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Dynamical density and spin response of Fermi arcs and their consequences for Weyl semimetals

Sayandip Ghosh 1,2 and Carsten Timm 1,*

1Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany
2Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, 16163 Genova, Italy

(Received 8 January 2020; revised manuscript received 13 March 2020; accepted 16 March 2020;
published 3 April 2020)

Weyl semimetals exhibit exotic Fermi-arc surface states, which strongly affect their electromagnetic proper-
ties. We derive analytical expressions for all components of the composite density-spin response tensor for the
surfaces states of a Weyl-semimetal model obtained by closing the band gap in a topological insulating state
and introducing a time-reversal-symmetry-breaking term. Based on the results, we discuss the electromagnetic
susceptibilities, the current response, and other physical effects arising from the density-spin response. We
find a magnetoelectric effect caused solely by the Fermi arcs. We also discuss the effect of electron-electron
interactions within the random phase approximation and investigate the dispersion of surface plasmons formed
by Fermi-arc states. Our work is useful for understanding the electromagnetic and optical properties of the Fermi
arcs.
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I. INTRODUCTION

Following the discovery of several candidate materials
[1–15], the study of Weyl semimetals (WSMs) has been
an area of intensive research activities in recent years, see
Refs. [16–18] for recent reviews. The band structure of WSMs
is characterized by linear band-crossing points, so-called Weyl
nodes, which act as sources or sinks of Berry curvature. The
corresponding Berry charge, the chirality, is quantized to an
integer value. The Weyl nodes always appear in pairs of
opposite chirality and are separated in momentum (energy)
when time-reversal (inversion) symmetry is broken. The non-
trivial topology of the band structure and the quasirelativistic
nature of the quasiparticles (the Weyl fermions) gives rise to
a plethora of exotic transport properties such as the magneto-
electric effect [19,20], which signifies a electric-polarization
response to magnetic fields and a magnetization response to
electric fields, the anomalous Hall effect [21], the dynamical
chiral magnetic effect [22], and negative magnetoresistance
[23]. Transport in WSMs has recently been reviewed in
Refs. [24–26].

Furthermore, WSMs host unusual surface states known
as Fermi arcs (FAs). These are disjointed segements of
two-dimensional Fermi contours that connect the projec-
tions of a pair of bulk Weyl nodes of opposite chiralities
into the surface Brillouin zone (BZ). They can be observed
by angle-resolved photoemision spectroscopy [1–3,7,8] and
quasiparticle interference [27–30]. The FAs are the most
stringent signature of WSMs and thus were first used as
smoking-gun evidence for the existence of WSMs. These
states are topologically protected against weak disorder,
show spin polarization, and spin-momentum locking [31–33],
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and exhibit transport properties markedly different from the
bulk [34,35].

The electromagnetic and transport properties exhibited
by WSMs has been studied theoretically using semiclassi-
cal transport theory [22,36–38], field-theoretic approaches
[21,39], and the Kubo formalism [40–42]. The dynamical
density, spin, and current responses to inhomogenous and
time-dependent external fields have been investigated for
Weyl fermions in the bulk, using Kohn-Luttinger-type (k · p)
models [43–45]. The dynamical current response provides
information about transport properties such as the chiral
magnetic effect and the optical conductivity [44]. On the
other hand, exploring the coupled density and spin response
reveals the existence of novel collective excitations, i.e, spin
plasmons, which provide another experimental signature of
WSMs [45]. While the surface plasmon excitations of the FA
states have been investigated [46–50], a unified study of the
density, spin, and current response of the FA states has been
lacking but is desirable as it reflects the rich physics of the FA
states.

In this paper, we investigate the response of the FAs to
inhomogeneous and time-dependent electric and magnetic
perturbations by analyzing all components of the composite
density-spin linear-response tensor. We calculate the evanes-
cent wave functions for the FAs and obtain analytical ex-
pressions for all components of the density-spin response
tensor. We explore its observable consequences, which reveals
the existence of a chiral magnetoelectric effect due to the
FAs. For comparison and completeness, we also discuss the
corresponding quantities for WSM bulk states. Based on the
response tensor, we investigate the impact of the electron-
electron interaction on the response functions for FA as well
as bulk states within the random phase approximation (RPA).
We also examine the spectrum of surface density excitations
of FAs: the FA plasmons.
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The remainder of this paper is organized as follows: In
Sec. II, we present our model and obtain the FA wave
functions. Then, we introduce and calculate the dynamical
response tensor in Sec. III and investigate its manifestations in
Sec. IV. The effect of the electron-electron interaction on the
response function and the FA plasmon are discussed in Sec. V.
Finally, we summarize our results and draw conclusions in
Sec. VI. Technical details and calculations are discussed in
the Appendices.

II. MODEL

We start with a four-band model used to describe three-
dimensional topological insulators (TIs) of the Bi2Si3 family
[51,52]. The low-energy effective Hamiltonian, regularized on
a simple cubic lattice, is given by

H0 = ε
∑

i

�
†
i σ0 ⊗ τz �i − t

∑
〈i,j〉

�
†
i σ0 ⊗ τz �j

+ iλ
∑

i

�
†
i (σx ⊗ τx �i+x̂ + σy ⊗ τx �i+ŷ)

+ iλz

∑
i

�
†
i σz ⊗ τx �i+ẑ + H.c., (1)

where �i is a four-component fermion spinor operator, i, j
refer to lattice sites, i + l denotes the nearest neighbor of
site i in the l direction (l = x̂, ŷ, ẑ), ε and t are the on-site
energy and nearest-neighbor hopping amplitude, respectively,
and λ and λz denote the spin-orbit coupling strengths in the
xy plane and along the z direction, respectively. Here, z is
taken as the growth direction. σl and τl are the 2 × 2 identity
(l = 0) and Pauli (l = x, y, z) matrices in spin and orbital
space, respectively. The Hamiltonian H0 obeys time-reversal
(T ) as well as inversion (P) symmetry, whose representations
are given by T = (iσy ⊗ τ0)K and P = σ0 ⊗ τz, respectively,
with K denoting complex conjugation. Evidently, the two
orbitals are of opposite parity.

The Hamiltonian describes a weak TI for |ε| < 2|t |, a
strong TI for 2|t | < |ε| < 6|t |, and a trivial insulator for
6|t | < |ε| [53,54]. In the following, we will consider the phase
boundary between the topological and trivial insulator at ε =
6t with t > 0, where the bulk gap closes at k = 0 and Eq. (1)
describes a massless Dirac Hamiltonian.

A perturbation that breaks inversion or time-reversal sym-
metry results in the doubly degenerate Dirac node at k =
0 being separated into a pair of Weyl nodes, i.e., in the
emergence of a WSM phase. The Hamiltonian for the WSM
is given by HW = H0 + HP, with

HP =
∑

i

�
†
i [b0 σ0 ⊗ τx + b · (σx, σy, σz ) ⊗ τ0]�i (2)

Here, the b0 term obeys time-reversal symmetry but breaks
inversion symmetry, whereas the reverse holds for the b term
[54]. This rather simple model exhibits the relevant physics
while at the same time allowing for an analytical and hence
transparent and rigorous treatment of the dynamical response
functions and their observable consequences.
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FIG. 1. Energy dispersion for a WSM on a slab of finite width
in the z direction (a) for varying kx and ky = 0 and (b) for kx = 0
and varying ky. The Weyl nodes are separated by (by/λ) ŷ. The
surface bands are shown in red. The black curves denote bulk-type
bands, which are discrete due to the finite thickness (50 layers). The
parameters are by = t and λ = λz = 2t .

A. Bulk Weyl semimetals

The Hamiltonian for the infinite WSM system reads, in
momentum space,

H(k) = Mk σ0 ⊗ τz + 2λ(sin kx σx ⊗ τx + sin ky σy ⊗ τx )

+ 2λz sin kz σz ⊗ τx

+ b0 σ0 ⊗ τx + b · (σx, σy, σz ) ⊗ τ0, (3)

where Mk = ε − 2t
∑

α cos kα is the k-dependent mass pa-
rameter. We take ε = 6t so when both P and T symmetries
are present (b0 = 0, b = 0), the Hamiltonian yields a doubly
degenerate Dirac node at k = 0. When time-reversal sym-
metry is broken by b �= 0, the Dirac node splits into a pair
of Weyl nodes separated in momentum, whereas breaking
inversion symmetry by b0 �= 0 results in Weyl nodes separated
in energy. In the following, we consider the former scenario.
Without loss of generality, we take b = by ŷ, which yields
a pair of Weyl nodes at k = ±(by/2λ) ŷ. The eigenenergies
and eigenstates in the vicinity of the nodes are discussed in
Appendix A.

