi = λi0 − βicm,n

[
Eg nF (E )|∞0 − g

∫ ∞

0
dE Eg−1nF (E )

]

= λi0 + βi cm,n g

×
{

kBT ln 2 for g = 1,(
1 − 1

2g−1

)
(kBT )g 
(g)ζ (g) for g �= 1.

(40)

The temperature-dependent part is proportional to T g for all
exponents g [46,48].

We now discuss special cases. First, if the exponent g is
an even integer, which is the case for linear point nodes, both
sums over j terminate at j = g/2 − 1. The first sum is then
a polynomial in t of degree g. In the second sum, we replace
j → g/2 − j − 1 in the terms containing P(g − 2 j, p/t ) and
then find that each term in the sum cancels. Hence, the
penetration depth is a polynomial in temperature of degree g,
containing only even powers, without any exponential terms.
For linear point nodes, we have g = 2 and thus the simple
result

�λi = ζ (2)βi c1,1 h2 t2 = π2

6
βi c1,1(kBT )2. (41)

The pseudomagnetic field only appears in the temperature-
independent part λi0 + βi c1,1h2/2. Measurements of �λi

alone thus cannot distinguish between inflated and uninflated
linear point nodes.

Second, if g is an odd integer, as for double-Weyl point
nodes and linear line nodes, the first sum in Eq. (38) is
empty for g = 1 and terminates at j = (g − 3)/2 for g � 3.
In the latter case, it is a polynomial in t of order g − 1,
containing only even powers. The second sum terminates at
j = (g − 1)/2. The terms do not cancel, which can be inferred
from the observation that g − 2 j is odd, while 2 j + 2 is even.
The leading term is the one with the smallest index p. The
most relevant case g = 1 can be evaluated from Eq. (33),
without series expansions,

�λi = βi cline,1

[∫ 1

0
du

0

eu/t + 1
+

∫ ∞

1
du

h

eu/t + 1

]

= βi cline,1 kBT ln(1 + e−h/kBT ), (42)

FIG. 2. Temperature-dependent part �λi of the magnetic pene-
tration depth (blue curve) as a function of temperature T for kBT
small compared to the gap amplitude �0. The asymptotic form for
kBT � h,�0 is shown for comparison (dashed black curve).

written for linear line nodes. For double-Weyl point nodes,
cline,1 should be replaced by c2,2. The leading term at low
temperatures is thus

�λi
∼= βi cline,1 kBT e−h/kBT . (43)

As shown in Fig. 2, �λi crosses over from the exponentially
suppressed form for kBT � h to the linear form expected for
uninflated line nodes for kBT � h.

Interestingly, the exponentially suppressed temperature de-
pendence is similar to the expression for a full gap [36],

�λi

λi0
≈

√
π�

2kBT
e−�/kBT , (44)

where � is the superconducting gap assumed to be indepen-
dent of momentum. However, the relevant energy scale for
the case with BFSs is the pseudomagnetic field h, not the gap,
and the temperature dependence of the prefactor is different.
As noted above, the pseudomagnetic field is expected to
be small compared to the gap since its leading term is of
second order in the (interband) pairing [29,30]. Nevertheless,
an exponentially suppressed temperature dependence of �λi

together with tunneling experiments showing a nodal gap
would be a clear signature of inflated line and double-Weyl
nodes.

Finally, if g is not an integer, the series in Eq. (38) do
not terminate. The first series contains all even powers of
t = kBT/h starting from the second. The terms in the second
series all contain exponential factors of the form e−p/t with
p = 1, 2, . . . and positive integer powers of t [note that P(a, b)
consists of negative integer powers of b = p/t]. We note that
the exponential terms found whenever g is not an even integer
result from the nonanalytical energy dependence of the DOS
at E = ±h (see Fig. 1). At low temperatures, the second-order
term of the first series dominates �λi and we obtain

�λi
∼= π2

12
βi cm,n g(g − 1)hg−2(kBT )2. (45)

Hence, the exponent describing the temperature dependence
does not provide information on the nature of the nodes.
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So far, we have only considered the temperature-dependent
part �λi. The absolute value of λi can be measured, for ex-
ample, by muon spin rotation (μSR) [36,52]. Conventionally,
the penetration depth λ ∝ 1/

√
ns is expressed in terms of the

superfluid density ns, and ns reaches the full electron concen-
tration ne for T → 0 if the superconducting volume fraction
is 100% (the anisotropic case requires additional analysis). λ

is of interest here since in the presence of BFSs, ns is not
expected to reach ne because of the surviving quasiparticle
contribution. Hence, ns/ne smaller than the superconducting
volume fraction would be a strong signature. However, careful
modeling of the μSR signal would be needed since we are
dealing with TRS-breaking superconductors, for which the

contribution from magnetic penetration is difficult to disen-
tangle from the intrinsic magnetic field.

