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Interacting Majorana modes at surfaces of noncentrosymmetric superconductors
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Noncentrosymmetric superconductors with line nodes are expected to possess topologically protected flat
zero-energy bands of surface states, which can be described as Majorana modes. We here investigate their fate
if residual interactions beyond BCS theory are included. For a minimal square-lattice model with a plaquette
interaction, we find stringlike integrals of motion that form Clifford algebras and lead to exact degeneracies.
These degeneracies strongly depend on whether the numbers of sites in the x and y directions are even or odd
and are robust against disorder in the interactions. We show that the mapping of the Majorana model onto two
decoupled spin compass models [Y. Kamiya et al., Phys. Rev. B 98, 161409(R) (2018)] and extra spectator
degrees of freedom only works for open boundary conditions. The mapping shows that the three-leg and four-leg
Majorana ladders are integrable, while systems of larger width are not. In addition, the mapping maximally
reduces the effort for exact diagonalization, which is utilized to obtain the gap above the ground states. We find
that this gap remains open if one dimension is kept constant and even, while the other is sent to infinity, at least
if that dimension is odd. Moreover, we compare the topological properties of the interacting Majorana model
to those of the toric-code model. The Majorana model has long-range entangled ground states that differ by Z2

fluxes through the system on a torus. The ground states exhibit string condensation similar to the toric code
but the topological order is not robust. While the spectrum is gapped—due to spontaneous symmetry breaking
inherited from the compass models—states with different values of the Z2 fluxes end up in the ground-state
sector in the thermodynamic limit. Hence, the gap does not protect these fluxes against weak perturbations.
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I. INTRODUCTION

From the discovery of superconductivity in 1911 to the
very active and rapidly growing field of topological states of
matter today, the field of condensed matter physics has seen
the emergence of new paradigms. At the intersection of these
fields, topological superconductors [1,2] exhibit fascinating
properties of fundamental interest, such as the presence of
Majorana quasiparticles in a condensed-matter system [3–5].
Research is also driven by possible applications in fault-
tolerant quantum computation [6].

Topological properties that emerge for effective single-
electron models, in which interactions have notionally been
treated at the mean-field level, are overall well understood.
Topological invariants of single-electron Hamiltonians de-
scribing fully gapped insulators and superconductors have
been obtained [7–9] based on the 10-fold-way classification
by Zirnbauer and Altland [10,11]. However, unconventional
superconductivity is often accompanied by zeros of the quasi-
particle dispersion (relative to the Fermi energy), called gap
nodes. The 10-fold-way classification for gapped systems has
been extended to nodal systems [12–16], where topological
invariants characterizing the nodes have been derived.

Noncentrosymmetric superconductors (NCSs) are partic-
ularly interesting in this regard. The lack of inversion sym-
metry allows spin-orbit coupling that is odd in spin, which
generically leads to Cooper pairs of mixed singlet-triplet char-
acter and, if the triplet pairing amplitude is sufficiently large,
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topologically protected line nodes [12,16–20]. Promising can-
didates for such noncentrosymmetric systems are the heavy-
fermion superconductors CePt3Si and CeIrSi3 [21,22] as well
as the half-Heusler compounds YPtBi [23–27] and LuPtBi
[28]. The line nodes are associated, by means of a bulk-
boundary correspondence, with flat bands of surface states at
zero energy (i.e., at the Fermi energy) [12,16,19,20,27,29–33].
Figure 1 shows a cartoon of the resulting surface-state disper-
sion for a particular lattice symmetry and surface orientation.

The surface modes have the intriguing property of being
their own antiparticles, i.e., they are Majorana modes. These
modes were first predicted by Ettore Majorana in 1937 as ele-
mentary particles [34] and are studied in a variety of contexts,
from high-energy physics to quantum holography [4,35,36].
Besides the flat bands, other topological invariants can lead to
the existence of additional arcs or points of zero-energy modes
[16,20,27], which we do not consider in the following. One
obvious question is whether the flat surface bands are stable.
The system might reduce its free energy by shifting density
of states away from the Fermi energy. Real-space BCS theory
shows that this can indeed happen by spontaneous breaking of
time-reversal symmetry in the surface region at a temperature
below the bulk transition [37].

Another important question is what happens to the flat
bands when residual interactions are included. More gener-
ally, topological properties of interacting systems are a very
active field of research. Unlike for effectively noninteracting
systems, no general classification scheme exists, at least not
beyond one spatial dimension [38–41]. However, significant
insight has been gained by studying integrable models, in
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FIG. 1. Cartoon of the dispersion of surface states at a (101)
or (111) surface of a nodal NCS with point group C4v [19,20].
The black areas Fflat denote flat zero-energy bands, color represents
dispersive bands, and white means that there are no surface states at
the corresponding momenta. The dashed line marks the projection of
the edge of the Fermi sea.

particular the toric-code model [6,42] and Kitaev’s honey-
comb model [43].

In this paper, we study the flat Majorana bands at the
surface of NCSs in the presence of interactions. In Sec. II, we
discuss their theoretical modeling. In Sec. III, we construct
and analyze a minimal square-lattice model of interacting
Majorana modes. We address its integrals of motion, degen-
eracies of states, and mapping to a spin compass model. The
topological properties of the model are discussed in compari-
son to the toric-code model. A summary and conclusions are
given in Sec. IV.

II. TOPOLOGICAL SURFACE STATES
AND THEIR INTERACTIONS

As noted above, NCSs can have topologically protected
line nodes in the bulk, associated with flat bands of surface
states [12,16,19,20,27,29,30,33]. For time-reversal symmetric
NCSs with line nodes, the winding number WL(k‖) is ±1 if the
momentum component parallel to the surface, k‖, lies within
the projection of a single nodal line onto the two-dimensional
surface Brillouin zone. We denote the corresponding subset of
the surface Brillouin zone by Fflat, corresponding to the black
ellipses in Fig. 1, and the number of momenta k‖ within Fflat

by Nflat. In the thermodynamic limit, Nflat approaches infinity
with Nflat/N fixed, where N is the total number of momenta in
the surface Brillouin zone.

The diagonalization of the Bogoliubov-de Gennes Hamil-
tonian produces two zero-energy surface modes for each
k‖ ∈ Fflat. Since the Bogoliubov-de Gennes-Nambu formal-
ism double counts each fermionic degree of freedom, these
correspond to a single physical mode per k‖. Denoting the
corresponding quasiparticle annihilation operators by γk‖ , we
write the zero-energy modes in terms of Majorana operators

ζk‖ ≡ γ
†
−k‖ + γk‖ , (1)

ζ̃k‖ ≡ i
(
γ

†
−k‖ − γk‖

)
. (2)

By an appropriate choice of phase factors of the γk‖ , one can
ensure that the two sets of Majorana modes are localized at the
two surfaces of a NCS slab. The Majorana operators clearly
satisfy ζ

†
k‖ = ζ−k‖ and ζ̃

†
k‖ = ζ̃−k‖ .

We thus end up with Nflat Majorana modes per surface,
enumerated by k‖ ∈ Fflat. We are interested in the leading
interactions beyond BCS theory. These can either be medi-
ated by superconducting fluctuations about the saddle point
[44–47] or result from mechanisms not involved in the BCS
decoupling. For example, there are magnetic dipolar interac-
tions between the spin-polarized [27,48,49] Majorana modes.

To construct an effective low-energy model, we choose to
study only the flat zero-energy bands. Hence, the bilinear term
in the Hamiltonian vanishes and the leading term is quartic.
For a thick NCS slab, we may ignore interactions between
the modes ζk‖ and ζ̃k‖ localized at different surfaces. The
Hamiltonian for one surface is then of the form [50,51]

H = 1

4!

∑
i jkl

gi jkl ζiζ jζkζl , (3)

with the coupling tensor gi jkl . The indices here label mo-
menta k‖ ∈ Fflat. Note the similarity to the Sachdev-Ye-Kitaev
(SYK) model [52,53], where the coupling gi jkl is random.
While the SYK model does not have any spatial structure and
can thus be considered as zero dimensional, our model is two
dimensional.

The existence of zero-energy modes in a finite fraction
Fflat of momentum space implies that one can construct wave
packets localized at arbitrary positions in real space that are
also eigenstates. Their minimal extension is inversely propor-
tional to the typical diameter of Fflat in momentum space. The
annihilation operators of maximally localized modes centered
at positions R are given by

�R = 1√
Nflat

∑
k‖∈Fflat

eik‖·R ζk‖ . (4)

From ζ
†
k = ζ−k one obtains the Majorana property �

†
R = �R.