B. Fermi-arc states

Our main interest is in the surface states of WSMs. In three-
dimensional TIs, the bulk is gapped. The surface states are
well separated from the bulk states and exist at each surface
as mid-gap states. Each surface has a single two-dimensional
Dirac cone which is called a “helical metal” owing to its spin-
momentum locking [51,55]. In WSMs, even though the bulk
is gapless, surface states can exist between the Weyl nodes in
regions of the dispersion where there are no bulk states. For
inversion-symmetric WSMs as considered here, states exist
at surfaces that are not orthogonal to the momentum vector
(by/λ) ŷ separating the nodes. Here, we consider the (001)
surface, perpendicular to the growth direction. The energy
dispersion is shown in Fig. 1. Evidently, at low energies, the
surface states form a band that disperses linearly in kx, is flat
along ky, and only exists between the Weyl nodes. These are
the FA states.
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The essential idea for the calculation of the FA wave func-
tions is to solve the Schrödinger equation for the Hamiltonian
in Eq. (3), replacing kz → −i ∂/∂z to treat the z direction
in real space. The wave function is separated into factors
that are evanescent in z and periodic in (x, y). The proper
boundary condition is obtained by modeling the vacuum as
a large-gap insulator. Details of the derivation are presented in
Appendix B.

The FA states have the chiral dispersions ET (k) = −2λkx

and EB(k) = 2λkx for the top and bottom surfaces, respec-
tively. Their density of states is N T,B = by/8π2λ2, which
does not depend on energy due to the linear dispersion [56].
As noted above, they only exist for −by/2λ � ky � by/2λ,
i.e., between the projections of the Weyl nodes into the surface
BZ. The wave functions for the FAs at the top and bottom
surfaces read


T (k‖, z) =
√

b2
y − 4λ2k2

y

4byλz

⎡⎢⎣1 − i

2

⎛⎜⎝ 1
−1

1
−1

⎞⎟⎠e
by−2λky

2λz
z + 1 + i

2

⎛⎜⎝ 1
1

−1
−1

⎞⎟⎠e
by+2λky

2λz
z

⎤⎥⎦eik‖·r‖ , (4)


B(k‖, z) =
√

b2
y − 4λ2k2

y

4byλz

⎡⎢⎣1 + i

2

⎛⎜⎝ 1
−1
−1

1

⎞⎟⎠e− by−2λky
2λz

z + 1 − i

2

⎛⎜⎝1
1
1
1

⎞⎟⎠e− by+2λky
2λz

z

⎤⎥⎦eik‖·r‖ . (5)

Here, the basis is chosen as {|↑⊕〉, |↑
〉, |↓⊕〉, |↓
〉}, where
↑, ↓ denotes the z component of the spin and ⊕, 
 denotes
the even- and odd-parity orbital, respectively. k‖ = (kx, ky) is
the two-dimensional momentum in the surface BZ.

Evidently, the FA states are bound to the surfaces and decay
into the bulk on a ky-dependent length scale 2λz/(by ± 2λky).
Thus, for ky near Weyl nodes, the FA states extend deep
into the bulk [18,48,57–59]. The FA states are eigenstates
of σx ⊗ τx with eigenvalues −1 and +1 for the top and
bottom surfaces, respectively. In other words, the effective
FA Hamiltonian is HFA(k‖) = 2λkx σx ⊗ τx. The qualitative
form and evanescent structure of FA states does not depend
on the specifics of the model and survives for more generic
Hamiltonians as discussed in Appendix C.

III. DYNAMICAL RESPONSE

The response of a system to possibly inhomogeneous and
time-dependent electromagnetic perturbations is described by
a 4 × 4 density-spin linear-response tensor, each component
of which is, in principle, a 2 × 2 × 2 × 2 tensor in orbital
space. The generalized response is defined by the orbital-
resolved correlation functions,

�
μνμ′ν ′
i j (q, iωn) = 1

N

∫ β

0
dτ eiωnτ

× 〈
Tτ σ

μν
i (q, τ ) σ

μ′ν ′
j (−q, 0)

〉
, (6)

where

σ
μν

l =
∑

k,ζ ,ζ ′
c†k+q,μ,ζ σ l

ζ ,ζ ′ ck,ν,ζ ′ (7)

is the Fourier-transformed spin operator, given in terms of
the fermionic annihilation (creation) operators ck,μ,σ (c†k,μ,σ

)
for orbital μ. β = 1/kBT is the inverse temperature, iωn are
Matsubara frequencies, and Tτ is the time-ordering directive
in imaginary time. Here, the index l = 0 signifies the density
and l = x, y, z refers to the spin components. The retarded
response functions are obtained by the analytic continuation
iωn → ω + iδ.

A. Bulk response

The zero-temperature dynamical density and spin response
of the bulk states has been calculated in Refs. [44,45] using
a k · p Hamiltonian. For the sake of completeness and to
explore its orbital structure, we calculate the bulk response
tensor for our model. The details of the evaluation are rel-
egated to Appendix D. As noted, each component of the
density-spin response tensor is a 2 × 2 × 2 × 2 tensor in the
orbital basis. The terms can be divided into four intraorbital
terms �

μμνν
i j , four interorbital terms �

μμ̄μμ̄
i j and �

μμ̄μ̄μ
i j ,

where μ̄ is the orbital other than μ, and eight terms for
which not all superscripts appear in pairs. We find that for
the pure density-density and spin-spin response, the orbital
structure is trivial, i.e., all intraorbital and interorbital terms
are equal, while the other terms vanish. On the other hand,
the intraorbital and interorbital contributions to the coupled
density-spin response have opposite signs for states near the
two Weyl nodes of opposite chirality and therefore vanish
in equilibrium. However, terms such as �

μμμμ̄

0l survive for
the coupled density-spin response. Although such terms are
not physically relevant at the noninteracting level because
they do not enter the coupled density-spin response, they
can influence the current response for interacting electrons,
as discussed below. The rather lengthy expressions for bulk
response functions for our model are given in Appendix D.
They are similar to the ones presented in Ref. [45].

B. Fermi-arc response

Next, we investigate the zero-temperature dynamical re-
sponse of the FA surface states [60]. The orbital components
of the response tensor can be written as

�
μνμ′ν ′
i j (q, iωn) = − 1

N

∑
k‖

∫
dz
∫

dz′

× 〈φμ(k‖ + q, z)|σi|φν (k‖, z)〉
× 〈φμ′

(k‖, z′)|σ j |φν ′
(k‖ + q, z′)〉

× nF (k‖) − nF (k‖ + q)

iωn + ε(k‖) − ε(k‖ + q)
, (8)
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where nF (k‖) is the Fermi function for the FA states with
two-component wave vector k‖, q = (qx, qy) is the wave
vector of the response, and φμ(k‖, z) is the component of
the FA wave function for orbital μ, see Eqs. (4) and (5).
The integrals over z and z′ take into account the extension
of FA states into the bulk and therefore run from −∞ to 0
for the top surface and 0 to ∞ for the bottom surface, in
the limit of infinite thickness. This is important because it
allows for the long tail of the FA states near the projection of
the Weyl nodes. A purely two-dimensional response function

calculated by projecting the FA states into the kxky-plane
would yield qualitatively incorrect result, even though the
FA states are surface states energetically separated from the
bulk.

Redefining the orbital basis as {|⊕⊕〉, |⊕
〉, |
⊕〉, |

〉},
the 2 × 2 × 2 × 2 blocks in the response tensor can be written
as 4 × 4 matrices. We find that all components of the com-
posite density-spin response tensor in the orbital basis can be
expressed by four distinct terms �1, �2, �3, and �4, which
are given by

�T,B
1 = 1

(2π )2

qx

2λqx ± (ω + iδ)

1

8

[
2by

λ
− 4|qy| + λq2

y

by
+ λ2|qy|3

b2
y

+ λ3q4
y

b3
y

arctanh

(
1 − λ|qy|

by

)]
, (9)

�T,B
2 = 1

(2π )2

qx

2λqx ± (ω + iδ)

1

24b3
yλ

×
[

by(by − λ|qy|)
(
2b2

y − 10λ|qy|by − 13λ2q2
y

)+ 3λ2q2
y

(
8b2

y − λ2q2
y

)
arctanh

(
1 − λ|qy|

by

)]
, (10)

�T,B
3 = 1

(2π )2

qx

2λqx ± (ω + iδ)

1

4
(
b2

y − λ2q2
y

)2 8

15λ
(by − λ|qy|)3

(
b2

y + 3byλ|qy| + λ2q2
y

)
, (11)

�T,B
4 = − 1

(2π )2

qx

2λqx ± (ω + iδ)

1

4
(
b2

y − λ2q2
y

)[2b3
y

3λ
+ byλq2

y − 5

3
λ2|qy|3 +

(
λ3q4

y

by
− 4byλq2

y

)
arctanh

(
1 − λ|qy|

by

)]
. (12)

Here, the superscripts T , B as well as the signs +, − refer
to the top and bottom surfaces, respectively. It should be noted
that the �T,B

ν are functions of the wave vector q and the
frequency ω but we will suppress these arguments from now
on for brevity. The density response is now given by

�T,B
00 =

⎛⎜⎜⎜⎝
�T,B

1 0 0 �T,B
1

0 �T,B
2 �T,B

2 0

0 �T,B
2 �T,B

2 0

�T,B
1 0 0 �T,B

1

⎞⎟⎟⎟⎠. (13)