C. Specific heat

We next address the electronic contribution to the specific
heat, which is given by [1,43,46]

c = − 1

T

∫ ∞

0
dE D(E )E2 dnF

dE
. (46)

It is again useful to split the integral at E = h and to substitute
u = E/h. Integration by parts yields

c = −h2

T

[
u2D(uh)

eu/t + 1

∣∣∣∣
∞

0

−
∫ 1

0
du

2uD + u2 dD
du

eu/t + 1
−

∫ ∞

1
du

2uD + u2 dD
du

eu/t + 1

]
, (47)

where t = kBT/h.
For now, we assume that the temperature dependence of the DOS due to the pairing amplitude �0(T ) is negligible. Inserting

the expansions in Eqs. (6), (8), and (34), we obtain

c = 2

T
cm,n hg+2

∞∑
j=0

∞∑
p=1

(−1)p+1

[(
g

2 j

)(
t

p

)2 j+2[

(2 j + 2) − 


(
2 j + 2,

p

t

)]
+

(
g

2 j

)(
t

p

)g−2 j+2




(
g − 2 j + 2,

p

t

)]

+ 1

T
cm,n ghg+2

∞∑
j=0

∞∑
p=1

(−1)p+1

[(
g − 1

2 j + 1

)(
t

p

)2 j+4[

(2 j + 4) − 


(
2 j + 4,

p

t

)]

+
(

g − 1

2 j

)(
t

p

)g−2 j+2




(
g − 2 j + 2,

p

t

)]
. (48)

The series over p can be performed in the terms only containing the complete Gamma function. After additional simplifications,
we obtain

c = 2kB cm,n hg+1
∞∑
j=0

(
g

2 j

)
(1 + j)t2 j+1 
(2 j + 2)

(
1 − 1

22 j+1

)
ζ (2 j + 2)

+ 1

T
cm,n hg+2

∞∑
j=0

∞∑
p=1

(−1)p+1 e−p/t

(
g

2 j

)[
(g − 2 j + 2)P

(
g − 2 j + 2,

p

t

)
− (2 j + 2)P

(
2 j + 2,

p

t

)]
. (49)

For uninflated nodes, integration by parts in Eq. (46) gives

c = −cm,n

T

[
Eg+2 nF (E )

∣∣∞
0 − (g + 2)

∫ ∞

0
dE Eg+1 nF (E )

]

= kB cm,n (g + 2)

(
1 − 1

2g+1

)
(kBT )g+1
(g + 2)ζ (g + 2). (50)

Hence, the electronic contribution to the specific heat is
proportional to T 2 for linear line nodes and to T 3 for linear
point nodes, as is well known [1,43].

The discussion of special cases with BFSs follows the one
for the penetration depth and we can be brief. For even integer
g, the specific heat is a polynomial in temperature of order
g + 1, containing only odd powers. In particular, for inflated
linear point nodes (g = 2), we obtain

c = kBcm,n

[
π2

6
h2 kBT + 7π4

30
(kBT )3

]
(51)

so that the Sommerfeld coefficient is

γ = c

T
= k2

Bcm,n

[
π2

6
h2 + 7π4

30
(kBT )2

]
. (52)

Since the DOS is finite at zero energy we obtain a finite
Sommerfeld coefficient for T → 0.

There is experimental evidence for a finite Sommer-
feld coefficient in a number of compounds, e.g., thorium-
doped UBe13 [53], UPt3 [54,55], URu2Si2 (from thermal-
conductivity measurements) [56], and UTe2 [57,58]. A resid-
ual density of states and an associated nonzero Sommerfeld
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coefficient can more conventionally be caused by disorder.
However, in particular for UTe2, the small variation of Tc

between various samples and the large and sharp jump in the
specific heat at Tc suggest that disorder is weak [57]. Then
BFSs are a natural explanation, as also noted in Ref. [59].
In addition, the observed scaling c(T ) − c(0) ∼ T 3.2, and
thus γ (T ) − γ (0) ∼ T 2.2, agrees reasonably well with the
exponent of 2 expected for inflated point nodes. On the other
hand, more recent specific-heat measurements for UTe2 by
Metz et al. [60] are consistent with uninflated point nodes
(and thus no residual Sommerfeld coefficient from the super-
conducting state) plus a diverging contribution proportional
to T −0.35 from quantum-critical magnetic fluctuations. The
authors also observe the scaling �λ ∼ T 2 for the magnetic
penetration depth [60], which, however, does not discriminate
between uninflated and inflated point nodes, as discussed
above. Moreover, they find a T 3 power law for the electronic
contribution to the thermal conductivity, which is consistent
with uninflated point nodes [60], as shown below.

For odd integer g, both j series in Eq. (49) terminate. The
first is a polynomial in t of order g, containing only odd
powers. The terms in the second series do not cancel, giving
exponentially suppressed corrections to the polynomial. For
g = 1 (linear line nodes and double-Weyl point nodes), the
two leading terms read

c ∼= kB cline,1

[
π2

6
h kBT + h2 e−h/kBT

]
(53)

so that

γ ∼= k2
B cline,1

[
π2

6
h + h2

kBT
e−h/kBT

]
, (54)

written for linear line nodes. For double-Weyl point nodes,
cline,1 should be replaced by c2,2. So, unlike for the
temperature-dependent part of the penetration depth, the lead-
ing term in c and γ is not exponentially suppressed but is
given by the contribution from the residual DOS, while the
first correction is exponential. Both leading terms vanish for
h → 0 so that the approach to the result γ ∝ T for uninflated
nodes is not trivial.