However, since the flat band does not exist in the whole
two-dimensional Brillouin zone, the set of N modes described
by �R centered at all positions R is overcomplete—there can
only be Nflat independent modes. This is also shown by the
nontrivial anticommutation relation

{�R,�R′ } = 2

Nflat

∑
k‖∈Fflat

eik‖·(R−R′ ) 1. (5)

Put differently, the modes have nonvanishing overlap integrals
[54]

SRR′ = 1

Nflat

∑
k‖∈Fflat

eik‖·(R−R′ ) − δRR′ . (6)

Such nonvanishing overlaps can also be interpreted in terms
of quantum (noncommutative) geometry [55]. To construct a
model in real space, it is necessary to first choose Nflat real-
space points R and then construct an orthonormal basis out
of the wave packets localized at these points. We emphasize
that we are free to choose the points R as long as we ensure to
have Nflat Majorana modes with the correct density. We choose
a square lattice since it will allow for a natural approximation
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for the interaction in the next step. The lattice constant a must
then satisfy Nflat/N = suc/a2, where suc is the area of the two-
dimensional surface unit cell of the microscopic lattice.

Following Löwdin [54], we construct an orthonormal basis
using the overlap matrix S with the components SRR′ . Note
that S is real and symmetric because the region Fflat is
symmetric with respect to the center of the two-dimensional
Brillouin zone. The sequence

�ζ ≡ (
ζR1 , ζR2 , . . . , ζRNflat

)
(7)

of operators ζR describing orthonormal states is then related
to the sequence

�� ≡ (
�R1 ,�R2 , . . . , �RNflat

)
(8)

of operators �R describing independent but not orthonormal
states by

�� = �ζ (1 + S)1/2, (9)

and conversely

�ζ = �� (1 + S)−1/2. (10)

The matrix root is understood in terms of the usual power
series. Since S is real the property ζ

†
R = ζR is retained.

Furthermore, by inserting Eq. (10), we find the canonical
anticommutation relation {ζR, ζR′ } = 2δR,R′ . While the modes
described by �R are maximally localized, the localization of
the transformed modes depends on the matrix S. Roughly
speaking, the Löwdin method yields the orthonormal set that
is most similar to the original functions [54]. Hence, the main
weight is still located at R but the state is smeared out over
all lattice sites, weighted by powers of the matrix S, which
depends on the material-specific region Fflat.

For illustration, we present the overlap matrix for the
example of Fflat consisting of two elliptical regions as in
Fig. 1. For two ellipses centered at ±Q = ±(Q1, Q2) with
semiaxes c1 and c2, we obtain

SRR′ = 2a cos
((

Q1

c1
,

Q2

c2

)
· R − R′

a

)

× J1(|R − R′|/a)

|R − R′| − δRR′ , (11)

where J1(x) is a Bessel function. Since Fflat covers a fraction
of Nflat/N of the Brillouin zone, the semiaxes satisfy c1c2 =
2π/a2. Note that the envelope of SRR′ decays as a power law
of the distance |R − R′|.

The Hamiltonian in terms of �� can be obtained by Fourier
transforming the momentum-space Hamiltonian (3). Writing
the result as

H = 1

4!

∑
i jkl

g̃RiR j RkRl �R1�R2�R3�R4 (12)

and substituting Eq. (9), we find

H = 1

4!

∑
i jkl

g̃RiR j RkRl

[�ζ (1 + S)1/2
]

Ri

[�ζ (1 + S)1/2
]

R j

× [�ζ (1 + S)1/2
]

Rk

[�ζ (1 + S)1/2
]

Rl
. (13)

We can now redefine the coupling according to

gRiR j RkRl =
∑
mnop

g̃RmRnRoRp (1 + S)1/2
RiRm

(1 + S)1/2
R j Rn

× (1 + S)1/2
RkRo

(1 + S)1/2
Rl Rp

. (14)

Identifying the subscript Ri with the index i, we can write the
Hamiltonian as H = 1/4!

∑
i jkl gi jkl ζiζ jζkζl , which is for-

mally identical to Eq. (3) but now pertains to real space. Note
that the real-space Hamiltonian is equivalent to the original
one in momentum space for any choice of wave-packet centers
R with the correct density.

We have here obtained a new platform for interacting
Majorana modes in two dimensions. Previously, such mod-
els were derived for Majorana modes bound to vortices in
two-dimensional topological superconductors [50,51,56,57].
In our case, the absence of a bilinear term is due to the
topological winding number of bulk line nodes and, unlike
for the realization in a vortex lattice, does not require fine
tuning of the chemical potential. The model with a bilinear
term has been studied by Affleck et al. [58] using mean-field
and renormalization-group methods.

III. INTERACTING MAJORANA MODES
ON A SQUARE LATTICE

As shown in the previous section, the coupling tensor gi jkl

in real space can be obtained from the one in momentum space
by a Fourier transformation followed by orthonormalization.
The interaction is expected to decay like a power law with
separation, due to the power-law decay of the orthonormalized
states. General properties of the coupling gi jkl are dictated by
fundamental requirements: It is real due to hermiticity and
can be chosen to be completely antisymmetric since the ζi

anticommute. In particular, gi jkl is zero if two indices are
equal.

Symmetries constrain gi jkl further [59]. If the system is
invariant under the transformation ζi → ∑

j Oi jζ j with an
orthogonal matrix O then the couplings must satisfy∑

mnop

gmnop OmiOn jOokOpl = gi jkl . (15)

The transformation matrix must be orthogonal to preserve the
Majorana property. In the following, we construct a minimal
model in real space and study its ground state, order, and low-
energy excitations.

A. Minimal model on the square lattice

In order to construct a minimal model, we truncate the
interaction after the most localized term, based on the expec-
tation that the interaction decays with separation. Here the
choice of lattice in Sec. II becomes important—we should
choose the lattice in such a way that the truncation is a
reasonable approximation. This is the case for the square lat-
tice, which has a natural most strongly localized contribution,
namely the plaquette terms of four Majorana modes localized
at the corners of elementary squares. This means that we take
gi jkl = g if Ri, R j , Rk , and Rl belong to the same plaquette
and zero otherwise.
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We note that long-range interactions may have interesting
consequences, which we leave for future work. To fix the
order of the anticommuting Majorana operators, we use pla-
quette operators pi ≡ ζRiζRi+ax ζRi+ax+ayζRi+ay , where ax,y are
the lattice basis vectors. The Hamiltonian is then given by

H = g
∑

i

pi. (16)

In the following, we consider lattices with Lx × Ly = Nflat

sites and periodic or open boundary conditions in either direc-
tion. The Nflat Majorana modes ζi can be re-expressed in terms
of Nflat/2 complex fermions. The Hilbert-space dimension is
thus 2Nflat/2 = 2LxLy/2. This is evidently impossible if both Lx

and Ly are odd [60], which signifies that the two surfaces can-
not be treated separately in that case. However, considering
Eq. (16) without regard to its origin, we can treat the odd times
odd case by introducing an additional “spectator” Majorana
mode ζ∗ that does not appear in the Hamiltonian but makes
the number of Majorana modes even.

Equation (16) is closely related to the toric-code model
[6,42]. The toric-code model is usually defined in terms of
spin operators located at the edges of a square lattice. How-
ever, these spins also form the vertices of a rotated square
lattice. In this representation, the model is described by the
Hamiltonian

Htoric code = g
∑
i∈A

σ x
Ri

σ x
Ri+ax

σ x
Ri+ax+ay

σ x
Ri+ay

+ g
∑
i∈B

σ z
Ri

σ z
Ri+ax

σ z
Ri+ax+ay

σ z
Ri+ay

, (17)

where the sums are over sites of the two checkerboard sublat-
tices A and B and σ x,z

R are spin operators (suppressing factors
h̄/2). The toric-code model is integrable since all plaquette
terms commute [6]. Its spectrum is discrete and, in particular,
has an energy gap 2|g| above the ground state.

In contrast, in our model, two plaquette operators pi and p j

commute if they share zero or two lattice sites but anticom-
mute if they share only a single one, i.e., a corner. Because
of the noncommutativity of the plaquettes, the model is not
integrable [50]. This distinction leads to different properties,
as we shall see.