For illustration, we describe the evaluation of this matrix in
Appendix E. Evidently, the density response only contains
intraorbital (⊕⊕⊕⊕, ⊕⊕

, 

⊕⊕, 



) and interor-
bital (⊕
⊕
, 
⊕
⊕, ⊕

⊕, 
⊕⊕
) contributions. A
few additional remarks are in order. Equations (9) and (10)
show that the density response is even in qy, which results
from the FA dispersion being symmetric under qy → −qy.
However, the response tensor is nonanalytic at qy = 0. The
origin is that the surface bands are restricted to −by/2λ �
ky � by/2λ, which means that the ky integral contained in
Eq. (8) is limited to an interval of length by/λ − |qy|. One
might suspect this nonanalyticity to be an artifact of trun-
cating the surface band where it really merges into the bulk
states. We suggest that this is not the case, based on the
following reasoning: For all qy �= 0, the contribution to the
response of FA states close to the ends of the arcs, i.e., for
ky → ±by/2λ, approaches zero. This is due to the destructive
interference between these very extended states for different
ky. However, the point qy = 0 is special: The matrix elements
in Eq. (8) are then essentially normalization integrals so all
ky ∈ (−by/2λ, by/2λ) contribute equally, regardless of the

decay length. Although the corresponding discontinuities at
ky = ±by/2λ only exist for qy = 0, they are sufficient to gen-
erate odd powers of |qy| in the response functions. Inclusion
of the bulk response does not cure this nonanalyticity since,
in the thermodynamic limit, the missing spectral weight in
the bulk resulting from the formation of surface states has
negligible effect on the response. Moreover, the response
satisfies �T,B

00 (−q,−ω) = �T,B
00 (q, ω)∗, which follows from

the definition in Eq. (8). Unlike the density response of a
two-dimensional electron gas, there is no symmetry under
inversion of q alone. This reflects the chiral nature of the FAs.

Similarly, the spin response is found to be

�T,B
xx =

⎛⎜⎜⎜⎝
�T,B

2 0 0 �T,B
2

0 �T,B
1 �T,B

1 0

0 �T,B
1 �T,B

1 0

�T,B
2 0 0 �T,B

2

⎞⎟⎟⎟⎠, (14)

�T,B
yy = �T,B

3

⎛⎜⎝
1 −p p −1
p −p2 p2 −p

−p p2 −p2 p
−1 p −p 1

⎞⎟⎠, (15)

�T,B
zz = �T,B

3

⎛⎜⎝ p2 −p p −p2

p −1 1 −p
−p 1 −1 p
−p2 p −p p2

⎞⎟⎠, (16)

�T,B
xy = ±�T,B

4

⎛⎜⎝ 0 0 0 0
−1 p −p 1
−1 p −p 1
0 0 0 0

⎞⎟⎠, (17)
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�T,B
yx = ±�T,B

4

⎛⎜⎝0 −1 −1 0
0 −p −p 0
0 p p 0
0 1 1 0

⎞⎟⎠, (18)

�T,B
yz = ±i�T,B

3

⎛⎜⎝
p −1 1 −p
p2 −p p −p2

−p2 p − p2

−p 1 −1 p

⎞⎟⎠, (19)

�T,B
zy = ±i�T,B

3

⎛⎜⎝−p p2 −p2 p
−1 p −p 1
1 −p p −1
p −p2 p2 −p

⎞⎟⎠, (20)

�T,B
zx = i�T,B

4

⎛⎜⎝0 p p 0
0 1 1 0
0 −1 −1 0
0 −p −p 0

⎞⎟⎠, (21)

�T,B
xz = i�T,B

4

⎛⎜⎝ 0 0 0 0
−p 1 −1 p
−p 1 −1 p
0 0 0 0

⎞⎟⎠, (22)

where p = λqy/by.
The coupled density-spin response is described by

�T,B
0x =

⎛⎜⎜⎝
0 �T,B

1 �T,B
1 0

�T,B
2 0 0 �T,B

2

�T,B
2 0 0 �T,B

2
0 �T,B

1 �T,B
1 0

⎞⎟⎟⎠, (23)

�T,B
x0 =

⎛⎜⎜⎝
0 �T,B

2 �T,B
2 0

�T,B
1 0 0 �T,B

1

�T,B
1 0 0 �T,B

1
0 �T,B

2 �T,B
2 0

⎞⎟⎟⎠, (24)

�T,B
0y = �T,B

4

⎛⎜⎝1 −p p −1
0 0 0 0
0 0 0 0
1 −p p −1

⎞⎟⎠, (25)

�T,B
y0 = �T,B

4

⎛⎜⎝ 1 0 0 1
p 0 0 p

−p 0 0 −p
−1 0 0 −1

⎞⎟⎠, (26)

�T,B
0z = ±i�T,B

4

⎛⎜⎝p −1 1 −p
0 0 0 0
0 0 0 0
p −1 1 −p

⎞⎟⎠, (27)

�T,B
z0 = ±i�T,B

4

⎛⎜⎝−p 0 0 −p
−1 0 0 −1
1 0 0 1
p 0 0 p

⎞⎟⎠. (28)

The response functions do not depend on the electron filling
or chemical potential since the FA density of states is inde-
pendent of energy. To leading order for small wave vectors,

λq � ω, by, the real part of the contributions reads

Re �T,B
1 = ± 1

(2π )2

qx

ω

(
1 ∓ 2λqx

ω

)
1

4λ
(by − 2λqy), (29)

Re �T,B
2 = ± 1

(2π )2

qx

ω

(
1 ∓ 2λqx

ω

)
1

12λ
(by − 6λqy), (30)

Re �T,B
3 = ± 1

(2π )2

qx

ω

(
1 ∓ 2λqx

ω

)
2

15λ
by, (31)

Re �T,B
4 = ± 1

(2π )2

qx

ω

(
1 ∓ 2λqx

ω

)
1

6λ
by. (32)

Therefore, similarly to the results of Ref. [48] for a WSM
described by a k · p Hamiltonian, the density response
of FA states in our model varies as ∼qx/ω to lowest
order. Neglecting the tail of the FA states by using a
purely two-dimensional model results in an erroneous 1/ω2

dependence [49].

IV. RELATED PHYSICAL QUANTITIES AND
OBSERVABLE CONSEQUENCES

In this section, we will analyze physical effects that are
determined by the response functions calculated in Sec. III.
Specifically, we will address the bulk and surface con-
tributions to the electromagnetic response and the optical
conductivity.

A. Bulk response

Here, we discuss effects of the bulk of WSMs. Some of
these have been considered in Ref. [44] but are included here
for completeness as well as to address the orbital structure of
the response.

1. Electromagnetic susceptibilities

The density-spin response tensor physically manifests it-
self by the electromagnetic susceptibilities. The electric sus-
ceptibility can be expressed in terms of only the intraorbital
density-density correlation function as

χ
(e)μν
i j = ∂Pμ

i

∂E ν
j

= − e2

qiq j
�

μμνν
00 , (33)

while the magnetic (spin) susceptibility is given by the spin-
spin correlations as

χ
(m)μν
i j = ∂Mμ

i

∂Bν
j

=
(μB

2

)2
gμgν �

μμνν
i j , (34)

where μB is the Bohr magneton and gμ the g-factor for orbital
μ. As the two orbitals couple to the electric field with the
same electronic charge −e, the net polarization response to a
electric field for bulk states can be calculated by tracing over
orbital indices of the density response,

∑
μ,ν χ

(e)μν
00 . On the

other hand, since the two orbitals can have different g-factors
[61], application of an external magnetic field generally re-
sults in different spin polarizations for the two orbitals.
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The spin susceptibility can be expressed in terms of longi-
tudinal and transverse components:

χ
(m)μν
i j (q) = χ

(m)μν
L (q)

qiq j

q2
+ χ

(m)μν
T (q)

(
δi j − qiq j

q2

)
.

(35)
The Pauli spin susceptibility, defined as the static longitudinal
spin susceptibility for q → 0, is found to vanish identically
[62]. This can be attributed to the spin-momentum locking
in the Weyl Hamiltonian near the nodes and has recently
been observed in the candidate materials NbP and TaP [63].
The vanishing Pauli susceptibility holds true even beyond the
linear-response regime [62].

The crossed magnetoelectric susceptibility given by the
coupled density-spin response vanishes in equilibrium in our
model. However, in the presence of nonorthogonal static E
and B fields, the two nodes develop different effective chem-
ical potentials due to the chiral anomaly, which leads to a
nonzero magnetoelectric response [45].

2. Current response

Now we look at the current-current correlations, which
govern the response of a system to the vector potential. The
current operator corresponding to the Weyl Hamiltonian in
Eq. (3) reads ĵl = 2λl e σl ⊗ τx. Consequently, the current-
current correlations are related to the spin-spin correlations
as

� jl jm = 4λlλme2
∑

μ

(
�

μμ̄μμ̄

lm + �
μμ̄μ̄μ

lm

)
(36)

and thus depend only on the interorbital response. The longi-
tudinal and transverse current response is proportional to the
longitudinal and transverse spin response, respectively.