If g is not an integer, the series in Eq. (49) do not terminate.
The two leading terms are

c ∼= kB cm,n hg

[
π2

6
kBT + 7π4

30
g

(kBT )3

h2

]
(55)

and thus

γ ∼= k2
B cm,n hg

[
π2

6
+ 7π4

30
g

(kBT )2

h2

]
. (56)

Considering all cases together, the first correction to the
residual Sommerfeld coefficient thus scales as T 2 unless g
equals unity.

Let us now consider the case that the DOS depends on
temperature through the pairing amplitude �0(T ). Then two
additional contributions to the specific heat appear. On the one
hand, the mean-field decoupling of the interaction

Hint = 1

2

∑
kk′

∑
σ1σ2σ3σ4

Vσ1σ2σ3σ4 (k, k′)

× c†
−k,σ1

c†
k,σ2

ck′,σ3
c−k′,σ4

, (57)

where c†
k,σ and ck,σ

are electron creation and annihilation
operators, respectively, produces a constant energy shift

�Emf = − 1

2

∑
kk′

∑
σ1σ2σ3σ4

Vσ1σ2σ3σ4 (k, k′)

× 〈
c†
−k,σ1

c†
k,σ2

〉〈
ck′,σ3

c−k′,σ4

〉
, (58)

which is proportional to |�0|2. This term leads to a correction
to the specific heat of the form

�cmf ∝ |�0|d|�0|
dT

. (59)

On the other hand, the quasiparticle contribution to the spe-
cific heat, given in Eq. (46), obtains an additional term since
it is the temperature derivative of the internal-energy density,
which now depends on temperature also through �0,

c =
∫ ∞

0
dE

[
−D(E )

E2

T

dnF

dE
+ dD

d|�0|
d|�0|

dT
E nF (E )

]
.

(60)

The new, second term can be evaluated by series expansion,
similar to the leading term considered above, which we do not
show here. In any case, we observe that both new terms are
proportional to the derivative d|�0|/dT . Evaluation of this
quantity requires, in the weak-coupling case, the solution of a
BCS gap equation for a microscopic model, which lies outside
of the scope of this paper. Note that additional terms due to the
temperature dependence of the pairing amplitude occur only
in the specific heat and the related thermal conductivity but
not in the other observables considered here.

D. Spin-lattice relaxation rate

The NMR spin-lattice relaxation rate is given by
[1,34,45,46]

1

T1T
= −βNMR

∫ ∞

0
dE D2(E )

dnF

dE
, (61)

where βNMR is a constant. The general expression [1,34,45]
contains a coherence factor, which involves constant-energy
averages of the gap amplitude. We assume an unconventional
pairing state belonging to a nontrivial irreducible represen-
tation of the point group [61]. Under this condition, these
averages vanish [1]. In addition, we have neglected the small
nuclear resonance frequency, which is reasonable for nodal
states [1]. By splitting the integral at E = h, substituting u =
E/h, and integrating by parts, we obtain

1

T1T
= −βNMR

[
D2(uh)

eu/t + 1

∣∣∣∣
∞

0

−
∫ 1

0
du

2D dD
du

eu/t + 1

−
∫ ∞

1
du

2D dD
du

eu/t + 1

]
. (62)
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Inserting the expansions in Eqs. (6), (8), and (34), we obtain

1

T1T
= βNMRc2

m,n h2g

2
+ 2βNMR c2

m,n gh2g
∞∑
j=0

∞∑
k=0

∞∑
p=1

(−1)p+1

×
[∫ 1

0
du

(
g

2 j

)(
g − 1

2k + 1

)
u2 j+2k+1 e−pu/t +

∫ ∞

1
du

(
g

2 j

)(
g − 1

2k

)
u2g−2 j−2k−1 e−pu/t

]

= βNMR c2
m,n h2g

2
+ 2βNMR c2

m,n gh2g
∞∑
j=0

∞∑
k=0

(
g

2 j

)(
g − 1

2k + 1

)
t2 j+2k+2 
(2 j + 2k + 2)

(
1 − 1

22 j+2k+1

)
ζ (2 j + 2k + 2)

+ 2βNMR c2
m,n h2g

∞∑
j=0

∞∑
k=0

∞∑
p=1

(−1)p+1 e−p/t

(
g

2 j

)(
g

2k + 1

)

×
[

(2k + 1) P

(
2g − 2 j − 2k,

p

t

)
− (g − 2k − 1)P

(
2 j + 2k + 2,

p

t

)]
. (63)

For uninflated nodes, integration by parts in Eq. (61) yields

1

T1T
= − βNMR c2

m,n

[
E2g nF (E )

∣∣∞
0 − 2g

∫ ∞

0
dE E2g−1nF (E )

]

= 2βNMR c2
m,n g ×

{
kBT ln 2 for g = 1

2 ,(
1 − 1

22g−1

)
(kBT )2g 
(2g)ζ (2g) for g �= 1

2 .
(64)

The spin-lattice relaxation rate is proportional to T 2 for linear
line nodes and to T 4 for linear point nodes [1].

