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Photoinduced spin-Hall resonance in a k3-Rashba spin-orbit coupled two-dimensional hole system
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We study the band structure modulation and spin-Hall effect of an irradiated two-dimensional heavy-hole
system with k3-Rashba spin-orbit coupling. We find that the band structure becomes anisotropic under the
illumination by the light. Most remarkably, in the presence of linearly polarized light a pair of additional
spin-degeneracy points, apart from the � point, emerge in the energy dispersion. The locations of these points
are solely determined by the amplitude of the incident light. If this degeneracy occurs around the Fermi level,
the spin-Hall conductivity exhibits a resonance. Away from the degeneracy points, the light rotates the average
spin polarization. The possible effects of k3-Dresselhaus spin-orbit coupling are also discussed.
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Introduction. Recent years have witnessed growing interest
in the interaction of light with electronic systems, espe-
cially after the discovery of light-induced topological phase
transitions [1–6] (Floquet topological insulator), followed by
several experiments [7–10]. Such an interaction can also be
used to manipulate the spin- and valley-selective transport in
Dirac materials [11–14] and transition-metal dichalcogenides
[15,16]. There have been extensive works on phototunable
Weyl nodes [17–21], the 0-π transition in Josephson junctions
[22,23], and Floquet engineering of Majorana modes [24–27].
Interfacial chiral modes have also been predicted in three-
fold topological semimetals [28], by controlling the phase
of the light. More recently, higher-order topological insula-
tors [29–31] have also been predicted in different irradiated
materials.

On the other hand, two-dimensional systems with strong
spin-orbit interactions have become promising test beds for
future spintronics development. The Rashba spin-orbit cou-
pling (RSOC) [32,33] in two-dimensional (2D) fermionic
systems arises due to the lack of structural inversion sym-
metry in the quantum well of semiconductor heterojunctions,
which removes spin degeneracy in the absence of a magnetic
field. Several experiments have confirmed that the strength
of RSOC can be significantly enhanced by applying a gate
voltage across the quantum well [34–36]. There are two
types of RSOC, namely linear and cubic in momentum (k).
Typical materials which exhibit k-linear RSOC are indium-
based compounds such as InAs, GaInAs/GaAlAs structures,
and II-VI semiconductor compounds. On the other hand, k3-
RSOC arises due to the structural bulk inversion asymmetry
for heavy holes in the quantum well of III-V semiconductor
heterojunctions. The spin-Hall effect (SHE) [37–40] is one
of the exciting phenomena in a 2D electron/hole gas with
RSOC, in which electrons or holes with opposite spin are
accumulated at opposite transverse edges normal to the ap-
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plied in-plane electric field. The spin-Hall conductivity (SHC)
was predicted to exhibit a universal constant value in 2D elec-
tron gas (2DEG) with k-RSOC [38]. However, further study
revealed that the disorder-induced vortex correction strongly
suppresses the SHC in such systems [41,42]. The SHC in a
k3-RSOC 2D heavy-hole gas (2DHG) was also investigated
and found to be robust to the vortex correction [43], for which
this system has an edge over 2DEG with RSOC. Moreover,
the strong spin-orbit coupling and weak hyperfine interaction
in a heavy-hole gas allows low-power electrical manipulation
of spin [44–46]. Another study on the SHE in a 2D hole
system has revealed that the SHC strongly depends on the
strength of RSOC [47], which is in contrast to the correspond-
ing electron system. The magnetic-field-dependent transport
signatures (Shubnikov–de Hass oscillation and quantum-Hall
conductivity) [48–53] have been considered in both systems,
revealing the roles of RSOC. Recently, a series of theoretical
works on spin-related phenomena in 2DHG in the presence of
a weak magnetic field have been studied by the Culcer group
[54–57]. Moreover, the search for materials or mechanisms
to achieve giant or large SHC [58–60] continues to be an
active topic in the field of spintronics. It is noteworthy that
the SHE is one of the key signatures of spin-Hall edge modes
in the quantum-spin-Hall liquid discovered in 2D Dirac ma-
terials with spin-orbit coupling [61,62]. However, due to the
restricted number of spin-Hall edge modes and unavoidable
bulk effects, the enhancement of SHC is challenging there.
Moreover, from an experiment perspective, semiconductor
compounds are still a much more reliable platform than 2D
Dirac materials.