The optical conductivity of WSM can be obtained from the
current-current correlation function using

σlm(ω) = − i

ω + iδ
lim
q→0

� jl jm (ω), (37)

which in our case yields

Re σlm(ω) =
(

e2μ2

3πvF
δ(ω) + e2ω

3πvF
�(ω − 2μ)

)
δlm, (38)

where μ is the chemical potential, vF is the Fermi velocity,
and �(x) is the Heaviside step function. Here, we have taken
ω,μ � 0. Thus, outside the Pauli-blockade regime, i.e., for
ω > 2μ, the interband optical conductivity for free Weyl
fermions is linear in ω which is consistent with previous
results [64,65].

A related observable is the orbital magnetic susceptibility
which is proportional to the transverse current-current cor-
relation function [66]. Its evaluation reveals that the orbital
susceptibility is diamagnetic and varies as ∼ ln μ. This log-
arithmic dependence on the chemical potential is consistent
with more rigorous calculations invoking Landau-level quan-
tization [62,67,68].

B. Fermi-arc response

In this paper, we are mainly interested in the effects of the
FA surface states. In the following, observables related to the
FA response are analyzed.

1. Electromagnetic susceptibilities

Similarly to the bulk states, the electric susceptibility of
the FA states is related to the intraorbital density response,
χ

(e)
i j = −(e2/qiq j ) �T,B

1 . Also, the spin susceptibilities are

given by the spin-spin response as χ
(m)μν
i j = ∂Mμ

i /∂Bν
j =

(μB/2)2 gμgν �
μμνν
i j . Since the FA states are eigenstates of σx,

one may naively assume that the spin susceptibilities for y and
z spin components vanish. However, this is not generally true.
The spin susceptibilities

χ (m)T,B
yy =

(μB

2

)2
(g⊕ − g
)2 �T,B

3 , (39)

χ (m)T,B
zz =

(μB

2

)2
(g⊕ − g
)2 p2 �T,B

3 , (40)

χ (m)T,B
yz =

(μB

2

)2
(g⊕ − g
)2 p �T,B

3 (41)

will have nonzero values owing to different g factors for the
two orbitals.

The more important manifestation of the FA response
appears in the magnetoelectric effect. The mixed magneto-
electric susceptibilities are given by the crossed density-spin
response functions as

χ
(em)μν
i j = ∂Pμ

i

∂Bν
j

= i
eμB

2

1

qi
gν �

μμνν
0 j , (42)

χ
(me)μν
i j = ∂Mμ

i

∂E ν
j

= i
eμB

2

1

q j
gμ �

μμνν
i0 . (43)

These relations show that the FA states exhibit the magne-
toelectric effect. A closer look reveals that a static, homoge-
neous magnetic field along the growth direction (z) yields a
charge polarization along the node-separation axis (y),

Py = ± 1

(2π )2

eμB

12λ
(g⊕ − g
)Bz, (44)

while an electric field along the node-separation direction
results in a magnetization along the growth axis,

Mz = ∓ 1

(2π )2

eμB

12λ
(g⊕ − g
)Ey. (45)

The upper (lower) sign refers to the top (bottom) surface,
indicating the chiral origin of the response. This is one of the
key findings of this paper. Using typical experimental values
for Fermi velocity and the separation of the Weyl nodes, see
Sec. V B 1, and assuming g⊕ − g
 ≈ 1, the magnetoelectric
coefficient is estimated to be 10−31 s/m per fermion.

The bulk WSM states also exhibit a magnetoelectric effect
[45], albeit not in the static limit. Importantly, the bulk mag-
netoelectric effect only occurs in nonequilibrium situations
in the presence of nonorthogonal static E and B fields. In
contrast, the surface magnetoelectric effect survives in equi-
librium and can thus serve as a hallmark of the FA states.
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Finally, the Pauli spin susceptibility of the FA states reads

χPauli =
∑
μ,ν

lim
q→0

χ (m),μν
xx (q, 0)

=
(μB

2

)2
(g⊕ + g
)2 by

24λ2
, (46)

which is proportional to the FA density of states N T,B =
by/8π2λ2, similarly to the conventional electron gas.

2. Current response and anomalous Hall effect

Next, we study the current response of the FA states.
Since these states only disperse along kx, only the x com-
ponent of the current operator, ĵx = 2λe σx ⊗ τx, is nonzero.
We see from Eqs. (4) and (5) that the FA states are eigen-
states of ĵx and thus carry a finite surface current, anal-
ogous to the persistent currents for quantum Hall edge
states. This analogy stems from the fact that for −by/2λ <

ky < by/2λ, each two-dimensional Hamiltonian Hky (kx, kz )
in the kxkz plane represents a two-dimensional Chern in-
sulator. The FAs are the chiral edge states of the Chern
insulators and therefore exhibit the quantum anomalous Hall
effect [18,69].

We now calculate the surface current carried by the FAs.
The FA states are eigenstates of ĵx with opposite eigenvalues
for the top and bottom surfaces. In equilibrium, the currents
contributed by the top and bottom surfaces are equal and
opposite, leading to a vanishing total current. The application
of a voltage VH along z leads to a difference between the
chemical potentials for the two surfaces �μ = eVH . In this
case, we obtain a total current from the population imbalance
of the chiral edge states:

Ix = eVH |〈ĵx〉T − 〈ĵx〉B|

= eVH
2λe

(2π )2

(∫
dkx

∫ by/2λ

−by/2λ

dky

∫ ∞

0
dz |
B(k‖, z)|2

−
∫

dkx

∫ by/2λ

−by/2λ

dky

∫ 0

−∞
dz |
T (k‖, z)|2

)

= e2

2π

by

λ
VH . (47)

Therefore, the anomalous Hall conductivity is

σxz = e2

2π

by

λ
, (48)

which is equal to the distance between the Weyl nodes in units
of e2/2π [69,70].

The current-current correlation function reads

�T,B
jx jx

= 4λ2e2
∑

μ=⊕,


(
�μμ̄μμ̄

xx + �μμ̄μ̄μ
xx

) = 16λ2e2 �T,B
1

(49)
and is thus proportional to the density susceptibility. It is
important to note that the density and current response of the
bulk states are related by a Ward identity [71] since the bulk
carrier density and current obey a continuity equation. There
is no corresponding identity for the FA states since the total
carrier density at the surfaces consists of contributions from
FA and bulk states, and it is the total carrier density that is

FIG. 2. Diagrammatic representation of the density-spin re-
sponse function in the RPA. The dashed line corresponds to the bare
Coulomb interaction Vq.

conserved. There is no continuity equation satisfied by FA
carriers separately.

V. RESPONSE OF THE INTERACTING SYSTEM

Let us now consider the response functions for interact-
ing electrons. The response functions are calculated within
the RPA, depicted diagrammatically in Fig. 2. Although the
RPA is a weak-coupling approximation, it provides a quan-
titatively accurate description of WSMs even in the strong-
coupling regime [72,73]. The RPA is thus justified for our
calculations of the interacting response functions. Evaluat-
ing the perturbative expansion in orders of the Coulomb
interaction Vq, the interacting response function can be
expressed as

�̃
μνμ′ν ′
i j (q, ω) = �

μνμ′ν ′
i j (q, ω)

− �
μνγγ

i0 (q, ω)Vq �
δδμ′ν ′
0 j (q, ω)

1 + Vq �
ααββ

00 (q, ω)
, (50)

where summation over repeated indices is implied.

A. Interacting bulk response

First, we study the response of interacting electrons in bulk
WSM states. Here, Vq = 4πe2/κq2 is the Fourier-transformed
Coulomb interaction, with κ being the dielectric constant.
After algebraic manipulations of Eq. (50), the physical density
response reads

�̃00(q, ω) =
∑
μ,ν

�̃
μμνν
00 (q, ω) = �00(q, ω)

1 + Vq �00(q, ω)
. (51)

Clearly, the density response is enhanced by a factor 1/(1 +
Vq �00), which is the inverse RPA dielectric function. The
zeros of the RPA dielectric function correspond to collective
density excitations, i.e., plasmons. The plasmon dispersion
can be obtained in the long-wavelength limit, keeping only
the leading order in q, as carried out in Refs. [45,74], with the
result

ωpl(q) = ω0

(
1 − (vF · q)2

8μ2

[
1 + ν2

0 − 3/5

ν2
0

(
1 − ν2

0

)2
])

, (52)

where

ω0 = μ

√
16ακ

3πκ∗(ω0)
(53)

is the plasma frequency at q → 0, ν0 = ω0/2μ, and vF is
the vectorial Fermi velocity. The q → 0 plasma frequency
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is determined by the effective fine structure constant ακ =
e2/κvF and the frequency-dependent effective background
dielectric function

κ∗(ω) = 1 + 4ακ

3π
ln

∣∣∣∣ 4ε2
c

4μ2 − ω2

∣∣∣∣. (54)

Thus, the plasmon dispersion is gapped and the leading
momentum dependence is quadratic. The dispersion is man-
ifested as sharp peaks in the electron energy-loss func-
tion, which is experimentally accessible. In the presence
of nonorthogonal E and B fields, the plasmons carry spin,
which can be probed by optical pump-probe spectroscopy as
discussed in Ref. [45].