Returning to inflated nodes, we note that there is always a
residual relaxation rate at zero temperature due to the nonzero
DOS at the Fermi energy. The form of the leading correction
depends on the exponent g. For even integer g, the first double
series in j and k in Eq. (63) terminates and the second
vanishes, giving a polynomial in t of order 2g, containing only
even powers. For g = 2, we find

1

T1T
∼= βNMR c2

m,n

[
1

2
h4 + π2

3
h2(kBT )2

]
(65)

for the two leading terms. Note that both terms vanish for h →
0. Only the following term, which is proportional to h0 T 4,
survives and gives the result (64) for uninflated nodes.

For odd integer g, the j, k series in Eq. (63) both terminate.
The first vanishes for g = 1 and is a polynomial in t of order
2g − 2 for g > 1, containing only even powers. The second
gives powers multiplied by exponentials. For g = 1, the two
leading terms read

1

T1T
∼= βNMR c2

line,1

[
1

2
h2 + 2h kBT e−h/kBT

]
, (66)

written for linear line nodes. Similar to the Sommerfeld
coefficient, both leading terms vanish for h → 0 so that the
approach to the result 1/T1T ∝ T 2 for uninflated nodes is not
trivial.

If g is not an integer, the series in Eq. (63) do not terminate.
The two leading terms are

1

T1T
∼= βNMR c2

m,n

[
1

2
h2g + π2

6
g(g − 1)h2g−2(kBT )2

]
. (67)

It is worth pointing out that the spin-lattice relaxation rate
depends on the square of the DOS. Since we expect the DOS

due to the BFSs to be small, the resulting terms in 1/T1T
should also be small, which implies that they require very low
temperatures in order to be observed.

E. Thermal conductivity

The electronic contribution to the thermal conductivity can
be described in semiclassical Boltzmann theory, as derived
by Bardeen, Rickayzen, and Tewordt [62], starting from BCS
theory. This derivation does not rely on the underlying mecha-
nism but only on the presence of Bogoliubov quasiparticles as
low-energy excitations. (The condensate itself does not carry
entropy and thus does not contribute to thermal transport.)
Boltzmann theory is limited to low energies and long wave-
lengths. These conditions are satisfied since we consider the
uniform response to elastic scattering, which is justified at low
temperatures, where the contribution from electron-phonon
scattering freezes out.

In addition, we employ a relaxation-time approximation
with a constant relaxation time τ . The relaxation-time form
of the scattering integral becomes exact for elastic point
scattering but the resulting relaxation time generally depends
on energy. Our actual approximation thus consists of taking
the same value of τ for all low-energy quasiparticle states,
which is analogous to the assumption of constant couplings
for the previously discussed observables.

Hence, we employ Boltzmann theory in the relaxation-time
approximation and write the energy current density as [63,64]

jE (r) = τ
∑

n

∫
d3k

(2π )3
E2

nk vnk vnk · ∇T (r)

T (r)

dnF

dE
, (68)

where τ is the relaxation time, n is the quasiparticle-band in-
dex, and vnk = ∂Enk/∂k. Taking ∇T/T to be weakly varying
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in space, we can write

jE (r) = −κ ∇T, (69)

with the thermal conductivity tensor

κ = − τ

T

∫ ∞

0
dE D(E )E2

〈
∂E

∂k
⊗ ∂E

∂k

〉
E

dnF

dE
. (70)

The last expression is similar to Eq. (46) for the specific heat
but is a tensor due to the velocity product. The tensorial char-
acter is crucial when summing contributions from multiple
nodes.

We take D(E ) to be unaffected by disorder, which is valid
if the energy scale γ characteristic for the smearing of the
DOS by disorder is small compared to all other energy scales,
i.e., in the clean limit. The scale γ is on the order of the
relaxation rate 1/τ so that our results are valid for 1/τ �
kBT . Thus, we do not address the universal limit [65,66],
which applies for kBT � 1/τ . In this regime, the low-energy
DOS becomes proportional to γ ∼ 1/τ , which cancels the
prefactor in Eq. (70) and makes the thermal conductivity
independent of τ .

The evaluation of the average for the general dispersions
considered so far is cumbersome and we restrict ourselves
to linear point and line nodes. For inflated point nodes with
the linear dispersion given in Eq. (9), we find the thermal-
conductivity tensor

κ = cτ

⎛
⎜⎜⎝

α2
1 |�0|2

3 0 0

0 α2
2 |�0|2

3 0

0 0 v2
F
3

⎞
⎟⎟⎠, (71)

where c is the specific heat, which for linear point nodes
has the form in Eq. (51). The derivation is sketched in
Appendix B 1. The result is rather simple since the average
〈∂E/∂k ⊗ ∂E/∂k〉E is independent of energy in this case.
The temperature dependence of κ is then due to the one
of the specific heat. The thermal conductivity is diagonal in
the chosen basis but typically much larger in the direction
orthogonal to the normal-state Fermi surface than tangential
to it since vF � α1,2|�0|. However, for high-symmetry states,
the anisotropy will disappear when the contributions from all
nodes are summed up.