Chiu et al. [50] have studied a range of models of in-
teracting Majorana modes, including the present one. Based
on exact diagonalization for small systems, they have con-
cluded that the model with uniform plaquette couplings is
gapless [50]. However, this work has been superseded by
Kamiya et al. [51], who study the same model by means
of Jordan-Wigner mappings to spin models and quantum
Monte Carlo simulations. The authors find clear evidence for
a finite-temperature phase transition toward a gapped low-
temperature phase with stripe order [51]. We return to this
point below.

B. Symmetries and invariants

Symmetries can be exploited to simplify the solution and
to better understand the system. For this, it is useful to note
that any product P = ζ1 · · · ζn of Majorana operators is uni-
tary: P†P = ζn · · · ζ1ζ1 · · · ζn = 1. Moreover, such a product is
Hermitian (anti-Hermitian) if n mod 4 ∈ {0, 1} ({2, 3}) since

it takes an even (odd) number of pair exchanges to transform
P† into P.

In case of open boundary conditions, we can construct a
unitary operator C that anticommutes with the Hamiltonian H
by forming the product of one Majorana operator from each
plaquette. We can think of C as a charge-conjugation operator.
Its existence guarantees that the spectrum is symmetric. For
periodic boundary conditions, the charge-conjugation opera-
tor can only be constructed for even times even numbers of
lattice sites.

The model with periodic or open boundary conditions has a
large number of integrals of motion, among them the products
of all Majorana operators in row y or column x of the lattice.
We denote these products as “row operators”

Ry =
{

1 for Lx mod 4 ∈ {0, 1}
i for Lx mod 4 ∈ {2, 3}

}
×

Lx∏
x=1

ζx,y (18)

and “column operators”

Cx =
{

1 for Ly mod 4 ∈ {0, 1}
i for Ly mod 4 ∈ {2, 3}

}
×

Ly∏
y=1

ζx,y, (19)

respectively [50], where the conditional factors ensure her-
miticity and guarantee that the operators square to +1. These
integrals of motion realize one-dimensional gaugelike sym-
metries in the sense of Batista and Nussinov [61]. The impor-
tant consequence is that the existence of local order parame-
ters is governed by a one-dimensional effective Hamiltonian
[61]. Hence, the model cannot have a nonvanishing local
order parameter at temperatures T > 0, except if the order
parameter commutes with the row and column operators.

We first discuss the even times even lattice. In this case,
the row and column operators all commute among themselves
but anticommute between different types, see Table I. We
further define the “cross operators” as the products �xy =
iCxRy. They contain all Majorana operators in one row and one
column, except for their crossing point. The cross operators
also commute among themselves but anticommute with the
row and column operators. Additionally, all row, column, and
cross operators square to +1. This means that for arbitrary but
fixed x and y, the three operators Ry, Cx, and �xy satisfy the
algebra of the Pauli matrices σ 1, σ 2, and σ 3.

Hence, the model has LxLy = Nflat integrals of motion
�xy that commute among themselves and have eigenvalues
±1. Nevertheless, the model is not integrable since these
invariants are not independent. Rather, the cross operators are
subject to the constraints �xy�x′y′ = �xy′�x′y. Consequently,
only Lx + Ly − 2 of the �xy are independent since specifying
the invariants in one row and one column fixes all of them.
This involves Lx + Ly − 1 cross operator but only Lx + Ly − 2
of them are independent since the product of all �xy for a
single row equals the product for a single column, except
possibly for a sign.

For periodic boundary conditions, the row and column
operators define loops on a torus, as sketched in Fig. 2. Since
these operators have eigenvalues ±1, we can think of them as
Z2 fluxes penetrating the torus, in analogy to the toric-code
model [62,63].
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TABLE I. Commutation relations of the row operators Ry, column operators Cx , and cross operators �xy = iCxRy. For the case of odd ×
even, rows and columns have to be interchanged.

even × even even × odd odd × odd

[Ry, Ry′ ] = 0 [Ry, Ry′ ] = 0 [Ry,Cx] = 0
[Cx,Cx′ ] = 0 [�xy, �xy′ ] = 0 [Ry, �xy] = 0

[�xy, �x′y′ ] = 0 [Cx, �x′y′ ] = 0 for x 
= x′ [Cx, �xy] = 0
[�xy, �x′y′ ] = 0 for x 
= x′ and y 
= y′

{Ry,Cx} = 0 {Cx,Cx′ } = 2δxx′1 {Ry, Ry′ } = 2δyy′1
{Ry, �x′y′ } = 0 {�xy, �x′y′ } = 0 for x 
= x′ {Cx,Cx′ } = 2δxx′1
{Cx, �x′y′ } = 0 {Ry,Cx} = 0 {�xy, �xy′ } = 0 for y 
= y′

{Ry, �x′y′ } = 0 {�xy, �x′y} = 0 for x 
= x′

{Cx, �xy} = 0 {Ry, �x′y′ } = 0 for y 
= y′

{Cx, �x′y′ } = 0 for x 
= x′

For the even times odd lattice, the column operators Cx

anticommute pairwise since they are products of odd numbers
of Majorana operators, see Table I. For Ly > 3, this leads to
a larger number of mutually anticommuting operators that
commute with the Hamiltonian than for the even times even
lattice. The consequences for the degeneracy of states are
discussed below. Nevertheless, the triple Ry, Cx, and �xy still
satisfies the algebra of the Pauli matrices. The odd times even
case is of course analogous.

For the odd times odd lattice, both the row and the column
operators anticommute among themselves and the other rela-
tions become more complicated, see Table I. There is no triple
of operators that realize the Pauli algebra. However, including
the spectator Majorana mode ζ∗, we can find such triples, for
example, Ry, ζ∗, and iζ∗Ry.

C. Degeneracies

In this section, we consider degeneracies resulting from
the integrals of motion. They turn out to depend dramatically
on whether Lx and Ly are even or odd. The degeneracies are
topological in the sense that they are preserved under random
perturbations of the plaquette couplings gi jkl . For random
couplings, the degeneracy is the same for all energy levels. For
uniform gi jkl , as considered in the previous sections, lattice

FIG. 2. Visualization of a row operator Ry (horizontal red line)
and a column operator Cx (vertical purple line) as loops on a torus, for
periodic boundary conditions. We call their eigenvalues “fluxes,” in
analogy to the Z2 fluxes in the toric-code model [62,63]. The fluxes
are illustrated by the arrows.

symmetries lead to additional degeneracies. Our results also
hold for open or mixed boundary conditions.

Our analysis is based on the theory of Clifford algebras
[64]. A number n = 1, 2, . . . of operators that square to
+1 and anticommute with each other generate the Clifford
algebra C	n(C) on the vector space Cn with the standard
bilinear form. If n = 2m is even, then C	2m(C) is isomorphic
to the algebra of complex matrices of dimension 2m. On
the other hand, if n = 2m + 1 is odd, then C	2m+1(C) is
isomorphic to the direct sum of two copies of the algebra
of complex matrices of dimension 2m. In other words, for
even (odd) n, the Clifford algebra has one irreducible matrix
representation (two irreducible representations) of dimension
2�n/2�, where �x� is the largest integer not greater than x. If the
n anticommuting operators commute with the Hamiltonian,
then the degeneracy of all eigenenergies contains a factor of
2�n/2�.

For even times even sites, we have found three pairwise
anticommuting integrals of motion, namely Ry, Cx, and �xy for
arbitrary but fixed x, y. There is no additional row, column, or
cross operator that anticommutes with all three and thus we
have n = 3, leading to a degeneracy of 2�3/2� = 2.

For even times odd sites, the column operators Cx anticom-
mute pairwise, see Table I. There are Lx of them, which is an
even number. One can find one additional operator, namely
any Ry or any �xy, that anticommutes with all Cx, which does
not increase the degeneracy. Hence, the degeneracy is 2Lx/2.

For odd times odd sites, the row operators and the column
operators anticommute among themselves but not with each
other, which suggests a degeneracy of max(2�Lx/2�, 2�Ly/2�).
However, the actual degeneracies are larger: As discussed
above, the model requires the introduction of a spectator
Majorana mode ζ∗ to obtain an even number of modes. We
then find

{Ry, Ry′ } = 2δyy′1, (20)

{ζ∗Cx, ζ∗Cx′ } = 2δxx′1, (21)

{Ry, ζ∗Cx} = 0. (22)

Thus the Lx + Ly (which is even) integrals of motion Ry and
ζ∗Cx anticommute pairwise, leading to a larger degeneracy of
2(Lx+Ly )/2. All of these results are corroborated by exact diago-
nalization for small systems with random plaquette couplings
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TABLE II. Degeneracies of states for all combination of even
and odd sizes Lx and Ly. Lattice symmetries may lead to additional
degeneracies, which multiply the ones given here. The degeneracy of
the ground state is always the one shown.