On the other hand, Eq. (50) shows that in equilibrium
the physical spin response and consequently the spin suscep-
tibilities are not affected by the electron interaction at the
RPA level. This is because the crossed density-spin functions
vanish in equilibrium, as discussed above. The current-current
response, however, is influenced by the Coulomb interaction
and reads

�̃ jl jm (q, ω) = � jl jm (q, ω)

1 + Vq �00(q, ω)
. (55)

Thus, the current-current correlation function is renormalized
by the RPA dielectric functions. As a consequence, the inter-
band optical conductivity is no longer linear in ω but rather
shows a more complicated ω dependence given by

Re σlm(ω) = e2

3πvF

ω

κ∗(ω) − 16μ2ακ

3πω2

�(ω − 2μ) δlm. (56)

Similarly, the orbital magnetic susceptibility is also
strongly influenced by the Coulomb interaction. Not only its
logarithmic dependence on the chemical potential is affected,
a transition to orbital paramagnetism, signalled by a sign
change of the orbital magnetic susceptibility, could occur, as
discussed in Ref. [44].

B. Interacting Fermi-arc response

Second, we study the effect of electron interactions on the
dynamical response of the FA states. We first address the
density response and the FA plasmons and then the spin and
current response.

1. Density response and Fermi-arc plasmons

We first consider the interacting density response of the
FA states. This allows us to study the effect of FAs on
the surface plasmons. Surface plasmons for WSMs were
previously studied in Refs. [46–50]. Song and Rudner [46]
used classical electrodynamics in a simple phenomenological
model to obtain surface plasmons based on the boundary
conditions. Hofmann and Das Sarma [47] studied surface
plasmon polaritons using the similar technique deep in the
retarded regime, i.e., for surface plasmon wave numbers q ∼
ω/c. Gorbar et al. [50] presented a hydrodynamic description
of surface collective modes. They found one gapped and one
(linear) gapless branch. Lošić [49] calculated the surface-
plasmon dispersion in the RPA due to two-dimensional FA
states and obtained a

√
q dispersion. Andolina et al. [48]

 0  0.01  0.02  0.03  0.04  0.05q
 0

 0.01

 0.02

 0.03

 0.04

 0.05
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 0

 0.1
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 0.3

Ω
B pl

 / 
t

FIG. 3. Dispersion of the FA plasmons at the bottom surface
in the qxqy plane. Only one quadrant is shown; the others can be
obtained by using �B

pl(qx, qy ) = �B
pl(qx, −qy ) = −�B

pl(−qx, qy ) =
−�B

pl(−qx, −qy ). The effective fine structure constant is taken to be
ακ = 0.3. Constant-frequency contours are shown as white lines. The
plasmon group velocity is normal to these lines.

presented a more sophisticated quantum-mechanical calcula-
tion of surface-plasmon excitations. The contribution to the
surface plasmons from FAs was found to be gapped. However,
in all of these works, the bulk is assumed to be doped and
the surface plasmon is affected by contributions from the
bulk states. In the undoped limit, when the chemical potential
is at the Weyl nodes, the bulk carrier density vanishes and
the surface plasmon is formed only by the FA states. In the
following, we investigate this scenario of surface plasmons
formed by FA states alone, which we call FA plasmons.

The dispersion of the FA plasmons is given by the
zeros of the effective FA dielectric function εT,B

RPA(q, ω) =
1 + Vq �T,B

00 (q, ω) [75], where Vq = 2πe2/κq is the Fourier-
transformed Coulomb interaction in two dimensions as we
are interested in the surface density response. This is valid
for q small compared to the typical inverse decay length of
FA states, which is of the order of by/2λz. For consistency,
we also expand �T,B

00 up to the leading term, which yields the
FA-plasmon dispersion

�T,B
pl (q) = ∓ cos θq

(
ακby

π
+ 2λq

)
, (57)

where θq = arctan(qy/qx ) and the upper (lower) sign pertains
to the top (bottom) surface. A detailed quantum-mechanical
description of FA plasmons is presented in Appendix F.
The resulting dispersion boils down to Eq. (57) in the long-
wavelength limit. Recall that ακ = e2/2κλ. The FA-plasmon
dispersion for the bottom surface is shown in Fig. 3. The
plasmon frequency is an odd function of qx, reflecting the
chiral nature of the FA plasmon [48]. This can be traced back
to the FA dielectric function εT,B

RPA(q, ω) having only a single
zero as a function of frequency ω for fixed momentum q. This
is different from the two-dimensional electron gas, for which
the dielectric function has two zeros at ±ω.

Evidently, the FA plasmons are highly anisotropic. The
plasmon energy is maximal for propagation in the direction
parallel to the dispersion of the FA states, i.e., the x direction
for our model, and goes to zero in the perpendicular direction.
The dispersion has a gap ακby cos θq/π , which is direction de-
pendent and proportional to the separation of the Weyl nodes.
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The lowest-order nonlocal term is linear in q. The group
velocity of FA plasmons is also anisotropic and is given by

vT,B
pl = θ̂ q−1

∂�T,B
pl

∂θ
= ±ακby

πq
sin θq θ̂, (58)

to lowest order. The group-velocity vector is always
orthogonal to the constant-frequency contours in Fig. 3.
Owing to the opposite sign of the band dispersions for the two
surfaces, the chiral FA plasmons move in opposite directions
at the two surfaces.

The FA plasmons are distinct from the surface plasmons on
a planar surface of a normal metal [76–78]. The FA states are
much more akin to one-dimensional chiral integer-quantum-
Hall edge states in that they are essentially unidirectional
and chiral. Indeed, the quantum-Hall edge with long-range
Coulomb interaction supports chiral plasmons [79–82], like
the FAs.

From an experimental perspective, the FA surface plasmon
in WSMs can be investigated by using high-resolution elec-
tron energy loss spectroscopy [83] and near-field optical spec-
troscopy, see Ref. [84] for a review. For a typical experimental
value of vF = 4 × 105 ms−1 [85], a separation of the Weyl
nodes of 0.3 Å−1 [14], and assuming the dielectric constant κ

to be on the order of 10, the FA-plasmon gap for θq = 0 turns
out to be on the order of 60 meV. This corresponds to a fre-
quency of about 15 THz, in good agreement with experimental
results [83]. As the FA plasmons contain information about
the bulk band structure, e.g., the separation of Weyl nodes and
their Fermi velocities, its experimental study is a promising
tool for investigating not only the properties of the FA states
but also—so to speak, holographically—of the WSM bulk.

2. Spin and current response

We find that the spin response of the FA states is not influ-
enced by the electron interaction at the RPA level, similarly
to the bulk. The physical spin response for the x component
is given by �T,B

2 , whereas the response for the y and z
components vanish. As a result, the Pauli spin susceptibility
for the FA states also remains unaffected by the interaction.
However, the crossed density-spin response is influenced and
is now given by

�̃
T,B,μμνν
0i (q, ω) = �

T,B,μμνν
0i (q, ω)

1 + Vq �T,B
00 (q, ω)

, (59)

�̃
T,B,μμνν
i0 (q, ω) = �

T,B,μμνν
i0 (q, ω)

1 + Vq �T,B
00 (q, ω)

. (60)

As discussed previously, the density-spin response gives rise
to the magnetoelectric effect. Therefore, the FA magneto-
electric response, which is one of the salient features of the
FA states, is enhanced by the inverse FA dielectric function.
Consequently, the response will exhibit a pole at the FA
plasmon frequency. This behavior is a key observable feature
of FA states in interacting WSMs.

To give a specific example, let us consider an inhomoge-
neous oscillating electric field, defined by

E = E0 ei(qxx−ωt ) ŷ, (61)

applied to the WSM surface. Owing to the magnetoelectric
effect, the electric field induces a magnetization of the FAs,

which is given by

MT,B(qx, ω) = ∓ eμB

24π2
(g⊕ − g
)

× 1

εT,B
RPA(qx, ω)

qx

2λqx ± (ω + iδ)
E0 ẑ. (62)

Therefore, the magnetization will exhibit two peaks in the
(qx, ω) plane, at the plasmon frequency �T,B

pl and at ∓2λqx.
This is a striking feature of FA states and provides a unique
tool to probe the surface-plasmon dispersion.