For the case of an inflated linear line node, we again
consider a circular line of radius kF , which we take to lie in
the kxky plane. The dispersion reads

Ek = ±h ±
√

v2
F (kρ − kF )2 + α2

2 |�0|2k2
z , (72)

where kρ = (k2
x + k2

y )1/2 and kz are cylindrical coordinates
describing the momentum k. We find

κ = cτ

⎛
⎜⎜⎝

v2
F
4 0 0

0 v2
F
4 0

0 0 α2
2 |�0|2

2

⎞
⎟⎟⎠, (73)

where the specific heat c for linear line nodes is given in
Eq. (53). Details are given in Appendix B 2. The result is again
simple since 〈∂E/∂k ⊗ ∂E/∂k〉E is energy independent.
The thermal conductivity is diagonal and generally highly
anisotropic also in this case. The thermal conductivity of the

T2g pairing state with gap amplitudes �0(1, i, 0) [29,30] and
kz(kx + iky) symmetry is expected to be dominated by the
inflated line node since it contributes much more to the DOS
than the inflated point nodes. Consequently, such a pairing
state would lead to a much larger thermal conductivity in the
plane of the line node than in the perpendicular direction,
while both components would scale linearly with temperature
and deviations from linearity would be exponentially small.

For all other cases of inflated nodes, including double-Weyl
point nodes, the average 〈∂E/∂k ⊗ ∂E/∂k〉E depends on
energy and thus does not come out of the integral in Eq. (70).
The thermal conductivity is then not simply proportional to
the specific heat.

IV. SEARCH FOR SURFACE STATES

As noted in Sec. I, nontrivial topological properties in
the bulk are often revealed by unconventional surface states.
These states contribute to transport and tunneling and can, in
principle, be observed by ARPES. For example, line nodes in
noncentrosymmetric superconductors lead to the appearance
of flat zero-energy surface bands in the two-dimensional Bril-
louin zone of the surface, which are bounded by the projec-
tions of the line nodes into this Brillouin zone [13,38–42]. The
BFSs are protected by a Z2 invariant [29–32]. In this section,
we address the question of whether they are accompanied by
surface states, in particular, in the momentum-space region
bounded by the projection of the Fermi surfaces. To be able to
study this case, we set up a model with open BFSs.

One might not expect surface states of topological origin
for the following reason: The Z2 invariant has been identified
as the relative sign of a Pfaffian of a unitarily transformed
Bogoliubov–de Gennes Hamiltonian [29,30]. The derivation
shows that the global sign of this Pfaffian depends on the
unitary transformation. Hence, it does not make sense to speak
of the momentum-space region enclosed by the BFSs as topo-
logically nontrivial and the region outside as topologically
trivial. There is thus no clear reason to expect surface bands
either inside or outside of the projection of the BFSs. On the
other hand, we can also find an argument as to why surface
states could exist: A self-consistent real-space calculation
would show that the pairing amplitude �0(z) changes with
the distance z from the surface. Now consider the case that
this change is very slow so that one can infer the properties
at a depth z by assuming a uniform pairing amplitude with
the value �0(z). Assume further that the pairing amplitude
approaches zero at the surface. Then the BFSs vary as a
function of z and in particular shrink to point or line nodes for
z approaching the surface. Hence, for any momentum inside a
bulk BFS, there is some depth for which the BFS crosses that
point so that there is a zero-energy state bound to the surface.

In order to construct a model with open BFSs, we start from
the model for superconductivity of angular-momentum J =
3/2 fermions studied in Ref. [29] and deform the normal-state
Hamiltonian in such a way that the hopping in the z direction
becomes weak. The superconducting state is characterized by
the uniform pairing potential (the off-diagonal block in the
Bogoliubov–de Gennes Hamiltonian)

� = �0(ηxy + iηxz ), (74)
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FIG. 3. Bulk Fermi surfaces in the normal (semitransparent gray)
and superconducting (orange) states of the model used in the search
for surface states. Due to the weak dispersion in the z direction, the
normal-state Fermi surface and two of the BFSs are deformed open
cylinders.

with [29]

ηxy = JxJy + JyJx√
3

UT , (75)

ηxz = JxJz + JzJx√
3

UT , (76)

where Jα are standard 4 × 4 angular-momentum J = 3/2
matrices and

UT =

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠ (77)

is the unitary part of the time-reversal operator. This pairing
state is rotated relative to the (1, i, 0) state in the T2g irrep in
Ref. [29] so that the inflated line node lies in the kykz plane.
We emphasize that the details of the model do not matter; if
BFSs led to protected surface states they would do so for any
model. Hence, we do not write down the specific model but
only show the resulting normal-state and Bogoliubov Fermi
surfaces in Fig. 3. The inflated line node in the kykz plane is
not a torus in this case but is split into two open tubes along
the kz direction.

