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We investigate transport through a normal-superconductor (NS) junction made from a quantum spin Hall
(QSH) system with helical edge states and a two-dimensional (2D) chiral topological superconductor (TSC)
having a chiral Majorana edge mode. We employ a two-dimensional extended four-band model for HgTe-based
quantum wells in a magnetic (Zeeman) field and subject to s-wave superconductivity. We show using the
Bogoliubov-de Gennes scattering formalism that this structure provides a striking transport signal of a 2D TSC.
As a function of the sample width (or Fermi energy) the conductance resonances go through a sequence of 2e2/h
(nontrivial phase) and 4e2/h plateaux (trivial phase) which fall within the region of a nonzero Chern number (2D
limit) as the sample width becomes large. These signatures are a manifestation of the topological nature of the
QSH effect and the TSC.
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I. INTRODUCTION

The entrance of topology in characterizing the features of
materials is a rather recent event [1–12]. After the discovery
of the quantum Hall effect (QHE) [1] and its theoretical
description in terms of a topological Chern number relating a
bulk property to the existence of chiral edge channels [3,4],
complementary effects in two-dimensional materials were
predicted and discovered, like the quantum spin Hall (QSH)
effect [8–10], possessing helical edge states, the quantum
anomalous Hall effect (QAH) [13], exhibiting chiral edge
states, and topological superconductors (TSC) with Majorana
edge states [11,12].

Chiral TSCs recently got considerable attention theoreti-
cally [14–17] and experimentally [18] in a QAH-TSC-QAH
hybrid system showing evidence of a distinct e2/2h conduc-
tance step. This signature was propagated as an indication of
a chiral Majorana edge channel at the boundary of the TSC
region. However, subsequent theoretical works [19,20] put
forward alternative explanations not related to the existence
of a chiral Majorana edge mode. Furthermore, the QAH-TSC
system was proposed as a platform for non-Abelian braiding
[21,22]. It is therefore of utmost importance to find additional
means to probe a chiral TSC. In the seminal work by Law
et al. [23], the signature of a chiral Majorana edge mode was
proposed—in a closed system with finite mode quantization—
via 2e2/h tunneling resonances reflecting the Majorana nature
of the chiral edge mode. Similarly, Majorana bound states
(MBSs) at the ends of proximitized topological semicon-
ducting quantum wires [24–29] and in chains of magnetic
adatoms on superconductors with spin-orbit coupling [30,31]
have been probed by tunneling experiments.

We propose a new system presented by an NS junction
composed of a QSH insulator (N side) with helical edge
channels and a TSC (S side) with a chiral Majorana edge
channel in the same material system. In a ribbon geometry us-
ing an extended Bernevig-Hughes-Zhang (BHZ) model for an
inverted HgTe quantum well (QW) in proximity to an s-wave
superconductor and in the presence of a Zeeman field [32,33],
we show that the emergence of the chiral TSC is represented
by regions of conductance quantization at zero energy being
either 4e2/h in a trivial phase of the TSC, reflecting the two
spatially separated helical edge channels acting as sources of
perfect Andreev reflection, or 2e2/h being the indication of a
nontrivial phase for the TSC. The latter phase can be traced
back to the existence of a MBS at the NS-interface coupling
to a single but spatially separated spinful channel composed
of the two helical edge states in the N region (see Fig. 1). The
nontrivial phases are identified by the parity of the number of
bands crossing the Fermi energy in the S region, reminiscent
of a multichannel topological quantum wire [33–38]. We
stress that the existence of these two distinguishing quantized
conductance values is independent of the geometrical details
of the setup like the sample width and other imperfections—
owing to the unique setup with two helical channels in the
QSH phase acting as detectors of the TSC. These features
occur only inside the 2D topological nontrivial phase (Chern
number ±1) when the sample width largely exceeds the extent
of the chiral Majorana edge channels which is on the order of
the superconducting coherence length ζ . This is therefore a
decisive signature of a 2D TSC. We contrast our calculations
with the HgTe QW in the noninverted (without helical edge
states) regime where in general multiple channels exist in
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FIG. 1. (a) Scheme of an inverted HgTe QW based NS junction
with width W . Superconductivity is induced in the S region via the
proximity effect with a bulk s-wave superconductor (x > 0). The
helical edge channels (blue) are present on the N side with the
Fermi level in the bulk gap. A bias voltage V is applied to the N
contact. In the presence of a magnetic field B, the S side becomes
a TSC with a chiral Majorana edge channel (red). (b) Dispersion
relation of the BdG spectrum for electrons (black) and holes (red)
for the N side. Only helical edge states appear within the bulk gap
of the QSH insulator. The arrows denote the propagation and spin
directions of electrons, respectively. (c) For |�| > 0, the QW is
turned into a TSC with chiral Majorana edge modes (propagating
along the red arrows). The minigap around k = 0 is due to the mode
quantization in the ribbon geometry and can be opened and closed
by tuning the magnetic field changing the topological character of
the TSC ribbon geometry. In the topologically nontrivial phases, a
single MBS at ε = 0 appears at the NS interface, whereas the helical
edge channels become gapped out by �. We choose �E = 1.5 meV,
�H = 0, α = 0, CN = 0, CS = 9.7 meV, M = −10 meV, EF = 0,
and W = 250 nm.