Lx × Ly Degeneracy

even × even 2
even × odd 2Lx/2

odd × even 2Ly/2

odd × odd 2(Lx+Ly )/2

gi jkl , indicating that we have indeed found the largest number
of anticommuting integrals of motion. The degeneracies are
summarized in Table II. We note that since the degeneracies
are independent of open vs periodic boundary conditions
they cannot be attributed to decoupled modes localized at the
edges.

D. Mapping to compass models

Kamiya et al. [51] present a three-step mapping of the
interacting Majorana model onto two decoupled quantum
compass models by way of two intermediate spin models.
In the following, we describe a direct mapping of the Majo-
rana model with open boundary conditions to two decoupled
compass models. We restrict ourselves to Lx, Ly > 2 since the
two-leg ladder is nongeneric and trivially integrable [50]. In
this mapping, a quantum spin σx,y of length 1/2 is associated
with half of the plaquettes of the original model. We enumer-
ate the plaquettes in such a way that the plaquette at (x, y)
involves the product ζx,yζx+1,yζx+1,y+1ζx,y+1. The mapping
must be such that different spin components at the same site
anticommute, whereas spin operators at different sites always
commute. In the first step, we set

σ x
x,y =

{
1 for x even
i for x odd

}
×

x∏
x′=1

ζx′,yζx′,y+1, (23)

σ z
x,y = iy

y∏
y′=1

ζx,y′ζx+1,y′ . (24)

The locations of Majorana modes appearing in the definitions
are illustrated in Fig. 3. The numerical factors ensure that the
spin operators square to +1 and that the plaquette terms do
not contain extra signs:

σ x
x,yσ

x
x+2,y = ζx+1,yζx+2,yζx+2,y+1ζx+1,y+1, (25)

σ z
x,yσ

z
x,y+2 = ζx,y+1ζx+1,y+1ζx+1,y+2ζx,y+2. (26)

These equations imply

ζx,yζx+1,yζx+1,y+1ζx,y+1 = σ x
x−1,yσ

x
x+1,y = σ z

x,y−1σ
z
x,y+1. (27)

Note that the plaquette terms correspond to edges connecting
two spins that are two units apart. It is easy to see that for the
first row or column the plaquette term is represented by one
spin operator alone, e.g., ζ1,yζ2,yζ2,y+1ζ1,y+1 = σ x

2,y. In order
to use Eq. (27) for all plaquettes, we extend the definitions in
Eqs. (23) and (24) such that for x � 0 or y � 0 the product is
understood as equaling 1.

FIG. 3. Illustration of the locations of Majorana modes appearing
in the mapped spin operators σ x

x,y and σ z
x,y at plaquette (x, y). The

sites of Majorana modes are indicated by small circles. One of them
appears in both spin operators, ensuring that they anticommute.

The full set of operators in Eqs. (23) and (24) does not
satisfy the correct algebra of a spin model. Rather, two σ x for
adjacent rows y and y + 1 and odd x as well as two σ z for
adjacent columns x and x + 1 and odd y anticommute since
they have an odd number of Majorana modes in common. To
avoid the first problem, we only use spin operators in every
second row, and to avoid the second, we specifically take
even-numbered rows (even y) [65]. Then the only anticom-
muting combinations are σ x

x,y and σ z
x,y since only such pairs

have an odd number of Majorana modes, namely a single one,
in common, see Fig. 3. The restricted set of spin operators
still allows to express all plaquette terms by using Eqs. (25)
and (26) for alternating rows.

The Hamiltonian then reads

H = g
∑

x

∑
y even

(
σ x

x,yσ
x
x+2,y + σ z

x,yσ
z
x,y+2

)
. (28)

The terms appearing here are illustrated in Fig. 4. As expected
[51], there is no coupling between terms involving spins with
even and odd x coordinates so that the model decomposes

FIG. 4. Illustration of the compass models resulting from the
mapping of the interacting Majorana model. The locations of the
spins are denoted by red squares (subsystem 1) and green circles
(subsystem 2), which are displaced diagonally for clarity. Bonds are
denoted by heavy red and green lines connecting the spins. Note that
there is a single bond in every plaquette of the original lattice.
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into two decoupled compass models. In the following, we will
denote the compass subsystem involving spins at odd (even) x
as subsystem 1 (2).

So far, we have not discussed the edges of the system [66].
As seen from Fig. 4, there are always “dangling bonds” in the
row y = 1 as well as, for one of the compass subsystems, in
the column x = 1. Dangling bonds in the first row or column
represent plaquette terms in this row or column, which are
mapped onto only a single spin operator, as noted above. This
corresponds to a static, uniform magnetic field applied at these
edges.

Moreover, there can also be dangling bonds in the last
row, y = Ly − 1, or in the last column, x = Lx − 1. Table III
summarizes at which edges dangling bonds appear. For dan-
gling bonds in the last row or column, spin operators occur
that represent the product of all Majorana operators in two
adjacent columns or rows, namely [67]

σ x
Lx,y =

{
1 for Lx even
i for Lx odd

}
× RyRy+1, (29)

σ z
x,Ly

= iLy CxCx+1. (30)

These products are compatible integrals of motion for any Lx

and Ly [68]. Hence, the Hamiltonian can be block diagonal-
ized with respect to all of these quantities, which can thus be
interpreted as classical degrees of freedom. In each block, they
appear as generally nonuniform magnetic fields acting on the
last row or column.

It will prove useful to minimize the number of degrees of
freedom. This is possible for subsystem 1 in the case of odd
Lx, where subsystem 1 has dangling bonds in the last column
(x = Lx − 1) but not in the first. We can then redefine the op-
erators σ x

x,y for subsystem 1 in terms of products starting from
the right edge. The result is that now the right edge contains
a static magnetic field and the classical degrees of freedom in
Eq. (29) do not appear. Moreover, the two subsystems are then
equivalent and thus have the same spectrum. This trick is not
useful for even Lx since then subsystem 2 contains dangling
bonds on both the left and right edges, whereas subsystem
1 does not contain dangling bonds at either edge. Table IV
summarizes, for each of the two compass subsystems, the
number of quantum spin-1/2 degrees of freedom (for which
both the x and the z component appear), the number of
classical degrees of freedom at the edges, and the number of
constant magnetic-field terms acting at the edges.

TABLE III. Appearance of dangling bonds or Zeeman-field
terms at the edges of the compass subsystems 1 (with odd x) and
2 (with even x), where • means that such terms appear and – means
that they do not. The boundary conditions are open in both directions.

Subsystem 1 Subsystem 2

Lx × Ly Bottom Top Left Right Bottom Top Left Right

even × even • • – – • • • •
even × odd • – – – • – • •
odd × even • • – • • • • –
odd × odd • – – • • – • –

It is instructive to compare the total number of degrees
of freedom of the compass subsystems with the one of
the original Majorana model. For this purpose, the static-
magnetic-field terms do not count but the classical degrees of
freedom do. Table V lists the resulting numbers of degrees of
freedom, as well as the difference between the Majorana and
compass models. We see that the compass models always have
a smaller number of degrees of freedom than the Majorana
model. The difference must refer to degrees of freedom that
do not appear in the Hamiltonian. The Hilbert space of the
Majorana model is thus equal to the direct product of the
Hilbert spaces of the two compass models times another
Hilbert space of these extra degrees of freedom.

The dimension of the Hilbert space of the decoupled
degrees of freedom is two to the power given in the last
column of Table V. This implies that all eigenenergies have
a degeneracy that is an integer multiple of this dimension.
Intriguingly, this is exactly the “topological” degeneracy we
have found based on the Clifford algebra, for all four cases.
Numerically, we do not find any remaining degeneracy of
the ground states of the two compass models (excited states
may be degenerate due to broken reflection and rotation
symmetries). In this sense, the mapping maximally simplifies
the problem.

It should be pointed out that the absence of ground-state
degeneracy of the compass subsystems is due to the edge
terms that appear for all cases, see Table III. Without these,
the compass models with open, periodic, or mixed boundary
conditions show even degeneracy of all eigenstates and, in
particular, twofold degeneracy of the ground state [69,70].