We then Fourier transform the Bogoliubov–de Gennes
Hamiltonian for the superconducting state into real space in
the z direction and introduce open boundary conditions, i.e.,
we describe a slab with (001) surfaces. Finally, we diagonalize
the slab Hamiltonian for many momenta k‖ = (kx, ky) in the
two-dimensional Brillouin zone. Figure 4 shows the smallest
non-negative quasiparticle energy for each momentum k‖.
The projections of the BFSs are clearly seen as black regions.
Note that the inside of the cylindrical pockets is visible.
The plot is indistinguishable from the projection of the bulk
dispersion into the kxky plane (not shown). This means that
there is no sign of surface states. This is confirmed by plotting

FIG. 4. Smallest non-negative eigenenergy Emin of the slab
Hamiltonian as a function of momentum k‖ = (kx, ky ) in the two-
dimensional Brillouin zone. Zero-energy states are shown in black.
The black regions are the projections of the BFSs. The thickness of
the slab is N = 180 unit cells.

the full dispersion along a cut in momentum space in Fig. 5.
The projection of the BFSs here shows up as bands going to
zero energy.

Hence we obtain a negative result: At least for a uniform
pairing potential, the Z2 invariant of the BFSs is not associ-
ated with any surface states. On the other hand, the Bogolibov
Fermi pockets that result from the inflation of point nodes are
also protected by a nonzero even Chern number [30,67]. It
has been shown in Ref. [30] that these are associated with the
expected number of Fermi arcs of surface states emanating
from the projected pockets. These arcs are not visible in
Figs. 4 and 5 since inflated point nodes with opposite Chern

FIG. 5. Dispersion of low-lying nonnegative eigenenergies of
the slab Hamiltonian (black) along the kx = 0 axis in the two-
dimensional Brillouin zone. The thickness of the slab is N = 100.
The dispersion is overlaid over the non-negative eigenenergies for
periodic boundary conditions and the same thickness (cyan), which
mimic the bulk dispersion.
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numbers are separated by vectors (0, 0,±π ) in Fig. 3 and are
thus projected on top of each other for the (001) slab.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed how BFSs in clean multi-
band superconductors affect experimental probes that are
commonly used to characterize nodal superconductors. As
a prerequisite, we have obtained the low-energy form of
the DOS for rather general nodal structures. The DOS can
be probed directly by tunneling experiments. We have then
derived the low-temperature behavior of the magnetic pene-
tration depth, the electronic contribution to the specific heat
and Sommerfeld coefficient, the NMR spin-lattice relaxation
rate, and the thermal conductivity. For ease of reference,
we summarize the leading temperature dependences of these
quantities for the most relevant types of nodes in Table I. The
table also shows expressions for a full gap for comparison.

All observables studied here should also show a charac-
teristic dependence on magnetic field. However, such mea-
surements are not easy to interpret since the field does not
penetrate a superconductor uniformly. A nearly uniform field
is realized in type-II superconductors close to the upper
critical field. In this region, the magnetic-field dependence of
the pairing amplitude � needs to be taken into account. More
critically, the suitable magnetic-field range is rather small,
probably precluding the extraction of a characteristic field
dependence.

We have also considered the possibility of topologically
protected surface states associated with the Z2 invariant of
the BFS. However, at least under the simple assumption of
a uniform pairing potential, there are no such surface states.
Inflated point nodes with nonzero Chern numbers lead to
Fermi arcs at the surfaces, though [30]. The character of these
arcs is unchanged by the inflation of the nodes and thus not
suitable for the discrimination between inflated and uninflated
point nodes.

On the other hand, all probes listed in Table I, with the
exception of �λ in the case of linear point nodes, are, in
principle, able to discriminate between all five types of nodal
structures. Of course, the observability of BFSs always relies
on the residual DOS being sufficiently large, which is con-
trolled by the pseudomagnetic field h. Since h is of second
order in the interband pairing [29,30], it is generically small.
Hence, low powers of h are beneficial. We conclude that for
g = 1, the magnetic penetration depth �λ is the method of
choice. Since �λ is not sensitive to inflation for g = 2, in
that case the best bets are the specific heat and Sommerfeld
coefficient as well as the thermal conductivity. We hope that
this work will motivate experimentalists to look for BFSs in
nodal superconductors.
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APPENDIX A: DERIVATION OF THE DENSITY OF STATES

In this Appendix, we summarize the derivation of the
quasiparticle DOS for several cases.

1. Power-law point nodes

Here, we outline the derivation of the DOS for point nodes
with the power-law dispersion given in Eq. (2). To start with,
we substitute q̃1 = (α1|�0|)1/mq1, q̃2 = (α2|�0|)1/nq2, and
q̃3 = vF q3 in Eq. (3), giving

D(E ) = 8

(2π )3

1

(α1|�0|)1/m(α2|�0|)1/nvF

×
∑

s1,s2=±1

∫ ∞

0
dq̃1 dq̃2 dq̃3

× δ
(
E − [

s1h + s2

√
q̃2m

1 + q̃2n
2 + q̃2

3

])
. (A1)

Next, the substitution k1 = q̃m
1 , k2 = q̃n

2, k3 = q̃3 brings the
dispersion into a more familiar symmetric form,

D(E ) = 8

(2π )3

1

(α1|�0|)1/m(α2|�0|)1/n vF

×
∑

s1,s2=±1

∫ ∞

0
dk1 dk2 dk3

1

mn
k1/m−1

1 k1/n−1
2

× δ
(
E − [

s1h + s2

√
k2

1 + k2
2 + k2

3

])
. (A2)

The symmetric dispersion suggests to introduce spherical
coordinates for (k1, k2, k3), giving