the N region and the above mentioned quantization becomes
blurred by nongeneric and nonquantized conductance values.

The paper is organized as follows. In Sec. II, we describe
the BHZ model for HgTe-based QWs including the effects
of Rashba and Dresselhaus spin-orbit interaction, induced
s-wave superconductivity and a Zeeman field. In Sec. III, we
present the transport properties of NS junctions based on a
QSH insulator and a chiral TSC. In Sec. IV, we explain why
the appearance of a chiral Majorana edge mode in the TSC ex-
presses itself in quantized 2e2/h conductance plateaux at zero
voltage when coupled to helical edge states of a QSH insulator
in a ribbon geometry, whereas a trivial phase of the TSC is
characterized by the conductance value of 4e2/h. In Sec. V,
we predict and demonstrate that the conductance quantization
in the topologically nontrivial TSC regime towards higher
excitation energies is possible in NN’S junctions. In Sec. VI,
we compare our calculations with the case of a HgTe QW
in the noninverted regime. Finally, in Sec. VII, we pro-
vide concluding remarks. Additional information is placed in
Appendices, as follows. Appendix A provides a detailed de-
scription of the model used for the calculations. Appendix B
contains details concerning the band structure of the N and S

sides of the QSH-superconductor junction as well as transport
properties of the NS junctions based on the inverted and
noninverted HgTe QWs.

II. MODEL

We model the NS junction in a HgTe-based QW by the
Bogoliubov-de Gennes (BdG) formalism based on the BHZ
model [9] including the effects of the Rashba and Dresselhaus
spin-orbit interaction [39–41]. Additionally, we consider a
Zeeman field [42] and incorporate superconductivity by the
proximity effect with an s-wave bulk superconductor. The
BdG Hamiltonian for the NS-hybrid structure is then written
as HNS = ∫

d2r�†(r)H�(r)/2 with

H =
(He − EF �

�∗ EF − Hh

)
, (1)

where Hh = T HeT −1 is the Hamiltonian for holes with
T = isyσ0C the time-reversal operator. � is the induced
s-wave pairing potential and EF is the Fermi energy.
We decompose He = H0 + HR + HD + HZ in the basis
(|E+〉, |H+〉, |E−〉, |H−〉) [9,43], where E (H) denotes the
electron (heavy hole) subband (SB) and +(−) stands for
spin up (down). The bare BHZ Hamiltonian reads H0 =
A(k̂xszσx − k̂yσy) + ξ (k̂) + M(k̂)σz with ξ (k̂) = C − Dk̂

2
and

M(k̂) = M − Bk̂
2
, the Rashba spin-orbit term is HR =

α(k̂ysx − k̂xsy)(σ0 + σz )/2, and the Dresselhaus spin-orbit
term becomes HD = δ0syσy + δe(k̂xsx − k̂ysy)(σ0 + σz )/2 +
δh(k̂xsx + k̂ysy)(σ0 − σz )/2 (see Refs. [41,44]). The Rashba
spin-orbit coupling strength α is tunable by an electric field
[39], BIA parameters δe, δh, and δ0 are material specific
[45] and A, B, C, D, and M are band structure parameters
[46], where the sign of M distinguishes the inverted (M < 0)
regime with helical edge states from the noninverted (trivial)
regime. We also consider the effect of a Zeeman field perpen-
dicular to the plane of the QW [42] (see Fig. 1) described by
HZ = sz(B+ + B−σz ) with B± = (�E ± �H )/2, where �E

and �H are the Zeeman energies of the E and H bands,
respectively. The Pauli matrices si and σi act on spin (±) and
orbital (E , H ) degrees of freedom, respectively and σ0 denotes
the 2 × 2 identity matrix and k̂ = −ih̄∇r.

III. TRANSPORT PROPERTIES
OF A QSH-CHIRAL TSC JUNCTION

We consider transport in x direction of an NS structure
and assume hard-wall boundary conditions in y direction
(see Fig. 1). The normal (N) region (x < 0) has � = 0 and
C = CN whereas the superconducting (S) region (x > 0) has
� = �0eiφ (see Ref. [47]) and C = CS . We use a generalized
wave-matching method [40,48] in order to solve the Andreev
scattering problem for an incoming normal electron with a
given excitation energy ε. The corresponding scattering states
�(r) solve the BdG equation H�(r) = ε�(r). More details
on the approach are given in the Appendix A.