The mapping to the two compass models is only possible
for open boundary conditions in both directions. The reason
is that the mapping is nonlocal, involving strings of Majorana
operators reaching up to the plaquette in question, see Fig. 3.
These strings must start somewhere. One can of course con-
nect opposite edges to obtain compass models with periodic
boundary conditions in one or both directions. These models
are not required to be equivalent to the Majorana models with
the same boundary conditions. Indeed, exact diagonalization
of Majorana and compass models with sizes up to 3 × 9,
4 × 7, and 5 × 6 shows that the spectra coincide, including
degeneracies, for open boundary conditions in both directions
but not for any other case.

Kamiya et al. [51] also map the interacting Majorana
model onto two decoupled quantum compass models. Since
they are only interested in the thermodynamic limit they
disregard any edge terms. It does not seem obvious to us
that this is justified for a model with string invariants and we
analyze the effect of edge terms below. In any case, we are also
interested in finite systems and therefore must take the edges
into account. This was also necessary to understand the global
degeneracy of the spectrum in terms of decoupled degrees of
freedom.

The compass model on the square lattice without fields
at the edges has been studied extensively [70]. The classical
compass model with periodic boundary conditions exhibits
a continuous ground-state degeneracy under uniform SO(2)
rotations of the spins, besides additional invariances under
discrete transformations [70]. For both the classical and the
quantum compass model, the existence of one-dimensional

024519-7



RÜCKERT, ROÓSZ, AND TIMM PHYSICAL REVIEW B 101, 024519 (2020)

TABLE IV. Enumeration of terms and degrees of freedom in the two compass subsystems 1 (with odd x) and 2 (with even x). The boundary
conditions are open in both directions. For each subsystem, the number of quantum spins (for which both σ x and σ z appear in the Hamiltonian),
of classical degrees of freedom at the edges (for which only one spin component appears), and of static-magnetic-field terms at the edges are
given in consecutive columns.

Subsystem 1 Subsystem 2

Lx × Ly Quantum Classical Static Quantum Classical Static

even × even Lx (Ly−2)
4

Lx
2

Lx
2

(Lx−2)(Ly−2)
4

Lx−2
2 + Ly−2

2
Lx−2

2 + Ly−2
2

even × odd Lx (Ly−1)
4 0 Lx

2
(Lx−2)(Ly−1)

4
Ly−1

2
Lx−2

2 + Ly−1
2

odd × even (Lx−1)(Ly−2)
4

Lx−1
2

Lx−1
2 + Ly−2

2
(Lx−1)(Ly−2)

4
Lx−1

2
Lx−1

2 + Ly−2
2

odd × odd (Lx−1)(Ly−1)
4 0 Lx−1

2 + Ly−1
2

(Lx−1)(Ly−1)
4 0 Lx−1

2 + Ly−1
2

gaugelike invariants, namely row and column operators, pre-
vents spontaneous order of the spins [61,70]. In our notation,
the row operators for the two subsystems s = 1, 2 are R1

y =∏
x odd σ z

x,y and R2
y = ∏

x even σ z
x,y, where y is always even. The

corresponding column invariants are C1
x = ∏

y even σ x
x,y, where

x is odd, and C2
x = ∏

y even σ x
x,y, where x is even.

On the other hand, both the classical and the quantum
compass models show a finite-temperature phase transition to
a spin-nematic state [51,70–74]. Its order parameter


 = 〈
σ x

x,yσ
x
x+2,y − σ z

x,yσ
z
x,y+2

〉
(31)

is of Ising type. For the quantum model, the order is ac-
companied by an energy gap between a highly degenerate
ground state and the excited states [61,69,70,72,74]. For L ×
L spins and periodic boundary conditions, the ground-state
degeneracy is exactly twofold but in the thermodynamic limit
2L+1 − 2 states approach the same ground-state energy. These
states develop out of the 2L ground states of decoupled rows
and the 2L ground states of decoupled columns on changing
the row and column couplings in the Hamiltonian

H =
∑
x,y

(
Jx σ x

x,yσ
x
x+1,y + Jy σ z

x,yσ
z
x,y+1

)
(32)

independently. The doublet of uniform row or column states
is common to both limits so that the total number is 2 ×
2L − 2. For illustration, the low-energy part of the spectrum
for L = 4 and periodic boundary conditions is shown as a
function of the coupling anisotropy in Fig. 5. The approach

is thought to be exponential, i.e., the energy differences scale
as O(e−L/L0 ) [70,72,74]. There are conflicting statements as
to whether another doublet also approaches the ground-state
energy in the thermodynamic limit [72,74], which would lead
to a degeneracy of 2L+1. In any case, the degeneracy is much
larger than the twofold degeneracy expected for a broken Ising
symmetry. This is linked to the existence of the gaugelike row
and column invariants [61,70].

As we have shown, the mapping from the Majorana model
only works for open boundary conditions and unavoidably
introduces Zeeman-type terms at edges of the compass mod-
els. Both the boundary conditions as well as the Zeeman
field act on a one-dimensional subset of sites and one would
thus expect them to be irrelevant for the ordering in the
thermodynamic limit. To check whether the sites in the bulk
decouple from the edges in this limit, we consider the clas-
sical compass model, which allows us to study much larger
systems. Such an approach has proved fruitful for the compass
model with periodic boundary conditions [70]. The classical
model is described by the Hamiltonian in Eq. (28), which is
now understood as a classical function of two-component unit
vectors (σ x

x,y, σ
z
x,y).

As Table III shows, the simplest case is subsystem 1 for
even times odd lattices, where there is a uniform magnetic
field applied to the bottom row. We focus on this case in
the following since more complicated edge terms should not
affect our general conclusions. The coupling is assumed to be
ferromagnetic, g < 0. The antiferromagnetic model can me

TABLE V. Numbers of degrees of freedom in the Majorana model (including a spectator mode for the odd times odd case) and the two
compass models it is mapped onto, as well as the resulting total number for both subsystems. The latter is always smaller than the number of
degrees of freedom of the Majorana model. The last column shows the difference.

Number of degrees of freedom

Lx × Ly Majorana Subsystem 1 Subsystem 2 Both Undercount

even × even LxLy

2
LxLy

4
LxLy−4

4
LxLy

2 − 1 1

even × odd LxLy

2
Lx (Ly−1)

4
Lx (Ly−1)

4
Lx (Ly−1)

2
Lx
2

odd × even LxLy

2
(Lx−1)Ly

4
(Lx−1)Ly

4
(Lx−1)Ly

2
Ly

2

odd × odd LxLy+1
2

(Lx−1)(Ly−1)
4

(Lx−1)(Ly−1)
4

(Lx−1)(Ly−1)
2

Lx+Ly

2
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FIG. 5. Low-energy levels for the compass model with periodic
boundary conditions and anisotropic couplings Jx = J cos α, Jy =
J sin α in Eq. (32). The system size is L = 4. The red arrow indicates
the nascent gap above the lowest 2L+1 − 2 levels.

mapped onto the ferromagnetic one by rotating the spins on
one checkerboard sublattice by π . We find that the Zeeman
field reduces the ground-state degeneracy to twofold. The two
states show nonzero magnetization 〈σ z〉 in the direction of the
edge field in the thermodynamic limit. However, whether this
magnetization survives at temperatures T > 0 depends on the
stiffness of magnetic excitations. We parametrize the classical
spin vectors in terms of angles θx,y as

σ x
x,y = cos θx,y, σ z

x,y = sin θx,y. (33)

Fixing one spin at the center by setting θ�L/2�,�L/2� = θ0 and
adapting all other spins to minimize the energy, we obtain
the energy cost E (θ0) − E (θ0 = 0) of rotating the center
spin, which is shown in Fig. 6 for various system sizes.
Evidently, E (θ0) approaches zero for L → ∞, meaning that
rotations of the center spin become soft. Since the system

FIG. 6. Minimal energy E (θ0) − E (0) for rotations of a spin at
the center of the classical compass model on lattices of various sizes
L × L with open boundary conditions and a magnetic field along
the z direction applied at the bottom edge. θ0 = 0 corresponds to
the center spin being parallel to the edge field. The energy is shown
scaled with L1/4.

is two dimensional we conclude that the magnetization 〈σ z〉
vanishes in the thermodynamic limit. The approach is very
slow—the energy barrier for a rotation by 2π scales as
1/L1/4. This slow approach suggests that it is impossible to
observe the decoupling of the bulk from the edge by exact
diagonalization of the quantum compass model with edge
terms.