The study of the interplay of the light with k-RSOC in
2DEG has been initiated by Ojanen et al. [63], predicting chi-
ral edge states and out-of-plane magnetization. Very recently,
the combined effects of light and a real magnetic field have
also been studied in this system [64]. However, to the best of
our knowledge, the effects of light on 2DHG in the presence
of k3-RSOC have not been addressed yet.

In this Letter, we consider the interaction of linearly po-
larized light with 2DHG in the presence of k3-RSOC. The
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FIG. 1. Energy dispersions are shown for (a) α = 0 and (b) α =
0.15k2

0 . Here, the momentum axis is rotated by π/4 (k′
x = kx/

√
2) to

capture the degeneracy points which are shown by two arrows. The
energy axis is normalized by γ = h̄2k2

0/2m∗, where k0 is a typical
wave vector, corresponding to standard hole density. The strength of
RSOC is taken to be βk3

0 = 0.4.

irradiated band structure is found to be anisotropic. Instead
of out-of-plane magnetization, linearly polarized light rotates
the average spin polarization in the plane of 2DEG. Most
remarkably, we reveal that there exist two spin-degeneracy
points in the band dispersion, which give rise to a resonance
in the SHC. We also discuss the possible effects of the k3-
Dresselhaus spin-orbit coupling (DSOC) on SHC.

Model Hamiltonian and energy spectrum. We start with
a 2DHG in the presence of k3-RSOC. The hole dynamics at
the top of the valence band in III-V semiconductor quantum
wells is generally described by the 4 × 4 Luttinger Hamilto-
nian [65]. Due to the large splitting between the heavy-hole
(HH) states (|3/2,±3/2〉) and the light-hole (LH) states
(|3/2,±1/2〉) and to the higher density of states of HH states,
the contribution in the transport properties comes predomi-
nantly from the HH states close to the Fermi energy. Thus
the model system can be described by a 2 × 2 Hamiltonian by
projecting onto the HH states. The single-particle Hamiltonian
of this system is given by [47,66] H = h̄2k2/2m∗ + HR, where
the RSOC is given by HR = (β/2i)(k3

−σ+ − k3
+σ−) with k± =

kx ± iky and σ± = σx ± iσy. Here, k = (kx, ky) are the 2D
momentum operators whereas σ = (σx, σy) are the two of
the three Pauli spin matrices which act on the total angular
momentum states with spin projection ±3/2, respectively.
The strength of the RSOC and the effective mass of the hole
are denoted by β and m∗, respectively. The spin-dependent
energy spectrum can be written as Ek,s = h̄2k2/2m∗ + sβ|k|3,
where s = ± stands for two different spin branches. The dis-
persion is shown in Fig. 1(a). It is to be noted that this model
Hamiltonian is valid when the wave number k � h̄2/2m∗β.

Effects of irradiation. Let us now consider that the system
is subjected to an external time-dependent periodic perturba-
tion in the form of irradiation (light), propagating along the
z direction. The light field is described by a vector poten-

tial A(t ) = A0[sin(�t ), sin(�t + φ0)], where A0 is the field
amplitude, � is the frequency of the irradiation, and φ0 is
the phase. Here, we consider that the light wavelength is
large compare to the lattice constant, for which we can safely
ignore the spatial dependence of the light field. The light-
induced vector field can be included into the Hamiltonian
as k → k + eA(t )/h̄, where e < 0 is the electron charge.
To solve the periodically perturbed Hamiltonian, we can use
the Floquet theory [67], which states that such a perturbed
Hamiltonian exhibits a complete set of orthonormal solutions
of the form ψ (t ) = φ(t )e−iEt/h̄ with φ(t ) = φ(t + T ) being
the corresponding Floquet states and T is the period of the
field. Here, E denotes the Floquet quasienergy. The time-
dependent Schrödinger equation corresponding to the Floquet
states yields the Floquet eigenvalue equation as HF φ(t ) =
Eφ(t ) with HF = H (t ) − ih̄∂t . The Floquet states can be fur-
ther expressed as φ(t ) = ∑

n φn(t )ein�t , where n is the Fourier
component or Floquet sideband index. By diagonalizing the
Floquet Hamiltonian in the basis of Floquet sidebands n,
one can obtain the Floquet quasienergy spectrum. On the
other hand, an effective Hamiltonian can be obtained in the
high-frequency limit following the Floquet-Magnus expan-
sion in a power of 1/(h̄�) as HF � H + H (0)