D(E ) = 8

(2π )3

1

mn(α1|�0|)1/m(α2|�0|)1/nvF

×
∑

s1,s2=±1

∫ ∞

0
dk

∫ π/2

0
dθ

∫ π/2

0
dφ k1/m+1/n

× sin1/m+1/n−1 θ cos1/m−1 φ sin1/n−1 φ

× δ(E − [s1h + s2k])

= 8

(2π )3

1

mn(α1|�0|)1/m(α2|�0|)1/nvF

× (|E + h|1/m+1/n + |E − h|1/m+1/n)

×
√

π 

(

1
2m + 1

2n

)
2


(
1
2 + 1

2m + 1
2n

) 

(

1
2m

)


(

1
2n

)
2


(
1

2m + 1
2n

)
= 2

√
π

(2π )3

1

mn (α1|�0|)1/m(α2|�0|)1/nvF

× (|E + h|1/m+1/n + |E − h|1/m+1/n)

× 

(

1
2m

)


(

1
2n

)


(

1
2 + 1

2m + 1
2n

) . (A3)
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2. Generalized double-Weyl point nodes

In the following, we show the derivation of the DOS for
the general quadratic dispersion in Eq. (12). The substitution
q̃1 = √

α1|�0| q1, q̃2 = √
α2|�0| q2, q̃3 = vF q3 in the DOS,

Eq. (3), gives

D(E ) = 8

(2π )3

1√
α1α2|�0|vF

∑
s1,s2=±1

∫ ∞

0
dq̃1 dq̃2 dq̃3

× δ
(
E − [

s1h + s2

√
q̃4

1 + q̃4
2 + 2α q̃2

1q̃2
2 + q̃2

3

])
,

(A4)

where α ≡ α2
12/α1α2. The case α1 = α2 = α12, i.e., α = 1,

corresponds to isotropic double-Weyl nodes, whereas α12 =
0 (α = 0) is the special case m = n = 2 of our previous
derivation. The substitution k1 = q̃2

1, k2 = q̃2
2, k3 = q̃3 brings

the dispersion into more familiar form,

D(E ) = 2

(2π )3

1√
α1α2|�0|vF

×
∑

s1,s2=±1

∫ ∞

0
dk1 dk2 dk3

1√
k1k2

× δ
(
E − [

s1h + s2

√
k2

1 + k2
2 + 2αk1k2 + k2

3

])
.

(A5)

Another substitution,

k̃1 =
√

1 + √
1 − α2

2
k1 +

√
1 − √

1 − α2

2
k2, (A6)

k̃2 =
√

1 − √
1 − α2

2
k1 +

√
1 + √

1 − α2

2
k2, (A7)

k̃3 = k3, (A8)

gives

D(E ) = 2

(2π )3

1√
α1α2|�0| vF

×
∑

s1,s2=±1

∫ ∞

0
dk̃3

∫
d2k̃

1√
k̃1k̃2 − α

2

(
k̃2

1 + k̃2
2

)
× δ

(
E − [

s1h + s2

√
k̃2

1 + k̃2
2 + k̃2

3

])
, (A9)

where the limits of the in-plane integral
∫

d2k̃ are such that

k1k2 = k̃1k̃2 − α
2

(
k̃2

1 + k̃2
2

)
1 − α2

� 0. (A10)

These limits are simplified by introducing polar coordinates
ρ, φ for (k̃1, k̃2), giving

D(E ) = 2
√

2

(2π )3

1√
α1α2|�0|vF

×
∑

s1,s2=±1

∫ ∞

0
dk̃3

∫ ∞

0
dρ

∫ φ+

φ−
dφ

1√
sin 2φ − α

× δ
(
E − [

s1h + s2

√
ρ2 + k̃2

3

])
, (A11)

with φ− = (arcsin α)/2 and φ+ = (π − arcsin α)/2. Note
that the limits of the angular integral do not depend on the
other integration variables. The angular integration decouples
and can be evaluated as

G(α) ≡
∫ φ+

φ−

dφ√
sin 2φ − α

= − 1√
1 − α

×
[

F

(
π

4
− φ+,

2

1 − α

)
− F

(
π

4
− φ−,

2

1 − α

)]
,

(A12)

where F is the incomplete elliptic integral of the first kind.
The function G(α) is positive and bounded for α ∈ [0, 1).
After introducing polar coordinates once more, this time in
the (ρ, k̃3) plane, the δ distribution can easily be integrated
over, giving

D(E ) = π
√

2

(2π )3

1√
α1α2|�0|vF

G(α)(|E + h| + |E − h|).
(A13)

3. Power-law line nodes

In this Appendix, we derive the DOS for a circular line
node with power-law dispersion, given in Eq. (22). Perform-
ing the integration along the line node and substituting q̃2 =
(α2|�0|)1/n q2, q̃3 = vF q3 in the DOS, Eq. (3), gives

D(E ) = 8π

(2π )3

kF

(α2|�0|)1/nvF

∑
s1,s2=±1

∫ ∞

0
dq̃2 dq̃3

× δ
(
E − [

s1h + s2

√
q̃2n

2 + q̃2
3

])
. (A14)