On the N side of the junction, CN is chosen such that
the Fermi level lies in the bulk gap of the inverted QW and
transport proceeds via the helical edge states [see Fig. 1(b)].
On the S side, we tune the Fermi level via CS to lie in the
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FIG. 2. (a) Diagram representing the number of occupied bulk subbands at the Fermi energy in an inverted QW (edge state subbands are
not counted here); (b) range (blue regions) where the bulk gap in the superconducting QW is negligibly small (i.e., the gap � 0.06 meV);
(c) conductance (in units of e2/h) in the NS structure based on an inverted QW; (d) probability density at the interface of N and S layers. All
plots are presented for the QW with a width W = 250 nm, M = −10 meV, and α = 0. Other parameters are ε = 0 in (a), (c), and (d), the
doping parameter is CN = 9.7 meV in (a) and CS = 9.7 meV in (b), CN = 0, CS = 9.7 meV in (c) and (d). The Zeeman term is set to 1.5 meV in
(d), which corresponds to the dashed line in (c). Plots (e) and (f) correspond to (c) and (a), respectively, for W = 1000 nm, with the black line
given by �2

E = �2
0 + (CS + M + δ2

0/(2M ) − EF )2 in accordance with Ref. [32]. Regions with odd (even) values of N are shown in magenta
(light blue) in (f).

vicinity of the valence band maximum (CS ≈ −M) where the
weight of the energy eigenstates is mostly on the E -SB for
low energies [32]. Since the Zeeman splitting in the E -SB is
much larger than the one in the H-SB [42] its influence is
maximized. On the contrary, the helical edge states are mainly
localized on the H-SB [49,50], so there the Zeeman effect is
negligible. For a transparent presentation of our results, we set
�H = 0 in the following (see also the Appendix B for further
discussions).

The subgap conductance at zero temperature can be ex-
pressed via the Andreev reflection matrix rhe only

G = 2e2

h
Tr[r†

herhe] (2)

evaluated at a given excitation energy ε = eV with V the bias
voltage applied to the normal contact and e the elementary
charge. In Figs. 2(c) and 2(e), we present the zero voltage
conductance as a function of Fermi energy (or gate voltage)
and Zeeman energy �E .

For vanishing or small Zeeman splittings (�E < �0)
where the TSC is in the topologically trivial regime we
observe a constant value of G = 4e2/h. This is consistent with
previous studies [51] at zero magnetic field and in the absence
of spin axial symmetry breaking terms which is a consequence
of the spin helicity of the edge states in the QSH insulator. We
note that the sample width in our case is finite [W = 250 nm
in Figs. 2(a)–2(d) and W = 1000 nm in Figs. 2(e) and 2(f)]
leading to a small overlap of the helical edge states near the
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Dirac point. For a Fermi level away from the Dirac point,
this hybridization, however, is effectively suppressed leading
to two separate propagating channels with perfect Andreev
reflection.

If �E > �0, the zero bias conductance switches between
4e2/h and 2e2/h [see Figs. 2(c) and 2(e)], depending on the
number N of bulk subbands crossing the Fermi level on the S
side in the absence of � [see Figs. 2(a) and 2(f)].

IV. CHIRAL MAJORANA EDGE MODES

We now explain why the switching from a 4e2/h to a 2e2/h
conductance plateau at V = 0 is a direct qualitative transport
signature of a TSC induced by the presence of Dresselhaus
and/or Rashba spin orbit coupling in the HgTe QWs when
�E > �0 (see Refs. [32,33]). The hallmark of 2D TSCs is
the appearance of chiral Majorana edge modes. In the ribbon
geometry, the two counterpropagating chiral Majorana edge
channels at the opposite edges develop a minigap around
ε = 0 due to the finite width of the ribbon [see Fig. 1(c)].
The closing of these minigaps in the BdG dispersion relation
[see Fig. 2(b)] happens at the topological phase transition
between trivial and nontrivial superconducting phases, each of
them characterized by even and odd values of N , respectively
[see Fig. 2(a) and the Appendix B for examples of dispersion
relations]. Note that the tails of the helical edge states at higher
k values, are gapped by the superconductor. If N is odd the
S ribbon is topologically nontrivial [33] with an associated
MBS at exactly zero energy (ε = 0) located at the boundary
to the normal side of the NS junction at x = 0. The helical
edge channels on the N side couple to the MBS such that the
eigenvalues of r†

herhe become nondegenerate and equal to 1
and 0 which is a sign of the nontrivial chiral TSC [52–55]. A
nondegenerate unit Andreev reflection eigenvalue results here
in a quantized conductance of 2e2/h. On the contrary, if N is
even then G = 4e2/h and the TSC is trivial.