F + H (1)
F + · · · ,

where H (0)
F = −αβ cos φ0(σxkx + σyky) with α = 3(eA0/h̄)2

and H (1)
F = [H−, H+]/h̄�. Here,

Hm = 1

T

∫ T

0
V (t )e−im�t dt, (1)

with m = ±. Here, V (t ) = h(t) · σ , which for linearly polar-
ized light (φ0 = 0) simplifies to

hx(t ) = β(eA0/h̄)
[
3
(
k2

y − k2
x − 2kxky

)
sin(�t )

−2(eA0/h̄)2 sin3(�t ) + 3(eA0/h̄)kx cos(2�t )] (2)

and

hy(t ) = β(eA0/h̄)
[
3
(
k2

x − k2
y − 2kxky

)
sin(�t )

−2(eA0/h̄)2 sin3(�t ) + 3(eA0/h̄)ky cos(2�t )
]
. (3)

The high-frequency limit in our case is described as (γ , βk3
0,

eA0 h̄k0/m∗, 3eA0βk2
0/h̄, e2A2

0βk0/h̄2) � h̄�. The first-order
correction term H (1)

F vanishes for linearly polarized light.
Other higher-order terms are too small to be considered here.
Hence, the irradiated Hamiltonian can be simplified to an
effective Hamiltonian as Heff � H + H (0)

F , which can be di-
agonalized to obtain the Floquet energy spectrum as

Ek,s = h̄2k2

2m∗ + sβk
√

[k2 − α sin(2θ )]2 + α2 cos2(2θ ), (4)

where tan θ = ky/kx. Note that the Floquet energy spectrum
does not depend on the frequency of irradiation. The en-
ergy dispersion is now anisotropic for α 	= 0. This is one
of the interesting effects of irradiation. The corresponding
eigenstates are given by |k, s〉 = [1 ise−iχ ]T ei(kxx+kyy)/

√
2,

where tan χ = [α cos θ − k2 sin(3θ )]/[α sin θ + k2 cos(3θ )].
Another interesting observation here is that the energy split-
ting between the two spin branches vanishes at the (kr, θr ) =
(
√

α, θr ), when θr = (π/4, 5π/4), i.e., apart from k = 0, a
pair of additional spin-degeneracy points appears. Note that

L081411-2



PHOTOINDUCED SPIN-HALL RESONANCE IN A … PHYSICAL REVIEW B 104, L081411 (2021)

  1

90

270

0081

(a)
90

270

0081

(b)

FIG. 2. Spin rotations in the 〈Sx〉-〈Sy〉 plane are shown for
(a) k/k0 = 0.3, θ = π/8 and (b) k/k0 = 0.5, θ = π/8 with increas-
ing α/k2

0 from 0.05 to 0.3 in steps of 0.05. Spin rotates in an
anticlockwise direction with increasing α. Both components of av-
erage spin are in units of (3/2)h̄.

the locations of these degeneracy points do not depend on the
strength of RSOC explicitly. The degeneracy points are shown
by arrows in the Floquet energy spectrum, plotted in Fig. 1(b).
If this degeneracy occurs at the Fermi level, then SHC exhibits
a resonance, known as spin-Hall resonance (SHR) which was
first discovered in a 2D electronic system with RSOC in the
presence of a constant magnetic field [68]. The competition
between Zeeman splitting and Rashba splitting causes such a
degeneracy between two nearest Landau levels with opposite
spin. The SHR phenomena was studied immediately in the
2DHG with k3-RSOC [69]. However, note that in both works,
the magnetic field plays the key role. In our work, we find that
such a spin degeneracy can be achieved even without Landau
levels, by applying linearly polarized light. Before going to
discuss the SHC, we shall briefly discuss the effects of light
on the average spin polarization.