Finally, the current-current correlation function is found to
be similarly enhanced by interactions:

�̃T,B
jx jx

(q, ω) = �T,B
jx jx

(q, ω)

1 + Vq �T,B
00 (q, ω)

. (63)

Evidently, the proportionality between current-current cor-
relation and density susceptibility holds true for interacting
electrons as well.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have investigated the dynamical density
and spin response of FA states of time-reversal-symmetry-
breaking WSMs. We have obtained a model for a WSM by
closing the band gap in a topological insulating state, leading
to a Dirac semimetal, and breaking time-reversal symmetry
explicitly. This approach is convenient for analytical evalua-
tions but the general conclusions are not expected to depend
on the specific model since they rely on the topological invari-
ants of Weyl nodes and the universal linear low-energy dis-
persion of FA surface states. We have obtained the evanescent
wave functions of the FA states and analytical expressions for
all components of the wave-vector- and frequency-dependent
composite density-spin response tensor. The penetration of the
FA states into the bulk, which becomes large for momenta
close to the Weyl nodes, has been found to be crucial for the
correct low-frequency behavior.

We have then examined observable consequences of our
results for the electric, magnetic, and coupled magnetoelectric
susceptibilities as well as for the optical conductivity and the
anomalous Hall effect. In particular, we have found that the
FAs exhibit a chiral magnetoelectric effect. Also, the FA states
lead to an anomalous Hall effect. For time-reversal-symmetric
WSMs with broken inversion symmetry, FAs at a given sur-
face come in pairs related by time reversal. The resulting lin-
ear response is the sum of their contributions. Consequently,
the electric and magnetic susceptibilities, which are even un-
der time reversal, add up, whereas the mixed magnetoelectric
susceptibility, which is odd under time reversal, vanishes.

Based on the full response tensor, we have studied the
impact of the electron-electron Coulomb interaction on the
FA and bulk response, within the RPA. While the RPA
spin response is unaffected by the interaction effects, the
density and current susceptibilities are strongly renormal-
ized. The spectrum of surface density excitations for FA
states contains chiral FA plasmons, whose dispersion is
highly anisotropic and yields information about the elec-
tronic structure of WSMs. Moreover, the FA magnetoelectric
effect is also renormalized by the FA plasmon dispersion
and will show resonance-like behavior when frequency and
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momentum match the FA-plasmon dispersion. The FA plas-
mons of time-reversal-symmetric WSMs are similar to our
case, except for the vanishing magnetoelectric effect. The
reason for this is that only the charge susceptibility appears
in the denominators in the RPA expressions, for example, in
Eq. (50).

We hope that our study of dynamical response functions
will motivate experimental studies of the spin response of FA
states, similar to experiments on bulk WSMs in Ref. [86]. Our
work should also be useful for exploring nonlocal transport
and optical properties of the FA surface states. Moreover, the
magnetoelectric effect, the anisotropic FA plasmon, and their
interplay have the potential to lead to smoking-gun experi-
mental evidence for the FA states and thus for the presence of
Weyl nodes in the bulk.
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APPENDIX A: EIGENSTATES NEAR WEYL NODES

Here, we describe the eigenstates near the Weyl nodes,
based on the Hamiltonian in Eq. (3). In the vicinity of the
node at (0, by/2λ, 0), the dispersion is given by

E±(k) = ±ε(k) ≡ ±
√

4λ2k̃2
x + 4λ2k̃2

y + 4λ2
z k̃2

z , (A1)

where (k̃x, k̃y, k̃z ) is the momentum relative to the node.
We write 2λk̃x = ε(k) sin θk cos φk , 2λk̃y = ε(k) sin θk sin φk ,
and 2λzk̃z = ε(k) cos θk such that the polar angles θk and
φk parametrize constant-energy surfaces. With these substi-
tutions, the periodic parts of the Bloch states are given by

|φN
+ (k)〉 =

⎛⎜⎜⎜⎝
sin θk

2 e−iϕk/2

− sin θk
2 e−iϕk/2

− cos θk
2 eiϕk/2

cos θk
2 eiϕk/2

⎞⎟⎟⎟⎠, (A2)

|φN
− (k)〉 =

⎛⎜⎜⎜⎜⎝
− cos θk

2 e−iϕk/2

cos θk
2 e−iϕk/2

− sin θk
2 eiϕk/2

sin θk
2 eiϕk/2

⎞⎟⎟⎟⎟⎠. (A3)

Here, the superscript N refers to the fact that the node at
(0, by/2λ, 0) has negative chirality. Similarly, the periodic

parts of the eigenvectors near the positive-chirality node at
(0,−by/2λ, 0) is given by

|φP
+(k)〉 =

⎛⎜⎜⎜⎝
cos θk

2 e−iϕk/2

cos θk
2 e−iϕk/2

sin θk
2 eiϕk/2

sin θk
2 eiϕk/2

⎞⎟⎟⎟⎠, (A4)

|φP
−(k)〉 =

⎛⎜⎜⎜⎝
sin θk

2 e−iϕk/2

sin θk
2 e−iϕk/2

− cos θk
2 eiϕk/2

− cos θk
2 eiϕk/2

⎞⎟⎟⎟⎠. (A5)

Note that the bulk states are eigenspinors of σ0 ⊗ τx.

APPENDIX B: CALCULATION OF FERMI-ARC STATES

In this Appendix, we present the derivation of the wave
functions of FA states. We start by making the following
assumptions.

(i) The top and bottom surfaces can be solved indepen-
dently. This means that the WSM slab is assumed to be
sufficiently thick so that the states at the two surfaces are
decoupled.

(ii) The vacuum is an ordinary insulator with a very
large mass so that the vacuum Hamiltonian is given by
Eq. (3) with ε � t, λ, λz. The top surface separates the WSM
at z < 0 from the vacuum at z > 0 and is characterized
by a z-dependent mass M(z) = (6t − 2t

∑
α cos kα ) �(−z) +

M�(z), where �(z) is the Heaviside step function and M
is the large vacuum mass. Similarly, the mass for the bottom
surface is M(z) = (6t − 2t

∑
α cos kα ) �(z) + M�(−z).

(iii) The FA wave functions are bound to the surfaces and
consists of a periodic term in r‖ = (x, y) and a evanescent
factor in z,


T,B(k‖, r) = φT,B(k‖, z) eik‖·r‖ , (B1)

with T , B referring to the top and bottom surfaces, respec-
tively, and k‖ = (kx, ky).

First, we calculate the FA states for the top surface. The FA
states exist for −by/2λ � ky � by/2λ and have the dispersion
ET (k) = −2λkx [56]. Linearizing the Hamiltonian in Eq. (3)
and replacing kz by −i ∂/∂z ≡ −i∂z, the Dirac-type equation
for the evanescent part within the WSM reads

⎛⎜⎝ 0 −2iλz∂z −iby 2λ(kx − iky)
−2iλz∂z 0 2λ(kx − iky) −iby

iby 2λ(kx + iky) 0 2iλz∂z

2λ(kx + iky) iby 2iλz∂z 0

⎞⎟⎠
⎛⎜⎜⎝

φT
1

φT
2

φT
3

φT
4

⎞⎟⎟⎠ = −2λkx

⎛⎜⎜⎝
φT

1

φT
2

φT
3

φT
4

⎞⎟⎟⎠. (B2)
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Using the ansatz φT
i = ψT

i eκz, we obtain a linear homogeneous system of equations for the ψT
i given by⎛⎜⎝ 2λkx −2iλzκ −iby 2λ(kx − iky)

−2iλzκ 2λkx 2λ(kx − iky) −iby

iby 2λ(kx + iky) 2λkx 2iλzκ

2λ(kx + iky) iby 2iλzκ 2λkx

⎞⎟⎠
⎛⎜⎜⎝

ψT
1

ψT
2

ψT
3

ψT
4

⎞⎟⎟⎠ = 0. (B3)

For a nontrivial solution to exit, the determinant of the coefficient matrix must vanish, which yields four solutions:

κ ∈
{

by − 2λky

2λz
,

by + 2λky

2λz
,−by − 2λky

2λz
,−by + 2λky

2λz

}
. (B4)

Only the first two values are relevant for the top surface since
the wave function should vanish for z → −∞. Then the rank
of the 4 × 4 matrix turns out to be three so there is only one
linearly independent solution of Eq. (B3) for each value of κ .
The resultant evanescent spinor is the linear combination of
the two and is given by

φT (k‖, z) = α

⎛⎜⎝ 1
−1

1
−1

⎞⎟⎠e
by−2λky

2λz
z + β

⎛⎜⎝ 1
1

−1
−1

⎞⎟⎠e
by+2λky

2λz
z
. (B5)

To calculate the coefficients α and β, we consider the wave
function at the vacuum side. Using that M � t, λ, λz, an anal-
ogous derivation yields the evanescent spinor in the vacuum:

φT
vac(k‖, z) = A

⎛⎜⎝−1
−i

i
1

⎞⎟⎠e−M
2λz

z + B

⎛⎜⎝1
i
i
1

⎞⎟⎠e−M
2λz

z
. (B6)

Using continuity at z = 0, we get B = 0, α = −(1 − i)A/2,
and β = −(1 + i)A/2. Taking A = −1, the evanescent part of
the FA wave function for the top surface, within the WSM, is
given by

φT (k‖, z) =
√

b2
y − 4λ2k2

y

4byλz

⎡⎢⎣1 − i

2

⎛⎜⎝ 1
−1

1
−1

⎞⎟⎠e
by−2λky

2λz
z

+ 1 + i

2

⎛⎜⎝ 1
1

−1
−1

⎞⎟⎠e
by+2λky

2λz
z

⎤⎥⎦. (B7)

Following the same procedure and noting that only negative
values of κ are relevant, the evanescent part of the wave
function for the bottom surface, within the WSM, is found
to be

φB(k‖, z) =
√

b2
y − 4λ2k2

y

4byλz

⎡⎢⎣1 + i

2

⎛⎜⎝ 1
−1
−1
1

⎞⎟⎠e− by−2λky
2λz

z

+ 1 − i

2

⎛⎜⎝1
1
1
1

⎞⎟⎠e− by+2λky
2λz

z

⎤⎥⎦, (B8)

with dispersion EB(k) = 2λkx.