In the limit of large W [Figs. 2(e) and 2(f)], conductance
plateaux with G = 2e2/h (nontrivial TSC) become dense and
fall into the region of a nontrivial Chern number C = −1 [to
the right of the full line in Fig. 2(e)] of the 2D TSC [32] with
a chiral Majorana edge mode. Outside this region, C = 0 and
the conductance of the NS junction is G = 4e2/h (and the
TSC trivial), independent on whether the parity of occupied
bulk subbands at the Fermi energy is odd or even [Fig. 2(f)].
In this sense, this setup allows to probe the 2D Chern number
of the TSC.

Information on the MBS is also contained in the scattering
states of our NS system. We plot the probability density of
these scattering states as obtained in Appendix A in Fig. 3(b)
for W = 250 nm. Contrary, in the trivial case, these bound
states are absent and only the incoming electronlike and the
reflected holelike helical edge states are visible [see Fig. 3(a)].
We also depict the presence of these bound states along the
transverse direction as a function of EF in Fig. 2(d) consistent
with the corresponding conductance values in Fig. 2(c) and
spectral properties in Figs. 2(a) and 2(b). When W � ζ the
MBS appears to have the property of an extended state [see
Fig. 3(c) for W = 1000 nm], which we interpret as a crossover
from a wirelike regime to a more 2D TSC regime, consistent
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FIG. 3. Probability density |�(x, y)|2 of scattering states at ε = 0
in the NS structure based on an inverted QW for the topologically
trivial case in (a) and the topologically nontrivial regime in (b) and
(c). The calculations are presented for M = −10 meV, α = 0 and
doping parameters CN = 0, CS = 9.7 meV. Further parameters are
W = 250 nm, EF = 0 in (a) and (b) and W = 1000 nm, EF = −0.6
meV in (c). The Zeeman term is (a) �E = 0, (b) 2, and (c) 0.8 meV.
Due to the very high probability density of the bound state in the S
region in comparison with that of the edge states the latter are not
visible in (b) and (c).

with alternative setups [35,38]. It clearly shows the onset of a
chiral Majorana edge state at the boundary of the S region.

V. NN’S JUNCTION

The helical edge states do only couple weakly to the
MBS. This is expressed via a sharp resonance as a function
of ε which we display in Fig. 4 (full line). To observe the
conductance quantization due to such resonances the energy
broadening should exceed the temperature. In this sense, the
resonance width sets the temperature at which the experiment
should be performed. We observe that the overlap between
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FIG. 4. Conductance of the NS (solid black line) and NN’S (dot-
dashed and dashed red lines) structure as a function of the excitation
energy. The calculations are presented for the following parameters:
W = 250 nm, M = −10 meV, EF = −1 meV, �E = 1 meV, α = 0;
the doping parameter is CN = 0 and CS = 9.7 meV. Thickness of the
N’ layer L = 100 nm.

the MBS and the helical edge states can be enhanced by
an intermediate N’ layer of length L that has a different CN

parameter (see Fig. 4). The states in this N’ layer couple
more efficiently to the MBS which allows to observe the
conductance quantization towards higher excitation energies
ε. By increasing the Fermi level into the bulk states in the N’
layer, we observe a two-orders-of-magnitude increase in ε at
which the resonance is still seen (dashed line). This should
make it feasible to observe the MBS resonances in current
state of the art experiments in HgTe QWs.

VI. NONINVERTED HgTe QWs

In the noninverted QWs, the TSC phases are still possible
(the sign of M does not influence the topology of the TSC)
but the normal lead ceases to have helical edge states. Similar
to the case of the QSH insulator (see Fig. 2) the S phase
is related to the number N of the occupied bulk SBs in the
absence of the pairing potential. However, in contrast to the
QSHI-S junction, the conductance takes on quantized values
G = (2e2/h)n, where n is odd (even) for the topologically
nontrivial (trivial) S phase. Moreover, the conductance quan-
tization in the trivial phase is not protected due to imperfect
Andreev reflection in the absence of helical edge modes in
noninverted QWs (see Appendix B for more details). Similar
behavior has been reported for multichannel semiconducting

nanowires in proximity to an s-wave S [52]. This shows that
the QSH insulator-TSC junction has rather unique and stable
quantized conductance features not seen in other systems
which rely on the combination of two topological phases—the
QSH insulator and the chiral TSC.

