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I. SEMICLASSICAL LIMIT

In this section, we derive the condition for the magnetic field range in which in the semiclassical limit is justified.
For a magnetic field along the kz-direction, the dispersion of the m-th Landau level of positive energy with m > 0 is
given by

εm(kz) = vF
√

2eBm+ (vF kz)2. (S1)

The number of occupied Landau levels must be large in the semiclassical limit, n � 1. Equivalently, the energy
splitting

∆ε(B) ≡ vF
√

2eB(n+ 1)− vF
√

2eBn (S2)

between the last occupied and the first unoccupied Landau level for kz = 0 should be small compared to the chemical
potential,

∆ε(B)� µ. (S3)

The energy splitting can be estimated as

∆ε(B) = vF
√

2eBn

(√
1 +

1

n
− 1

)
∼= vF

√
2eBn

(
1 +

1

2n
− 1

)
= vF

√
eB

2n
. (S4)

Since n is the index of the last occupied Landau level, we have

vF
√

2eBn < µ < vF
√

2eB(n+ 1). (S5)

Using Eq. (S5), we obtain

n =

⌊
1

2eB

(
µ

vF

)2
⌋
, (S6)

where bxc is the largest integer smaller or equal to x. By combining Eqs. (S3), (S4), and (S6), we obtain the condition

B � 1

e

(
µ

vF

)2
(S7)

for the magnetic field to be considered weak and the semiclassical approximation to be valid.

II. DETERMINATION OF THE COEFFICIENTS λχ AND δχ

The ansatz for the vector mean free path given in the main text,

Λχµ(θ) = −τχµ (θ)
(
−hχµ(θ) + λχ + χδχ cos θ

)
, (S8)

contains the four real coefficients λχ and δχ. Recall that χ = ± denotes the chirality of the Weyl node. In this section,
we present details on their determination, as there is a subtlety. We have to solve the equation

hχµ(θ)−
Λχµ(θ)

τχµ (θ)
= −

∑
χ′

n

4π

∫
dθ′ sin θ′

(kχ
′
)3

|vχ′

k′ · k′|
Dχ′

(k′)
∣∣V χχ′ ∣∣2 (1 + χχ′ cos θ cos θ′) Λχ′µ (θ′). (S9)
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By inserting Eq. (S8), we obtain a system of equations for the four coefficients λ+, λ−, δ+, and δ−:
R+

1

R−1
R+

2

R−2

 =


C++

1 − 1 C+−
1 C++

2 C+−
2

C−+1 C−−1 − 1 C−+2 C−−2

C++
2 C+−

2 C++
3 − 1 C+−

3

C−+2 C−−2 C−+3 C−−3 − 1



λ+

λ−

δ+

δ−

 , (S10)

where

pχχ
′
(θ) =

n

4π
sin θ

(kχ
′
)3

|vχ′

k · k′|
Dχ′

(k)
∣∣V χχ′ ∣∣2, (S11)

Rχ1 =
∑
χ′

∫
dθ′ pχχ

′
(θ′)hχ

′

µ (θ′), (S12)

Rχ2 =
∑
χ′

∫
dθ′ pχχ

′
(θ′)χ′ cos θ′ hχ

′

µ (θ′), (S13)

Cχχ
′

1 =

∫
dθ′ pχχ

′
(θ′), (S14)

Cχχ
′

2 =

∫
dθ′ pχχ

′
(θ′)χ′ cos θ′, (S15)

Cχχ
′

3 =

∫
dθ′ pχχ

′
(θ′) cos2 θ′. (S16)

Explicit evaluation shows that the coefficient matrix in Eq. (S10) has rank 3. Consequently, it has a one-parameter
family of solutions. The origin of this apparent arbitrariness is that the solution of the linearized Boltzmann equation
and hence of Eq. (S9) is only determined up to a constant: if Λχµ(θ) solves Eq. (S9) then Λχµ(θ) + c with c an arbitrary
constant does so as well. The physical solution is found by imposing electron-number conservation,∑

χ,k

gχk = 0. (S17)

By solving Eqs. (S9) and (S17) simultaneously we obtain the results given in the main text. For completeness, the
coefficients λχ and δχ are plotted in Fig. S1 as functions of α = eBv2F /2µ

2 for the dotted curves in Fig. 2 (Vinter =
Vintra/2) of the main text. For the solid curves in Fig. 2 (Vinter = Vintra) the four coefficients λχ and δχ vanish.
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Figure S1. Coefficients λχ and δχ in the presence and the absence of the OMM for Vinter = Vintra/2.
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