Spin polarization. To examine the effects of irradiation
on average spin polarization in projected spin space, we can
evaluate different components of the average spin polarization
as

〈k, s|Ŝx|k, s〉 = s
k2 sin(3θ ) − α cos θ√

k4 + α2 − 2αk2 sin(2θ )
(5)

and

〈k, s|Ŝy|k, s〉 = s
k2 cos(3θ ) + α sin θ√

k4 + α2 − 2αk2 sin(2θ )
, (6)

where Ŝx,y = (3/2)h̄σ̂x,y. It can be realized from the above
expressions that away from the spin-degeneracy point, the
spin polarization is significantly affected by the strength of
irradiation α. The effects of light on the average spin polar-
ization are presented by a couple of compass plots in Fig. 2,
showing anticlockwise rotation of the average spin with the
increase of α. We consider two sets of (k, θ ), showing the
sensitivity of spin rotation on momentum. It is to be noted
that in the k-RSOC electron system [63], the effects of light
on spin orientation or band structure can be observed only
for circularly polarized light, whereas in our case the light is
linearly polarized.

Spin-Hall resonance and discussion. We now investigate
the SHC for the 2DHG in III-V semiconductor quantum wells
with k3-RSOC as a linear response to the applied in-plane
electric field along the x direction. The SHC can be evaluated
by using the Kubo formula [38] as

σ z
xy = eh̄

LxLy

∑
k,s 	=s′

[ f (Eks′ ) − f (Eks)]

× Im[〈ks|Ĵ z
x |ks′〉〈ks′|v̂y|ks〉]

(Eks′ − Eks)(Eks′ − Eks − iε)
. (7)

In the dc limit, ε is set to be zero. The system dimension
is denoted by Lx × Ly. The Fermi distribution function is
denoted by f (Eks) for spin s. The spin-current operator is
given by Ĵ z

x = (3h̄/4){σ̂z, v̂x}. Note that in general, one should
proceed with the Floquet states |k, s; m〉 in the Kubo for-
mula in order to include the possible effects of the nearest
Floquet sidebands. However, here we are only dealing with
the zeroth-order correction (as the higher-order corrections
vanish), hence the effects of Floquet sidebands can be safely
ignored and we can proceed with the zeroth state |k, s〉. The
velocity operators are given by v̂i = h̄−1∂Heff/∂ki, i.e.,

v̂x = h̄kx

m∗ + β

h̄

[
3
(
k2

x − k2
y

)
σy − 6kxky σx

] + αβ

h̄
σx (8)

FIG. 3. SHC with variation of chemical potential for (a) α = 0.04k2
0 and (b) α = 0.16k2

0 . The SHC (y axis) is normalized by σ0 =
e(3h̄2/8m∗β ). The SHC exhibits resonance when the chemical potential crosses the spin-degeneracy points, i.e., when μ/γ = α/k2

0 . The
strength of RSOC is taken as βk3

0 = 0.4. The γ is the same as in Fig. 1.
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and

v̂y = h̄ky

m∗ + β

h̄

[
3
(
k2

y − k2
x

)
σx − 6kxkyσy

] + αβ

h̄
σy. (9)

With the computed matrix elements, we can rewrite the Kubo
formula as

σ z
xy = σ0

∫
dk

(2π )2

∫
cos θdθ [ f (Ek,+) − f (Ek,−)]

× cos θ (α2 + 3k4) − αk2(sin 3θ + 3 sin θ )

|(k2 − α sin 2θ )2 + α2 cos2 2θ |3/2
. (10)

Here, σ0 = (3e/8)(h̄2/m∗β ). The SHC is evaluated numeri-
cally by using Eq. (10) and is plotted in Fig. 3. We normalize
k by k0, a typical Fermi momentum corresponding to the
hole density. The SHR occurs when the chemical potential
becomes equal to α/k2

0 , which is exactly the location of the
spin-degeneracy points in the band dispersion (see Fig. 1).
This can also be seen from the denominator of Eq. (10),which
vanishes at the points (kr, θr1) = (