VII. CONCLUSION

We have shown how a decisive signature of a chiral TSC
can be observed in an NS junction based on a QSH insulator
and a TSC made of the same material in contact to an s-wave
bulk superconductor and subjected to a magnetic field. Using
the extended two-dimensional BHZ model (including axial
spin symmetry breaking terms, induced s-wave supercon-
ductivity and a Zeeman field) in a ribbon geometry—which
takes into account bulk as well as edge states—we show
that the signature of a chiral Majorana edge mode in the
TSC part expresses itself in quantized 2e2/h conductance
plateaux at zero voltage. These resonances can be traced back
to Majorana bound states (MBS) appearing at the NS interface
in this ribbon geometry. Moreover, a gate voltage can be
used to tune the topological phase of the TSC, resulting in
clearly separated quantized conductance plateaux of 2e2/h
(topologically nontrivial with MBS) and 4e2/h (topologically
trivial without MBS). For large ribbon width, the topological
conductance quantization of 2e2/h can only be seen in the
parameter range with nonzero Chern number of the 2D TSC.
Hence, we suggest that our proposal constitutes a new way to
detect a chiral TSC in two dimensions via transport measure-
ments without the necessity of fine tuning of parameters.
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APPENDIX A: DETAILED DESCRIPTION OF THE MODEL

We describe NS junctions based on HgTe QWs within
the BdG formalism and use the BHZ model for the QW [9]
including the effects of the Rashba and Dresselhaus spin-orbit
interaction as well as the Zeeman splitting induced by a
magnetic field [39–42].
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We solve the BdG equations H�(r) = ε�(r) where the Hamiltonian is given explicitly by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ (k̂) + M(k̂)
+�E − EF

Ak̂+ iαk̂− + δek̂+ −δ0 � 0 0 0

Ak̂−
ξ (k̂) − M(k̂)
+�H − EF

δ0 δhk̂− 0 � 0 0

−iαk̂+ + δek̂− δ0
ξ (k̂) + M(k̂)
−�E − EF

−Ak̂− 0 0 � 0

−δ0 δhk̂+ −Ak̂+
ξ (k̂) − M(k̂)
−�H − EF

0 0 0 �

�∗ 0 0 0
EF − ξ (k̂)

−M(k̂) + �E
−Ak̂+ −iαk̂− − δek̂+ δ0

0 �∗ 0 0 −Ak̂−
EF − ξ (k̂)

+M(k̂) + �H
−δ0 −δhk̂−

0 0 �∗ 0 iαk̂+ − δek̂− −δ0
EF − ξ (k̂)

−M(k̂) − �E
Ak̂−

0 0 0 �∗ δ0 −δhk̂+ Ak̂+
EF − ξ (k̂)

+M(k̂) − �H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

with ξ (k̂) = C − Dk̂
2
, M(k̂) = M − Bk̂

2
, and k̂± = k̂x±ik̂y.

We assume a steplike profile for the pairing potential and the
doping parameter in the NS structure, i.e., � = 0 and C = CN

in the N region (x < 0) whereas � = �0eiφ and C = CS in the
S region (x � 0). The operator hat “ ˆ ” implies that k should
be replaced by −ih̄∇r whenever it acts on the spinor �(r).

We consider transport in x direction of the NS struc-
ture and choose hard-wall boundary conditions in y direc-
tion. Following the procedure from Refs. [40,48], we ex-
pand the wave functions in terms of Fourier modes ϕn(y) =√

2/W sin(nπy/W ):

�m(x, y) = eikm
x x

Nmax∑
n=1

am
n ϕn(y), (A2)

where m is an index for different values of the longitudinal
momentum for a given excitation energy ε, the number of
transverse modes Nmax is chosen to be large enough to ensure
the convergence of the numerical solution, and an eight-
component spinor am

n and momentum km
x are determined by

solving the eigenvalue problem:(
1 0
0 (Hk2

x )−1

)(
0 1

H const + Hky Hkx

)(
am

a′m

)

= km
x

(
am

a′m

)
. (A3)

The vectors am = (am
1 , am

2 , ...)T , a′m = (a′m
1 , a′m

2 , ...)T , a′m
n =

km
x am

n , and the 8 × 8 submatrices in Eq. (A3) have the form

Hk2
x

n1,n2 = δn1,n2[(D + Bσz )τz],

H const
n1,n2 = δn1,n2[(C + Mσz − EF + δ0syσy)τz − ε

+ (B+ + B−σz )sz + (�+τx + i�−τy)],

Hkx
n1,n2 = δn1,n2[(Aszσx + (−αsy + δesx )(σ0 + σz )/2

+ δhsx(σ0 − σz )/2)τz],

H
ky

n1,n2 = [−(D + Bσz )τz]Pn1,n2

+ [(−Aσy + (αsx − δesy)(σ0 + σz )/2

+ δhsy(σ0 − σz )/2)τz]Gn1,n2. (A4)