APPENDIX C: FERMI-ARC STATES FOR GENERIC
HAMILTONIAN

In the following, we argue that any WSM model with
two-valued orbital degrees of freedom will have qualitatively
similar FA states as in Eqs. (4) and (5). We consider the
following generic Hamiltonian for a WSM:

H0 = [F1(k) σx + F2(k) σy + F3(k) σz] ⊗ τx. (C1)

P and T symmetry require that F1 is odd in kx and even in ky

and kz, F2 is odd in ky and even in kz and kx, and F3 is odd
in kz and even in kx and ky. The T symmetry is broken by the
additional term byσy ⊗ τ0.

To calculate surface states in the kxky plane, we carry out
the following expansions to lowest order in kz and replace
kz → −i∂z:

F1 = f1(kx, ky), (C2)

F2 = f2(kx, ky), (C3)

F3 = −i f3(kx, ky) ∂z. (C4)

The resulting Hamiltonian reads

H =

⎛⎜⎝ 0 −i f3∂z −iby f1 − i f2

−i f3∂z 0 f1 − i f2 −iby

iby f1 + i f2 0 i f3∂z

f1 + i f2 iby i f3∂z 0

⎞⎟⎠.

(C5)

The locations of the Weyl nodes are given by by ±
| f2(kx, ky)| = 0 and the dispersion for the top and bottom
surfaces are ET,B(k‖) = ∓| f1(kx, ky)|.

With a derivation similar to Appendix B, and using an
ansatz of the from φT,B

i = ψT,B
i eκz for evanescent modes, we

find

κ ∈
{ | f3|

by − | f2| ,
| f3|

by + | f2| ,−
| f3|

by − | f2| ,−
| f3|

by + | f2|
}
. (C6)

Defining κ1 = | f3|/(by − | f2|) and κ2 = | f3|/(by + | f2|), the
evanescent part of the normalized wave functions for the top
and bottom surfaces are given by

φT (k‖, z) =
√

κ1κ2

κ1 + κ2

⎡⎢⎣1 − i

2

⎛⎜⎝ 1
−1

1
−1

⎞⎟⎠eκ1z+1+i

2

⎛⎜⎝ 1
1

−1
−1

⎞⎟⎠eκ2z

⎤⎥⎦,

(C7)
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φB(k‖, z) =
√

κ1κ2

κ1+κ2

⎡⎢⎣1+i

2

⎛⎜⎝ 1
−1
−1

1

⎞⎟⎠e−κ1z+1 − i

2

⎛⎜⎝1
1
1
1

⎞⎟⎠e−κ2z

⎤⎥⎦,

(C8)

where κ1 and κ2 are functions of kx and ky. Evidently, the FA
states are eigenstates of σx ⊗ τx.

Alternatively, T symmetry can be broken by adding the
term bxσx ⊗ τ0 to the Hamiltonian H0. In this case, the FA
states become eigenstates of σy ⊗ τx with the same decay
length scales 1/κ1 and 1/κ2.

APPENDIX D: DYNAMICAL RESPONSE OF BULK STATES

Here, we briefly discuss the dynamical response functions
for the bulk states. For chemical potential close to the energy
of the Weyl nodes, only the states near the two nodes con-
tribute to the response functions. Since the low-energy physics
is governed by the two bands constituting the Weyl cones, we
calculate the response for states in the vicinity of the nodes
up to a cutoff energy εc. The technique is similar to Ref. [45]

for a k · p Hamiltonian and we therefore do not present it in
detail.

1. Density response

The density response �00 is determined by the density-
density correlations and we have �⊕⊕⊕⊕

00 = �⊕⊕


00 =

�

⊕⊕
00 = �





00 = �⊕
⊕

00 =�
⊕
⊕

00 =�⊕

⊕
00 =�
⊕⊕


00 ≡
�bulk

00 and the other terms are zero. �bulk
00 can be written

as the sum of a contribution from the undoped system
(intrinsic) and a contribution due to doping (extrinsic) as
�bulk

00 (q, ω) = �in,bulk
00 (q, ω) + �ex,bulk

00 (q, ω). The imaginary
and real parts of the intrinsic contribution are given by

Im �in,bulk
00 (q, ω) = (vF · q)2

12πv3
F

�(ω − vF · q), (D1)

Re �in,bulk
00 (q, ω) = (vF · q)2

12π2v3
F

ln

∣∣∣∣ 4ε2
c

(vF · q)2 − ω2

∣∣∣∣, (D2)

respectively. For electron doping, μ > 0, the imaginary and
real parts of the extrinsic contribution read

Im �ex,bulk
00 (q, ω)

= 1

4πvF

[
�(vF · q − ω)([α(q, ω) − α(q,−ω)]�(2μ − vF · q − ω) + α(q, ω)�(2μ − vF · q + ω)�(vF · q + ω − 2μ))

+ �(ω − vF · q)

(
−α(−q,−ω)�(2μ + vF · q − ω)�(vF · q + ω − 2μ) − (vF · q)2

3v2
F

�(2μ − vF · q − ω)

)]
, (D3)

Re �ex,bulk
00 (q, ω) = 1

4π2vF

[
8μ2

3v2
F

− α(q, ω)β(q, ω) − α(−q, ω)β(−q, ω) − α(q,−ω)β(q,−ω) − α(−q,−ω)β(−q,−ω)

]
,

(D4)

where

α(q, ω) ≡ 1

12v2
F (vF · q)

[(2μ + ω)3 − 3(vF · q)2(2μ + ω) + 2(vF · q)3] (D5)

and

β(q, ω) ≡ ln

∣∣∣∣2μ + ω − (vF · q)

(vF · q) − ω

∣∣∣∣, (D6)

with vF = (2λ, 2λ, 2λz ) being the Fermi-velocity vector near the Weyl nodes.

2. Spin response

Similarly, for the spin response, terms of the form �
μμνν
i j , �

μμ̄μμ̄
i j , and �

μμ̄μ̄μ
i j are equal to �bulk

i j and the other terms vanish.
The spin response consists of diagonal terms (i = j) and off-diagonal terms (i �= j). The diagonal components can be further
decomposed into longitudinal (�ll for q = q l̂) and transverse (�mm and �nn for q = q l̂) responses, where l̂, m̂, and n̂ are three
orthogonal coordinate axes forming a right-handed system. The longitudinal components can be written in terms of the density
response as

�bulk
ll (q l̂, ω) = ω2

(vF · q)2
�bulk

00 (q l̂, ω). (D7)

On the other hand, for the transverse response, the proportionality to the density response only holds for the intrinsic part,

�in,bulk
mm (q l̂, ω) = ω2 − (vF · q)2

(vF · q)2
�in,bulk

00 (q l̂, ω), (D8)
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while the extrinsic part has a more complicated form,

Im �ex,bulk
mm (q l̂, ω) = ω2 − (vF · q)2

16π (vF · q)3

[
�(vF · q − ω)

(
[γ (q, ω) − γ (q,−ω)]�(2μ − vF · q − ω)

+ γ (q, ω)�(2μ − vF · q + ω)�(vF · q + ω − 2μ)
)

+ �(ω − vF · q)

(
γ (−q,−ω)�(2μ + vF · q − ω)�(vF · q + ω − 2μ) + 4q2

3
�(2μ − vF · q − ω)

)]
,

(D9)

Re �ex,bulk
mm (q l̂, ω) = − ω2 − (vF · q)2

2(vF · q)2
�ex,bulk

00 (q l̂, ω) − μ2

2π2v3
F

− ω2 − (vF · q)2

16π2v3
F (vF · q)

×
(
�(vF · q − μ)

[
ξ (q, ω)β(−q, ω) + ξ (q,−ω)β(−q,−ω) − ξ (−q, ω)β(q, ω) − ξ (−q,−ω)β(q,−ω)

]
+ �(μ − vF · q)

[
(2μ + ω) ln

∣∣∣∣ ξ (q, ω)

ξ (−q, ω)

∣∣∣∣+ (2μ − ω) ln

∣∣∣∣ ξ (q,−ω)