We now turn to the spin-nematic order. Since it is of Ising
type it can occur at nonzero temperatures. The edge fields
explicitly break the spin rotation symmetry and also lift the
degeneracy between nematically ordered states with opposite
order parameters 
. While, to our knowledge, the compass
model with symmetry-breaking boundary terms has not been
studied, we expect it to behave similarly to the Ising model
with a symmetry-breaking boundary since the transitions of
the unperturbed models belong to the same universality class.

It was shown that the partition function of the two-
dimensional ferromagnetic Ising model with a magnetic field
applied at one edge can, in the thermodynamic limit, be writ-
ten as a sum of bulk and edge contributions [75]. Hence, bulk
and edge states decouple asymptotically. The magnetization
as a function of the distance y from the edge was studied
in Refs. [75–77]. If the spontaneous magnetization m∗ in the
bulk is in the same direction as the magnetization induced by
the edge field, the local magnetization m(y) approaches m∗
exponentially fast as a function of y for all temperatures below
the Ising transition at Tc [77]. On the other hand, if m∗ is in
the opposite direction, m(y) approaches m∗ exponentially fast
only for T < Tw < Tc, where Tw is the critical temperature of
a wetting transition [76–80]. At this transition, a domain wall
separating regions with opposite sign of the magnetization
decouples from the edge.

Our model is more complicated, however, since subsystem
2 always has boundary terms at two or more edges, see
Table III. A systematic study of the possible wetting transition
for the interacting Majorana model would be worthwhile.
We conjecture that the Majorana model with open boundary
conditions also shows a wetting transition at a temperature
Tw < Tc and now focus on the temperature range below Tw.
Here, any effect of the edges decays exponentially into the
bulk. In particular, in the thermodynamic limit, the bulk shows
spontaneous symmetry breaking described by the nematic
order parameter 
, accompanied by an energy gap. However,
nothing precludes states localized at the edges to be present
within this gap.

It is not obvious how many bulk states will end up below
the gap and collapse to the ground state in the thermodynamic
limit. In analogy to the corresponding asymptotic number
2L+1 for periodic boundary conditions, we can denote the
asymptotic number of ground states by 2Leff+1, where Leff is
the effective linear dimension of the bulk region that decou-
ples from the edges. The exponential decay of edge effects
suggests that Leff/L approaches unity for L → ∞.

From now on, we assume that the boundary conditions
and the edge fields become irrelevant for the bulk of the
Majorana system in the thermodynamic limit. We can then use
compass models with periodic boundary conditions to infer
results for the Majorana model. In this spirit, on mapping
back onto the Majorana model, the order in each of the
two decoupled compass models corresponds to an antiferroic
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order of plaquette terms 〈ζx,yζx+1,yζx+1,y+1ζx,y+1〉 on each of
the two checkerboard sublattices. This results in four distinct
stripe orderings, as found in Ref. [51]. Interestingly, Eqs. (25)
and (26) show that the nematic order parameter is local in both
representations, although the mapping between Majorana and
compass models is nonlocal. For the square lattice, the wave-
length of the stripe order is fixed to twice the lattice constant,
λ = 2a = 2

√
suc N/Nflat.

E. Integrable ladder models

For open boundary conditions, the mapping to two de-
coupled compass models and additional spectator degrees of
freedom reveals the integrability of a number of special cases.
The two-leg Majorana ladder is trivially integrable since all
plaquette terms commute [50]. We note that two-leg and
four-leg ladders with a bilinear term in the Hamiltonian and
periodic boundary conditions have recently been studied by
Rahmani et al. [81].

The mapping shows that, in addition, the three-leg and
four-leg ladders are integrable in the sense of Braak [82]. The
three-leg ladder of even length Lx maps onto two decoupled
spin models with Hamiltonians

H1 = g
Lx−3∑

x=1
odd

σ x
x,2σ

x
x+2,2 + g

Lx−1∑
x=1
odd

σ z
x,2, (34)

H2 = g
Lx−2∑

x=2
even

σ x
x,2σ

x
x+2,2 + gσ x

2,2 + g
Lx−2∑

x=2
even

σ z
x,2, (35)

see also Fig. 4. The first is a critical one-dimensional
transverse-field Ising model, and the second in addition has
a field in the longitudinal direction applied at one end and no
field applied to the spin σLx,2 at the other end. The three-leg
ladder of odd length Lx maps onto two decoupled spin models
described by Hamiltonians Hs, where

H2 = g
Lx−3∑

x=2
even

σ x
x,2σ

x
x+2,2 + gσ x

2,2 + g
Lx−1∑

x=2
even

σ z
x,2 (36)

and H1 is equivalent to H2 with redefined σ x
x,y, see Sec. III D.

The two subsystems are critical one-dimensional transverse-
field Ising models with an additional field in the longitudinal
direction at one end. These spin models are integrable and can
be solved by refermionization [83–86]. In this way, we have
obtained the energy gap between the degenerate ground and
first excited states:

E1 − E0 = 4g

{
sin

(
1
2

π
Lx+1

)
for Lx even,

sin
(

π
Lx+1

)
for Lx odd.

(37)

Evidently, the gap scales as a power law of the length Lx

for large Lx, which can be attributed to the criticality of the
transverse-field Ising models.

The four-leg ladder of even length Lx maps onto spin
models with Hamiltonians

H1 = g
Lx−3∑

x=1
odd

σ x
x,2σ

x
x+2,2 + g

Lx−1∑
x=1
odd

σ z
x,2

(
1 + σ z

x,4

)
, (38)

H2 = g
Lx−2∑

x=2
even

σ x
x,2σ

x
x+2,2 + gσ x

2,2 + g
Lx−2∑

x=2
even

σ z
x,2

(
1 + σ z

x,4

)
. (39)

Here, σx,4 are classical spins that commute with Hs. Thus
Hs can be block diagonalized with respect to these spins.
Refermionization leads to E1 − E0 = 2g

√
5 − 4 cosh ν for

even Lx, where ν is the solution of the equation [83]

sinh
[( Lx

2 + 1
)
ν
]

sinh
( Lx

2 ν
) = 2, (40)

which can be solved numerically. For large Lx, the energy gap
can be expanded as [87]

E1 − E0

g
∼= 1

1 − 1
2Lx−2

3

2Lx/2
. (41)

Unlike for the three-leg ladder, the gap closes exponentially
for increasing length Lx.

The four-leg ladder with odd Lx maps onto two spin models
with

H2 = g
Lx−3∑

x=2
even

σ x
x,2σ

x
x+2,2 + gσ x

2,2 + g
Lx−1∑

x=2
even

σ z
x,2

(
1 + σ z

x,4

)
(42)

and H1 equivalent to H2 with redefined σ x
x,y. Refermionization

shows that the smallest excitation energy remains finite for
Lx → ∞. The gap is determined by the (Lx + 1) × (Lx + 1)
matrices [88]

T (s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2
2 0 1

1 0 2
2 0

. . .
0 1
1 0 s

s 0 1
1 0 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (43)

The energy gap is

E1 − E0 = g
(Lx+1)/2∑

n=1

[λ(2)n − λ(0)n], (44)

where the λ(s)n are the positive eigenvalues of the matrix T (s)
[88]. Finding these eigenvalues still requires exponentially
smaller resources than diagonalizing the Hamiltonians Hs. For
Lx → ∞, the gap approaches

E1 − E0

g
∼= 6

π
E

(
π

2

∣∣∣∣8

9

)
− 1, (45)

where

E (φ|m) =
∫ φ

0
dθ

√
1 − m sin2 θ (46)

is the incomplete elliptic integral of the second kind. For the
four-leg ladder with odd Lx, the gap corresponds to flipping
a classical spin at the end of the ladder, unlike for all other
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(a)

(b)

FIG. 7. Lowest excitation energy E1 − E0 of interacting Majo-
rana models as a function of the inverse area, 1/LxLy, for Ly (a) odd
and (b) even. Data points for equal Ly are connected. The data
were obtained by exact diagonalization of compass Hamiltonians,
except for the integrable cases Lx = 3, 4, where refermionization was
employed.

cases, where the lowest-energy excitation is a fermionic one
of the refermionized model.