We define Pn1,n2 = ( n1π
W )2δn1,n2, Gn1,n2 = 〈ϕn1 (y)| −

i∂y|ϕn2 (y)〉, B± = (�E ± �H )/2, �± = (� ± �∗)/2 and
the Pauli matrices si, σi and τi act on spin (±), orbital (E , H )
and electron-hole degrees of freedom, respectively, and σ0

denotes the 2 × 2 identity matrix.
The wave function in the N layer (x < 0) can be taken in

the form:

�N (x, y) = �NRe (x, y) +
∑
NLe

rNLe,NRe�NLe (x, y)

+
∑
NLh

rNLh,NRe�NLh (x, y)

+
∑
NEv

rNEv,NRe�NEv (x, y), (A5)

and includes propagating states, i.e., incoming electrons [with
index NRe moving to the right (R) along the positive x axis, see

FIG. 5. Schemes of the electron (solid lines) and hole (dashed
lines) edge-state dispersion (in the absence of the pairing potential)
in an inverted HgTe QW. Spin-up (spin-down) states are shown by
red (blue) lines.

235308-6



TRANSPORT SIGNATURES OF A JUNCTION BETWEEN A … PHYSICAL REVIEW B 101, 235308 (2020)

Fig. 1] and reflected electrons [with indices NLe moving to the
left (L)] and holes [with indices NLh moving to the left (L)],
respectively, as well as evanescent solutions decaying to the
left (with indices NEv). Note that, in general, there are several
reflected and evanescent modes for a given incoming mode N .

The wave function in the S region (x � 0) takes the form

�S (x, y) =
∑

SR

tSR,NRe�SR (x, y) +
∑
SEv

tSEv,NRe�SEv (x, y),

(A6)

with the evanescent solutions exponentially decaying for x →
∞ (with index SEv) and transmitted propagating states (with
index SR). Like in Refs. [40,48], we determine the reflection
amplitudes of the electron (rNLe,NRe ) and hole (rNLh,NRe ) states in
the left lead and transmission amplitudes (tSR,NRe ) of the states
in the right lead by matching the wave functions �(x, y) and
the currents [∂kxH]�(x, y) at the NS interface x = 0. Reflec-
tion and transmission amplitudes should be renormalized in
order to take into account different current densities for the

incident, reflected and transmitted states:

rNLe,NRe
ee = rNLe,NRe

√
vNLe

vNRe

,

rNLh,NRe
he = rNLh,NRe

√
vNLh

vNRe

,

t SR,NRe
ee = tSR,NRe

√
vSR

vNRe

, (A7)

where the velocity vm is given by

vm = h̄−1
∫ W

0
dy �†

m(x, y)
[
∂kxH

]
kx→km

x
�m(x, y). (A8)

With this renormalization, the propagating states all carry the
same particle current. Here, rNLe,NRe

ee , rNLh,NRe
he are the associated

reflection probability amplitudes for an incoming electron in
mode NRe into an electron in mode NLe or a hole in mode NLh,
respectively, and t SR,NRe

ee is the probability amplitude for the
transmission of the incoming electron into mode SR in S.
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(d)

FIG. 6. Energy dispersion in a HgTe QW without [(a) and (c)] and with [(b) and (d)] proximity to an s-wave superconductor. The
calculations have been done for M = −10 meV, CN,S = 9.7 meV, W = 250 nm, EF = 0, and α = 0. Zeeman splitting �E = �H = 1.5 meV
in (a) and (b), and �E = 1.5 meV, �H = 0 in (c) and (d). In (a) and (c), black (red) lines correspond to the electron (hole) energy dispersion,
and the arrows represent the spin direction of the corresponding states.
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The differential conductance of the NS structure can be
calculated using the Blonder-Tinkham-Klapwijk formula [57]

G = e2

h

∫
dε(−∂ε f (ε − eV ))

× Tr[1 − r†
ee(ε)ree(ε) + r†

he(ε)rhe(ε)], (A9)

where f (ε − eV ) is the Fermi distribution function, V is the
bias voltage applied to the N region, ree and rhe are normal
and Andreev reflection matrices, respectively. In the regime of
zero temperature and subgap transport [i.e., the transmission
probability t†

ee(ε)tee(ε) = 0, where ε = eV ] Eq. (A9) takes the
form

G = 2e2

h
Tr[r†

he(ε)rhe(ε)]. (A10)

A topological quantum number Q = (−1)M = sgn(Det r)
can be exploited to determine the number of topologically
protected (quasi)bound states M at the end of the TSC in
the presence of particle-hole symmetry and in the absence
of time-reversal and spin-rotation symmetry [53,54]. Q is

characterized by the reflection matrix r which has the prop-
erty Det r = (−1)du , where du is the degeneracy of the unit
Andreev reflection eigenvalue [55].