ξ (−q,−ω)

∣∣∣∣− 2ω ln

∣∣∣∣vF · q + ω

vF · q − ω

∣∣∣∣
+ (vF · q)

[
ζ (q, ω) + ζ (−q, ω) + ζ (q,−ω) + ζ (−q,−ω)

]])
, (D10)

where γ (q, ω) ≡ 2q α(q, ω) + q2 (2μ−vF ·q + ω), ξ (q, ω) ≡
2μ + vF · q + ω, and

ζ (q, ω) ≡ ln

∣∣∣∣2μ + vF · q + ω

vF · q + ω

∣∣∣∣. (D11)

On the other hand, the off-diagonal components of the spin
response tensor can be written in terms of the diagonal com-
ponents as

�lm(q, ω) = [�ll (q l̂, ω) − �ll (q m̂, ω)]
qlqm

q2
. (D12)

3. Coupled density-spin response

Due to the coupling between spin and momentum of Weyl
fermions, the density and spin degrees of freedom are strongly
coupled and the crossed density-spin response is large. How-
ever, the same effect causes the intraorbital and interorbital
contributions to the density-spin response to change sign
with chirality and therefore they do not physically manifest

for our model in equilibrium. When the WSM is driven out
of equilibrium by the application of nonorthogonal electric
and magnetic fields, there will be a nonzero density-spin
response, as discussed in Ref. [45]. The nonequilibrium case
is beyond the scope of this paper. However, it is important
to note that terms such as �

μμμμ̄

0l (q l̂, ω) survive even in
equilibrium and assume the value ω/(vF · q) �bulk

00 . These
terms are irrelevant at the noninteracting level because they
do not enter the crossed density-spin response functions in
Eqs. (42) and (43) but they do affect the current response for
interacting electrons, as we discuss in the main part.

APPENDIX E: CALCULATION OF DENSITY RESPONSE

In this Appendix, we discuss the calculation of the density
response tensor from the density-density correlation function
using Eq. (8) with the FA wave functions given in Eqs. (4) and
(5). We find that �⊕⊕⊕⊕

00 = �⊕⊕


00 = �

⊕⊕

00 = �




00 ≡

�B
1 is given by

�B
1 = 1

(2π )2

qx

2λqx − ω − iδ

∫ by/2λ−qy

−by/2λ

dky

b2
y − 4λ2k2

y

4byλz

b2
y − 4λ2(ky + qy)2

4byλz

×
∫ ∞

0
dz e−(by/λz ) z 2 cosh

(
λ

λz
(2ky + qy)z

)∫ ∞

0
dz′ e−(by/λz ) z′

2 cosh

(
λ

λz
(2ky + qy)z′

)

= 1

(2π )2

qx

2λqx − ω − iδ

1

8

[
2by

λ
− 4qy + λq2

y

by
+ λ2q3

y

b2
y

+ λ3q4
y

b3
y

arctanh

(
1 − qyλ

by

)]
(E1)

for the bottom surface, assuming qx, qy > 0. For the top surface, the corresponding results are obtained by replacing ω → −ω.
Similar calculations for terms such as �μμ̄μμ reveal that the response function vanish when one of the four orbital indices is
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different from the other three. On the other hand, we find that �⊕
⊕

00 = �⊕

⊕

00 = �
⊕
⊕
00 = �
⊕⊕


00 ≡ �B
2 are given by

�B
2 = 1

(2π )2

qx

2λqx − ω − iδ

∫ by/2λ−qy

−by/2λ

dky

b2
y − 4λ2k2

y

4byλz

b2
y − 4λ2(ky + qy)2

4byλz

×
∫ ∞

0
dz e−(by/λz ) z 2 sinh

(
λ

λz
(2ky + qy)z

)∫ ∞

0
dz′ e−(by/λz ) z′

2 sinh

(
λ

λz
(2ky + qy)z′

)
= 1

(2π )2

qx

2λqx − ω − iδ

1

24b3
yλ

[
by(by − λqy)

(
2b2

y − 10λqyby − 13λ2q2
y

)+ 3λ2q2
y

(
8b2

y − λ2q2
y

)
arctanh

(
1 − qyλ

by

)]
.

(E2)
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FIG. 4. Dispersion of the FA plasmons at the bottom surface,
from Eq. (F11). The parameters are the same as in Fig. 3.

The other components of the response tensor are calculated
from the spin-spin correlation and density-spin correlations in
a similar fashion.

APPENDIX F: SURFACE PLASMONS FROM FA STATES

Here, we present a quantum mechanical treatment of sur-
face plasmon modes arising from the FA states [48]. We
start from the observation that the total potential seen by a
test charge in a WSM in response to an external potential
Vext (z, q, ω) is given by

Vsc(z, q, ω) = Vext (z, q, ω) + Vind(z, q, ω), (F1)

where q ≡ (qx, qy). The induced potential Vind(z, q, ω) is
related to the induced carrier density as

Vind(z, q, ω) =
∫

dz′ v(z, z′, q) nind(z′, q, ω), (F2)

where

v(z, z′, q) = 2πe2

κq
exp(−q|z − z′|) (F3)

is the partial Fourier transform of the Coulomb potential. The
induced carrier density, in turn, is related to the screened
potential by

nind(z, q, ω) = −
∫

dz′ �00(z, z′, q, ω)Vsc(z′, q, ω). (F4)

Therefore, we have

Vsc(z, q, ω) = Vext (z, q, ω) −
∫

dz′
∫

dz′′ v(z, z′, q)

× �00(z′, z′′, q, ω)Vsc(z′′, q, ω). (F5)

In the absence of an external potential, we have

Vsc(z, q, ω) = −
∫

dz′
∫

dz′′ v(z, z′, q) �00(z′, z′′, q, ω)

× Vsc(z′′, q, ω), (F6)

which is the condition for plasma oscillations. Plasmons are
nontrivial solutions of this equation.

In the nonretarded regime of c � ω/q, we use Poisson’s
equation to solve for the screened potential. In the absence
of bulk carriers, we have ∇2Vsc = (q2 − ∂2

z )Vsc = 0, assuming
the FAs to contribute negligibly to the carrier density, i.e., for
|qy| � by/2λ [87]. Therefore, the screened potential can be
written as

Vsc(z, q, ω) = vsc (q, ω)e−q|z|. (F7)

Evidently, the electric field associated with the surface plas-
mon is localized at the surface with a decay length of 1/q.

After some algebraic manipulations, the condition for the
plasmon dispersion can be written as

εT,B
eff

(
q,�T,B

pl

) = 0, (F8)

where the effective surface dielectric constant reads

εT,B
eff (q, ω) = 1 + 2πe2

κq

∫
dz′
∫

dz′′ �T,B
00 (z′, z′′, q, ω)

× e−q|z′+z′′ |, (F9)

and the real-space density response is described by

�T,B
00 (z, z′, q, ω) = − 1

(2π )2

∑
μ,ν

∫
dkx

∫
dky 〈φμ(T,B)(k‖ + q, z)|σ 0|φμ(T,B)(k‖, z)〉

× 〈φν(T,B)(k‖, z′)|σ 0|φν(T,B)(k‖ + q, z′)〉 nF (k‖) − nF (k‖ + q)

ε(k‖) − ε(k‖ + q) ± (ω + iδ)
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= 1

(2π )2

qx

2λqx ± (ω + iδ)

1

4b2
yλ

2
z

∫ by/2λ−qy

−by/2λ

dky
(
b2

y − 4λ2k2
y

) [
b2

y − 4λ2(ky + qy)2
]

× e±(by/λz ) z 2 cosh

(
λ

λz
(2ky + qy) z

)
e±(by/λz ) z′

2 cosh

(
λ

λz
(2ky + qy) z′

)
, (F10)

assuming qx, qy > 0.
After some tedious but straightforward calculations, the dispersion of FA plasmons is given by

�T,B
pl (q, ω) = ∓ cos θq

[
2λq + ακ

2πλ

{
by − 2λ|qy| + λ2q2

y

2by
+ λ3|qy|3

2b2
y

+ λzq

2b2
y

(by − λ|qy|)(2by + λzq)

+ λ4q4
y − λzq

(
2by + λzq

)(
4b2

y − 2λ2q2
y + 6byλzq + 3λ2

z q2
)

2b2
y(by + λzq)

arctanh

(
by − λ|qy|
by + λzq

)}]
. (F11)

In the long-wavelength limit, q � by/λz, |qy| � by/2λ, we
obtain

�T,B
pl (q, ω) = ∓ cos θq

(
ακby

π
+ 2λq

)
, (F12)

which is the same as obtained from the long-wavelength
expansion of the linear density response.

The FA-plasmon dispersion calculated from Eq. (F11) is
shown in Fig. 4. The evident similarity to Fig. 3 in terms of the
plasmon dispersion as well as the constant-frequency contours
confirms that the FA plasmons are well described by the long-
wavelength expansion of the FA dielectric function described
in Sec. V B 1.
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