Although the results for E1 − E0 for even or odd length are
very different, the results for the full spectra are in fact quite
similar. For even length, we have found low-lying excited
states that for increasing length approach the ground state
exponentially fast. For odd length, the corresponding states
are always part of the ground-state manifold and are thus not
reflected in E1 − E0. For both even and odd lengths, there is a
gap of order g above the low-energy sector.

F. Spectrum and energy gap

The mapping can also be exploited for numerical exact
diagonalization of the Majorana model. The dimension of the
Hilbert space of the larger compass subsystem is 2�Lx/2��Ly/2�
in all cases. Numerical efficiency is further increased by block
diagonalizing the compass models in the presence of classical
degrees of freedom.

As an application, we study the energy gap E1 − E0 be-
tween the degenerate ground and first excited states, plotted
in Fig. 7 for system sizes up to 25 × 5, 17 × 7, 13 × 9, and
11 × 11. For Ly = 3, 4, Fig. 7 shows results obtained using

refermionization, as discussed in Sec. III E; the results agree
with exact diagonalization up to sizes of 49 × 3 and 25 × 4.

For odd widths Ly, the gap closes for increasing length Lx.
For Ly = 3, we have seen in Sec. III E that asymptotically
E1 − E0 is a power law of 1/Lx with exponent 1. For Ly > 3,
the numerical results are still consistent with power laws but
the exponent is clearly larger (smaller) than unity for even
(odd) lengths.

For even widths Ly and odd length Lx, the gap remains open
in the limit Lx → ∞, as seen above for Ly = 4. The results
for even length are unexpected, though. While for widths
of Ly = 6, 8 the gap might still close, it actually increases
as a function of even Lx for Ly = 10, 12. In any case, the
asymptotic gap approaches zero when we first take Lx → ∞
and then Ly → ∞ even, and hence the gap vanishes in the
two-dimensional thermodynamic limit. This is consistent with
the collapse of exponentially many energy levels onto the
ground state expected for the compass models.

For periodic and mixed boundary conditions, the map-
ping onto compass models is not possible. To calculate
the spectrum one can form complex fermions out of pairs
of Majorana modes, leading to a matrix representation of
the Hamiltonian of dimension 2Nflat/2. Chiu et al. [50] have
obtained low-lying eigenenergies for large systems with Ly =
4 held fixed. They find that the excitation energy approaches
zero for Lx → ∞, regardless of whether Lx is even or odd,
unlike for open boundary conditions. Our numerical results
for periodic boundary conditions (not shown) agree with this
result.

G. Consequences for topological order

We now return to the discussion of topological proper-
ties of the Majorana model, first focusing on even times
even lattices. The row operators Ry and column operators
Cx can be understood as string operators in the sense of
Refs. [61–63,89,90]. The related toric-code model exhibits
closed-string condensation [62,63,90]: String operators with
closed strings commute with the Hamiltonian so that the
ground states can be chosen to be eigenstates of these string
operators. On the other hand, open strings do not commute
with the Hamiltonian. This is characteristic of topological
order.

While for the toric code all closed strings commute with
the Hamiltonian, in our model only straight string operators,
i.e., Ry and Cx, and their products do so. Hence, the ground
states (and all eigenstates) of our model contain only strings
that wrap around the system but do not contain any local
strings, unlike for the toric code. The eigenvalues of the string
operators can thus be interpreted as Z2 fluxes through the
toroidal system for periodic boundary conditions, see Fig. 2.

The algebraic properties of the string operators in our
model are also distinct from the toric code: The operators
Ry, Cx, and �xy = iCxRy for arbitrary but fixed x, y satisfy
the algebra of the Pauli matrices, i.e., describe a pseudospin
1/2. The horizontal and vertical fluxes in Fig. 2 are thus
incompatible observables. Moreover, the spectrum consists of
pseudospin doublets and this twofold degeneracy is robust to
randomness of the plaquette couplings. Since all Ry commute
among themselves (as do the Cx) the ground-state subspace is
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spanned by two eigenstates of all Ry. These two eigenstates
are macroscopically distinct in that all Ry eigenvalues are
reversed between them. This is seen as follows: Take |ψ〉
to be one of the ground states, with Ry|ψ〉 = ry|ψ〉 for all y
and ry = ±1. Then Cx|ψ〉 satisfies RyCx|ψ〉 = −CxRy|ψ〉 =
−ryCx|ψ〉. Since Cx commutes with H and Cx|ψ〉 has opposite
Ry eigenvalues compared to |ψ〉, Cx|ψ〉 must be the other
member of the ground-state doublet.

The preceding argument works for any Cx, hence two
operators Cx, Cx′ for arbitrarily distant columns perform the
same mapping of one of the ground states onto the other.
This implies that the ground states are long-range entangled.
Of course, rows and columns can be interchanged in the
preceding arguments.

To summarize, the interacting Majorana model with even
times even dimensions has two macroscopically distinct, long-
range entangled ground states that differ in Z2 fluxes through
the system when put onto a torus. The twofold degeneracy
is robust against random perturbations of the plaquette cou-
plings. We conclude that the ground states show topological
order of essentially the same type as the toric-code model.
However, in the case of the toric code, the topological proper-
ties are robust against any weak perturbation since they are
protected by an energy gap [6,42]. This gap is due to the
integrability of the toric-code model and is absent for our
model, as shown in Sec. III F.

On the other hand, at least for open boundary conditions,
our model maps onto two compass models that show spon-
taneous symmetry breaking and a gap for bulk excitations,
see Sec. III D. The topological order could still be robust if
only states with the same Z2 fluxes were present below the
Ising gap. However, this is not the case, as we show in the
following.

We assume, like in Sec. III D, that at sufficiently low
temperatures the effects of the edges are localized so that
the bulk of the system can be analyzed without regarding
the edges. The model with even dimensions Lx = Ly maps
onto two compass models and a single decoupled mode.
Each compass subsystem has linear dimension L = Lx/2 and
on the order of 2Lx/2+1 states below the Ising gap. 2Lx/2 of
these states transform into eigenstates for decoupled rows
and 2Lx/2 transform into eigenstates of decoupled columns
as the row and column couplings in the compass model are
varied, see Eq. (32). The eigenstates for decoupled rows are
of course also eigenstates of all row operators Rs

y. The row
operators remain invariants when the vertical coupling Jy is
switched on and thus the 2Lx/2 states can be chosen to be
eigenstates of Rs

y for all Jy. The corresponding eigenvalues
are continuous functions of the couplings and, since they are
integers, have to be constant. Now the limit of decoupled
rows is trivially integrable and the eigenenergy of a single
row does not change if the eigenvalue of the corresponding
row operator Rs

y is inverted. Consequently, all 2L = 2Lx/2

combinations of eigenvalues occur in the ground-state sector
for decoupled rows and, by continuity, also for isotropic cou-
pling. Analogous arguments can be made involving the limit
of decoupled columns. Hence, the ground-state sector of the
Majorana model contains on the order of 2 × 2 × 2Lx/2+1 =
2Lx/2+3 states with any possible combination of eigenvalues of
row or column invariants, i.e., of Z2 fluxes.

For odd Lx = Ly, an analogous argument also leads to
the conclusion that states with any possible combination of
row or column invariants occur in the ground-state sector.
We conclude that for any Lx = Ly, and likely for all Lx, Ly,
the Ising gap does not protect the Z2 fluxes against weak
perturbations.

IV. SUMMARY AND CONCLUSIONS

The effects of interactions on the Majorana zero modes
forming flat bands of surface states of topological NCSs
have been analyzed. We have constructed a model for these
modes by neglecting other low-energy excitations, e.g., in
the bulk, and truncating the Hamiltonian after the leading
interaction term. The Hamiltonian is then purely quartic since
the kinetic energy is zero. The vanishing of the bilinear term is
topologically protected by the winding numbers of line nodes
in the bulk.

It is now crucial to realize that since Majorana modes
exist in a subset of nonzero measure of the two-dimensional
surface Brillouin zone, we can construct Majorana wave pack-
ets localized in real space that are nevertheless eigenstates
of the Hamiltonian. This is quite remarkable as these wave
packets do not disperse in the absence of perturbations. On the
other hand, one could use external perturbations to manipulate
them. NCS flat bands realize a new platform for interacting
Majorana modes in two dimensions that does not require fine
tuning of the chemical potential, unlike schemes involving
Majorana modes bound to vortices [50,51,56–58].