APPENDIX B: DETAILS OF THE BAND STRUCTURE AND
TRANSPORT PROPERTIES

In this Appendix, we present additional information con-
cerning the band structure of the N and S sides of the QSH-
superconductor junction as well as transport properties of the
NS junctions for the case of the inverted and noninverted
HgTe QWs.

1. QSHI-S junctions

We first consider aspects of the band structure of inverted
HgTe QWs including the proximity effect due to an s-wave
superconductor. Initially we examine the influence of the Zee-
man splitting on the energy dispersion of the edge states. In the
absence of the pairing potential �, an inverted HgTe QW has a
band gap in the bulk and helical edge states within this gap [9].
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FIG. 7. Energy dispersion in a HgTe QW with different number N of occupied bulk subbands. The calculations have been performed for
M = −10 meV, CN = 9.7 meV, W = 250 nm, α = 0, �E = 1.5 meV, and �H = 0. The dashed line shows the position of the Fermi level for
ε = 0.
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To illustrate the main effects of the influence of the Zeeman
term and the induced superconductivity on the helical edge
states, the spin-axial breaking Rashba and Dresselhaus terms
can be neglected as their influence is rather weak [49,58] in
HgTe QWs for not too strong Rashba coefficients α. Therefore
we can use the following equations for the spin-up (↑) and the
spin-down (↓) edge states in a large W limit for energies in
the bandgap region [59]:

E↑
e± = C − MD

B
± A

√
B2 − D2

B2
kx + �Z ,

E↓
e± = C − MD

B
± A

√
B2 − D2

B2
kx − �Z , (B1)

where �Z is the Zeeman term and we assume that �Z =
�E = �H . It should be noted that we choose the position of
the Fermi level in N an S layers away from the Dirac point,
thus we do not suffer from the opening of gaps in the helical
edge-state spectrum by finite size effects which are found to
be negligibly small for the structures with a width W � 250
nm (see Fig. 1 in Ref. [59]). In the proximity to an s-wave
superconductor electron states and their time-reversed part-
ners (i.e., holes with opposite spin orientations) are coupled
by the pairing potential �. A scheme of the electron and
hole edge-state dispersion without their coupling is shown in
Fig. 5. One can see that the electron and hole bands for the
states with the same spin direction, which are not coupled
by the pairing potential, cross at E = EF (crossing points are
marked by the open circles in the figure). In contrast, around
the energy values E = EF ± �Z (black circles in the figure),
where the electron and hole states with the opposite spin
direction are coupled by the pairing potential, a gap of 2�0 is
opened. A nontrivial superconducting state supporting Majo-
rana zero modes requires �0 < �Z (see Ref. [32]). Under this
condition the helical edge states are not gapped at the Fermi
energy, which makes the detection of Majorana zero modes
more difficult. As an example, Fig. 6 shows the numerically
calculated energy dispersion in a QW without [Fig. 6(a)] and
with [Fig. 6(b)] proximity to an s-wave superconductor for
�0 = 0.5 meV < �E = �H = 1.5 meV. Taking into account
that in HgTe QWs the g factor of the H subband is negligibly
small in comparison with that of the E subband [42] we can
set �H = 0 in our calculations. Moreover, the edge states
are composed of mainly the H component which leads only
to a small Zeeman splitting (smaller than �0) of the edge
states even in the regime of nontrivial superconductivity with
�0 < �E . This issue is illustrated in Fig. 6(c) for the case
without superconductivity and in Fig. 6(d) with proximity to
an s-wave superconductor. In a realistic parameter regime, the
bulk of the TSC can be nontrivial, and at the same time the
helical edge states can be gapped.

For �0 > �E , the zero bias conductance of NS junctions is
kept at the value of 4e2/h because the S region lies in the topo-
logically trivial phase without Majorana zero-energy states
[32,60]. In contrast, for �0 < �E , the conductance switches
between 4e2/h and 2e2/h, depending on the number N of
bulk subbands crossing the Fermi level in the S region in the
absence of the pairing potential � (see Fig. 2). Figure 7 shows
the energy dispersion in the QW without � corresponding
to the black points in Fig. 2(a) for different values of N .