√
α, π/4) and (kr, θr2) =

(
√

α, 5π/4), giving the resonance in the SHC. In each panel,
three different but very low temperatures are considered as
βT γ = 103, 1.5 × 103, 2 × 103, which only affect the broad-
ening of the resonance peaks. Here, βT = 1/kBT , with T
being the absolute temperature and kB the Boltzmann con-
stant. We also consider two different amplitudes of the light
(i.e., location of the degeneracy points), which do not have
any significant impact on the resonance phenomena, except
for some minor effects on the temperature-dependent width
of the resonance peak. We note that there is a jump in the
SHC around the resonance which might be attributed to the
asymmetric contribution of the velocity and spin-current ma-
trix product to the total SHC [70]. We also check that away
from the resonance, the SHC is not constant, but rather it
weakly varies with the chemical potential. We use the usual
definition of the spin-current operator, even though a modified
definition had been used for studying SHR [71] in an electron
system and it was noted that the new definition does not
affect the SHR phenomena, except for an overall amplitude
modification of the SHC.

Now we comment on the realistic parameter regime for
such resonance to occur. At the degeneracy point, the Fermi
momentum kF = √

2πnd can be computed for a typical hole
density [54] (nd ∼ 2 × 1015 m−2) to be around ∼108 m−1. On
the other hand, the typical amplitude of the light field that
is used in experiment is around eA0/h̄ ∼ (1–10) × 108 m−1

corresponding to a photon energy of h̄� = 0.25 eV. This
suggests that the degeneracy points, kF = √

3(eA0/h̄), can be
realized in a regular experimental setup [72].

Effects of a k3-Dresselhaus type spin-orbit interaction. Now
we briefly discuss the possible effects of irradiation in the

presence of k3-DSOC on a heavy-hole gas with RSOC. The
DSOC arises due to the lack of bulk inversion symmetry in the
system. This interaction was introduced by Loss in Ref. [44]
in a study of spin relaxation and decoherence in quantum dots
in the presence of a magnetic field. The spin transport was also
studied including both the RSOC and DSOC terms [73]. The
total Hamiltonian in the presence of RSOC and DSOC can be
written as H = h̄2k2/2m∗ + HR + HD, where the DSOC term
is given by HD = −(λ/2)(k−k+k−σ+ + k+k−k+σ−). Here, λ

is the strength of the DSOC. Following the same approach
as for RSOC, the linearly polarized light-induced correc-
tion terms to the Hamiltonian H are given by −λα(kxσx +
kyσy)/6 − λα(kyσx + kxσy)/3. The energy eigenvalue in the
presence of both the RSOC and the DSOC after incorporat-
ing the light-induced correction reads as Ek,s = h̄2k2/2m∗ +
s
√

h2
1 + h2

2 with

h1 = −βk3 sin(3θ ) + ηk cos θ − αλ

3
k sin θ, (11)

h2 = βk3 cos(3θ ) + ηk sin θ − αλ

3
k cos θ, (12)

where η = α(β − λ/6) − λk2. It can be seen that the spin
splitting still vanishes at kr = √

α(β − λ/2)/(β + λ) for θr =
(π/4, 5π/4). Therefore, the resonance phenomena observed
in SHC should remain unaltered even in the presence of a
weak DSOC in the hole system. The only noticeable point
here is that now kr becomes sensitive to the strength of both
RSOC and DSOC.

Conclusion. We have shown that linearly polarized light
can induce anisotropy in the band structure of a two-
dimensional heavy-hole system with k3-RSOC. Most remark-
ably, the spin-dependent band structure exhibits a pair of
additional degeneracy points, which give rise to a resonance
in the SHC. The appearance of the resonance in the spin-Hall
transport may be a useful approach to achieve a giant SHC.
We also discuss the fate of the resonance in the SHC in the
presence of a structural-inversion-asymmetry-induced DSOC
term and we confirm that the presence of this term only
affects the location of the degeneracy points, while keeping
the resonance phenomena unaffected. Finally, we would also
like to comment that as the case of a two-dimensional electron
system with k-RSOC, the application of circularly polarized
light does open a gap between spin branches in our case.
Therefore, the application of circularly polarized light will not
be useful to achieve the spin-Hall resonance.
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