Another substitution, k2 = q̃n
2, k3 = q̃3, brings the dispersion

into more familiar form,

D(E ) = 8π

(2π )3

kF

(α2|�0|)1/nvF

∑
s1,s2=±1

∫ ∞

0
dk2 dk3

× 1

n
k1/n−1

2 δ
(
E − [

s1h + s2

√
k2

2 + k2
3

])
, (A15)

and with polar coordinates ρ, φ for (k2, k3) we obtain

D(E ) = 8π

(2π )3

kF

n (α2|�0|)1/nvF

×
∑

s1,s2=±1

∫ ∞

0
dρ

∫ π/2

0
dφ ρ1/n cos1/n−1 φ

× δ(E − [s1h + s2ρ])

= 4π3/2

(2π )3

kF

n(α2|�0|)1/nvF

× (|E + h|1/n + |E − h|1/n)


(

1
2n

)


(

1
2 + 1

2n

) . (A16)

APPENDIX B: DERIVATION OF THE THERMAL
CONDUCTIVITY

In this Appendix, we derive the thermal conductivity for
linearly dispersing point and line nodes.
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1. Linear point nodes

We first consider point nodes. The linear quasiparticle
dispersion in Eq. (9) yields two bands at E > 0. For both of
them we find

∂E

∂q
⊗ ∂E

∂q
= V

α2
1 |�0|2q2

1 + α2
2 |�0|2q2

2 + v2
F q2

3

, (B1)

where the symmetric tensor V has the components

V11 = α4
1 |�0|4q2

1, (B2)

V12 = α2
1α

2
2 |�0|4q1q2, (B3)

V13 = α2
1 |�0|2v2

F q1q3, (B4)

V22 = α4
2 |�0|4q2

2, (B5)

V23 = α2
2 |�0|2v2

F q2q3, (B6)

V33 = v4
F q2

3. (B7)

With the substitution q̃1 = α1|�0|q1, q̃2 = α2|�0|q2, q̃3 =
vF q3, we can write the average for one of the bands as〈

∂E

∂q
⊗ ∂E

∂q

〉
E

=
∫

d3q̃ V
q̃2 δ(E ∓ h − |q̃|)∫

d3q̃ δ(E ∓ h − |q̃|) . (B8)

The off-diagonal components of V vanish upon integration
since they are odd in momentum components. The diagonal
ones can easily be evaluated in spherical coordinates, giving

〈
∂E

∂q
⊗ ∂E

∂q

〉
E

=

⎛
⎜⎝

α2
1 |�0|2

3 0 0

0 α2
2 |�0|2

3 0

0 0 v2
F
3

⎞
⎟⎠. (B9)

This average is the same for both bands and is in fact indepen-
dent of the pseudomagnetic field and of the energy. Hence, the
thermal conductivity is

κ = cτ

⎛
⎜⎝

α2
1 |�0|2

3 0 0

0 α2
2 |�0|2

3 0

0 0 v2
F
3

⎞
⎟⎠, (B10)

where c is the specific heat, which is given in Eq. (51).

2. Linear line nodes

For a linearly dispersing circular line node in the kxky

plane, the tensor product of velocities is

∂E

∂k
⊗ ∂E

∂k
= V

v2
F (kρ − kF )2 + α2

2 |�0|2k2
z

, (B11)

where V now has the Cartesian components

Vxx = v4
F (kρ − kF )2 cos2 φ, (B12)

Vxy = v4
F (kρ − kF )2 cos φ sin φ, (B13)

Vxz = α2
2 |�0|2v2

F (kρ − kF )kz cos φ, (B14)

Vyy = v4
F (kρ − kF )2 sin2 φ, (B15)

Vyz = α2
2 |�0|2v2

F (kρ − kF )kz sin φ, (B16)

Vzz = α4
2 |�0|4k2

z . (B17)

Here, kρ , φ, and kz are the cylindrical coordinates describing
the momentum k. The average over φ gives 〈cos2 φ〉E =
〈sin2 φ〉E = 1/2, whereas all other functions of φ average to
zero. For the remaining integrals, we substitute q̃2 = vF (kρ −
kF ) and q̃3 = α2|�0| kz. The average then reads

〈
∂E

∂k
⊗ ∂E

∂k

〉
E

=
∫

d2q̃ Ṽ
q̃2 δ(E ∓ h − |q̃|)∫

d2q̃ δ(E ∓ h − |q̃|) , (B18)

with

Ṽxx = Ṽyy = 1
2v2

F q̃2
2, (B19)

Ṽzz = α2
2 |�0|2q̃2

3, (B20)

and the off-diagonal components are zero. Once again intro-
ducing polar coordinates, this time for (q̃2, q̃3), we find

〈
∂E

∂q
⊗ ∂E

∂q

〉
E

=

⎛
⎜⎝

v2
F
4 0 0

0 v2
F
4 0

0 0 α2
2 |�0|2

2

⎞
⎟⎠, (B21)

which is again energy independent, and thus

κ = cτ

⎛
⎜⎝

v2
F
4 0 0

0 v2
F
4 0

0 0 α2
2 |�0|2

2

⎞
⎟⎠. (B22)

The specific heat c is given by Eq. (53).
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