Here, for a fixed value of the Zeeman term �E , N increases
with increasing the negative value of the Fermi energy. In the
presence of the superconducting pairing a gap opens in the
spectrum near the Fermi energy, whereby it almost vanishes in
the blue regions shown in Fig. 2(b). Thus changing the number
of the occupied subbands in the QW in the absence of super-
conductivity leads to the closing and re-opening of the bulk
gap in the presence of superconductivity, and, consequently, to
the alternation of the topologically trivial (Q = 1) and nontriv-
ial (Q = −1) superconducting phases in the superconducting
QW. The nontrivial character of the superconducting phase
can be clearly identified by the quantized conductance value
of 2e2/h [see Fig. 2(c)] as well as by the finite probability
density at the interface of N and S layers [see Fig. 2(d)]. It
should be noted that the topological phase in the S region
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FIG. 8. Differential conductance (in units of e2/h) in the NS
structure based on the QSHI in (a) and (b) and on the noninverted
QW in (c) as a function of Zeeman term �E and width W in (a) and
(c) or Rashba spin-orbit term α in (b). The calculations are presented
for ε = 0 and EF = 0. Other parameters are M = −10 meV, CN = 0,
CS = 9.7 meV in (a) and (b) and M = 10 meV, CN = −11 meV,
CS = −9.7 meV in (c), W = 500 nm in (b) and α = 0 in (a)
and (c).
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FIG. 9. (a) Diagram representing the number of the occupied subbands in a noninverted QW at the Fermi level as a function of the Zeeman
term and Fermi energy. (b) Conductance (in units of e2/h) in the NS structure based on a noninverted QW. All plots are presented as a function
of the Zeeman term �E and the Fermi energy EF for the QW with a width W = 250 nm, M = 10 meV, ε = 0, and α = 0. The doping parameter
is CN = −9.7 meV in (a), CN = −11 meV, CS = −9.7 meV in (b).

depends also on the width of the QW W as well as on the
structure inversion asymmetry, see Figs. 8(a) and 8(b) where
the conductance in a QSHI-TSC junction switches between
4e2/h and 2e2/h depending on the values of �E , W and the
Rashba term α.

Due to the finite width of the NS structure a zero-energy
bound state shows up in the probability density in the TSC at
the boundary with the N region when the width W = 250 nm
[see Fig. 3(b)]. It should be noted that in this case the super-
conducting coherence length ζ = h̄vF /�0, with vF the Fermi
velocity, is comparable to W and we can refer to this case as
the 1D TSC regime. However, for the relatively large width
of the structure W = 1000 nm � ζ , we can see a spreading of
the MBS along the edges of the superconducting region [see
Fig. 3(c)]. Recognizing this, as well as the fact that the range
of parameters where the nontrivial superconducting state is
realized coincides with the one of the 2D TSC [see Fig. 2(e)],
we can identify this case as the 2D TSC regime. Similar
behavior of the zero-energy Majorana state has been reported
in a quasi-one-dimensional px + ipy superconductor [35].

2. NS junctions based on noninverted QWs

Next, we consider NS junctions based on noninverted QWs
(since nontrivial TSC phases are still possible in these QWs)
and compare these structures with the QSHI-S junctions. In
analogy with the inverted QW regime the conductance of
the NS structure depends on the number N of bulk subbands

crossing the Fermi level in the S region in the absence of the
pairing potential (see Fig. 9). In contrast to the QSHI-S junc-
tion, the conductance takes quantized values G = (2e2/h)n,
where n is not restricted to be 1 or 2 but takes odd (even)
values for the topologically nontrivial (trivial) S phase with
Q = −1 (Q = 1). As it can be seen from Fig. 9(b), n =
0, 1, 2, and 3 for the white, blue, red, and yellow regions,
respectively, in the plot. However, conductance quantization
in the noninverted structures is not protected because of
imperfect Andreev reflection of bulk states at the NS interface
[see Fig. 8(c)]. An alternation of the trivial and nontrivial
topological superconducting phases has been reported also
in spin-orbit-coupled multichannel semiconducting nanowires
in proximity to an s-wave superconductor, where protected
Majorana modes are predicted to appear at the ends of the
wire with an odd number of channels, whereas an even
number of the occupied subbands corresponds to the trivial
superconducting phase [33,37,52,61]. However, from an ex-
perimental point of view, it could be difficult to determine the
number of occupied subbands in the system, similar to the
case of an NS junction based on a noninverted QW, and, as
a consequence, correctly identify the topological character of
the superconductor.

We note in passing that the propagating states of the chiral
Majorana edge mode above the minigap [see Figs. 6(d) and
1(c)], can be probed in transport at finite bias voltage V in the
noninverted regime (or in the inverted regime, when the Fermi
level is above the gap of the QSH insulator) leading to rather
common nonquantized conductance values.
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