Notably, any choice of real-space positions is possible as
long as they have the correct density. For any choice, an
orthonormal set of Majorana operators in real space needs to
be constructed. We have done this using Löwdin orthonormal-
ization [54], which optimizes the localization of the orthono-
malized wave packets.

Based on this groundwork, we have formulated a minimal
model with plaquette interaction on a square lattice. It dif-
fers from the toric-code model [6,42] in that the plaquette
terms do not all commute but anticommute if they share a
corner, which makes our model nonintegrable. In fact, the
model has a full set of compatible integrals of motion but
nevertheless is not integrable since these invariants are not
independent.

The minimal model with any type of boundary con-
ditions has a large number of stringlike integrals of mo-
tion. Maximal anticommuting sets of these invariants form
Clifford algebras, which imply degeneracies of all states that
strongly depend on whether the linear dimensions Lx and
Ly are even or odd. These degeneracies can be understood
as topological since they persist for random plaquette cou-
plings. It is an interesting question for the future whether
this even-odd dichotomy has observable consequences in the
thermodynamic limit.

Furthermore, we have constructed a direct mapping of
the interacting Majorana model onto two decoupled com-
pass models and decoupled degrees of freedom, which is
more transparent than the three-step mapping in Ref. [51].
This mapping not only reduces the effective size by roughly
one half but also divides out exactly the number of decou-
pled degrees of freedom that corresponds to the topolog-
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ical degeneracy. It thus maximally simplifies the problem
of exact diagonalization. The mapping only works for open
boundary conditions in both directions. The compass models
obtained by the mapping necessarily contain edge terms,
which strongly affect diagonalization results for feasible
system sizes.

As two examples that profit from the mapping, we have
shown the integrability of Majorana ladders with three and
four legs and have studied the energy gap above the ground
state for finite systems of sizes up to 11 × 11 with open
boundary conditions by exact diagonalization. If one dimen-
sion, say, Ly, is held fixed at an odd value while the other, Lx, is
send to infinity, then this gap closes. On the other hand, if the
fixed dimension Ly is even, then the gap remains open for odd
Lx → ∞, while the asymptotic behavior for even Lx → ∞
depends on the width Ly. It closes exponentially for Ly = 4.
The results for Ly = 3 and 4 can be understood rigorously
based on the integrability of these ladder models.

The type of boundary conditions should become irrelevant
in the thermodynamic limit, at least at sufficiently low tem-
peratures. The compass models may show a wetting transition
but at low temperatures the perturbation by the boundaries
should decay exponentially into the bulk. This is supported
by calculations for the classical version of the model up to
large system sizes, which show that the spins in the bulk
decouple from the edges in the thermodynamic limit. Under
this condition, the interacting Majorana model inherits the
finite-temperature conventional (i.e., not topological) long-
range order from the compass model [51,70–74]. The Majo-
rana model then shows a stripelike modulation of the average
〈ζx,yζx+1,yζx+1,y+1ζx,y+1〉 with a wavelength of twice the lattice
constant [51].

These conclusions apply to Majorana modes on a square
lattice with only plaquette interaction. If we take seriously
that the real-space model is to represent the interacting zero-
energy Majorana modes in Fflat, then we have to recall that
we were free to choose the real-space lattice of localized
Majorana modes. The transformation to a lattice generates
also longer-range couplings gi jkl and these couplings are func-

tions of the parameters of the chosen lattice. The symmetry
breaking by the nematic order will happen in such a way that
the free energy is minimized. This will fix the optimum lattice
parameters together with the nematic order parameter if there
is one. A prediction of the equilibrium state thus requires the
calculation of the full coupling tensor gi jkl and subsequently
of the free energy as functions of the lattice parameters, which
is beyond the scope of this work.

The interacting Majorana model with even times even
dimensions has two macroscopically distinct, long-range en-
tangled ground states that differ in Z2 fluxes through the
system when put onto a torus. The ground states show string
condensation similar to the toric-code model. The degeneracy
and the string condensation are robust against any random
perturbations of the plaquette couplings. The ground states
hence show topological order similar to the toric-code model.
However, while the spectrum of bulk states develops a gap
above the degenerate ground state in the thermodynamic limit
due to the Ising-type conventional order, states with different
values of the string invariants end up in the ground-state sec-
tor. Hence, the Ising gap does not protect the string invariants
against weak perturbations and the topological order is not
robust. The Majorana model thus represents an interesting
case of a nonintegrable system that is gapped and possesses
fragile topological invariants. In view of the restriction to a
short-range interaction in our model, it will be important to
ascertain whether these are generic features of flat surface
bands of noncentrosymmetric superconductors.

ACKNOWLEDGMENTS

The authors thank P. M. R. Brydon, C.-K. Chiu, and
S. Rex for useful discussions. Financial support by the
Deutsche Forschungsgemeinschaft through the Research
Training Group GRK 1621, the Cluster of Excellence on
Complexity and Topology in Quantum Matter ct.qmat (EXC
2147), and the Collaborative Research Center SFB 1143
(project-id 247310070) is gratefully acknowledged.

[1] A. Y. Kitaev, Phys.-Usp. 44, 131 (2001).
[2] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[3] C. W. J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113

(2013).
[4] S. R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137

(2015).
[5] R. Aguado, Riv. Nuovo Cimento 40, 523 (2017).
[6] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[7] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[8] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, AIP

Conf. Proc. 1134, 10 (2009).
[9] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).

[10] M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).
[11] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
[12] A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504(R) (2011).

[13] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81,
011013 (2012).

[14] Y. X. Zhao and Z. D. Wang, Phys. Rev. Lett. 110, 240404
(2013).

[15] S. Matsuura, P.-Y. Chang, A. P. Schnyder, and S. Ryu, New J.
Phys. 15, 065001 (2013).

[16] A. P. Schnyder and P. M. R. Brydon, J. Phys. Condens. Matter
27, 243201 (2015).

[17] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004
(2001).

[18] P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist, Phys.
Rev. Lett. 92, 097001 (2004).

[19] P. M. R. Brydon, A. P. Schnyder, and C. Timm, Phys. Rev. B
84, 020501(R) (2011).

[20] A. P. Schnyder, P. M. R. Brydon, and C. Timm, Phys. Rev. B
85, 024522 (2012).

024519-13

https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149481
https://doi.org/10.1063/1.3149481
https://doi.org/10.1063/1.3149481
https://doi.org/10.1063/1.3149481
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.531675
https://doi.org/10.1063/1.531675
https://doi.org/10.1063/1.531675
https://doi.org/10.1063/1.531675
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.84.060504
https://doi.org/10.1103/PhysRevB.84.060504
https://doi.org/10.1103/PhysRevB.84.060504
https://doi.org/10.1103/PhysRevB.84.060504
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1103/PhysRevLett.110.240404
https://doi.org/10.1103/PhysRevLett.110.240404
https://doi.org/10.1103/PhysRevLett.110.240404
https://doi.org/10.1103/PhysRevLett.110.240404
https://doi.org/10.1088/1367-2630/15/6/065001
https://doi.org/10.1088/1367-2630/15/6/065001
https://doi.org/10.1088/1367-2630/15/6/065001
https://doi.org/10.1088/1367-2630/15/6/065001
https://doi.org/10.1088/0953-8984/27/24/243201
https://doi.org/10.1088/0953-8984/27/24/243201
https://doi.org/10.1088/0953-8984/27/24/243201
https://doi.org/10.1088/0953-8984/27/24/243201
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevLett.92.097001
https://doi.org/10.1103/PhysRevLett.92.097001
https://doi.org/10.1103/PhysRevLett.92.097001
https://doi.org/10.1103/PhysRevLett.92.097001
https://doi.org/10.1103/PhysRevB.84.020501
https://doi.org/10.1103/PhysRevB.84.020501
https://doi.org/10.1103/PhysRevB.84.020501
https://doi.org/10.1103/PhysRevB.84.020501
https://doi.org/10.1103/PhysRevB.85.024522
https://doi.org/10.1103/PhysRevB.85.024522
https://doi.org/10.1103/PhysRevB.85.024522
https://doi.org/10.1103/PhysRevB.85.024522


RÜCKERT, ROÓSZ, AND TIMM PHYSICAL REVIEW B 101, 024519 (2020)

[21] E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt, A.
Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P. Rogl, Phys.
Rev. Lett. 92, 027003 (2004).

[22] I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A. Thamizhavel,
E. Yamamoto, T. D. Matsuda, Y. Haga, T. Takeuchi, R. Settai,
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