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Symmetry-protected topological semimetals are at the focus of solid-state research due to their unconventional
properties, for example, regarding transport. By investigating local two-band Bloch Hamiltonians in the spin-1/2
basis for the 122 magnetic point groups, we classify twofold-degenerate band touchings such as Weyl points,
robust nodal lines on axes and in mirror planes, and fragile nodal lines. We find that all magnetic point groups
that lack the product of inversion and time-reversal symmetries can give rise to topologically nontrivial band
touchings. Hence, such nodes are the rule rather than the exception and, moreover, do not require any complicated
multiband physics. Our classification is applicable to every momentum in the Brillouin zone by considering
the corresponding little group and provides a powerful tool to identify magnetic and nonmagnetic topological
semimetals.
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I. INTRODUCTION

Materials with topologically protected band-touching
points and lines close to the Fermi energy display a vast
variety of fascinating physical properties [1–3]. Prominent
representatives are Weyl and nodal-line semimetals. Weyl
semimetals are characterized by zero-dimensional band-
touching points called Weyl points that are twofold degener-
ate. Weyl points are monopoles of the Berry curvature with
positive or negative charge (chirality) [4,5]. Since there is no
net flux of Berry curvature into or out of the first Brillouin
zone the total chirality of all Weyl points always vanishes
[2,6]. Each Weyl point is then topologically protected by a
nonzero Chern number [2], where the annihilation of Weyl
points is only possible if two Weyl points of opposite chirality
meet at the same position in momentum space [7–9]. Weyl
points can only be realized if at least one of time-reversal and
inversion symmetry is absent because the product of the two
symmetries implies that for any Weyl point there is another
one with opposite chirality at the same momentum, i.e., there
is in fact a Dirac point.

Early works on Weyl semimetals [8,10–13] employed
models that sometimes seemed contrived and usually involved
a four-dimensional Hilbert space describing the local degrees
of freedom. This gave the impression that topologically pro-
tected band touchings are somehow exotic and only exist if
complicated conditions are satisfied. However, ab initio cal-
culations [7,14–20] quickly made clear that Weyl points are a
rather common feature of band structures. This is supported
by our work, which shows that 19 out of the 32 monochro-
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matic, 11 out of the 32 gray, and 23 out of the 58 dichromatic
point groups can host Weyl points.

Compared to Weyl points, one-dimensional band-touching
lines (nodal lines) rely on more stringent conditions. In the ab-
sence of spin-orbit coupling, fourfold degenerate Dirac nodal
lines can be realized in systems with both time-reversal and
inversion symmetry [21], as discussed for graphene networks
[22], the antiperovskite Cu3PdN [23], Cu3N [24], and Ca3P2

[25]. However, the neglect of spin-orbit coupling is, at best,
a valid approximation for light elements. Upon taking into
account spin-orbit coupling, SU(2) spin-rotation symmetry is
broken, which causes bands with opposite spin to hybridize,
so that a Dirac line node is either split into discrete points
or gapped out [21]. In order to stabilize the Dirac line node
in the presence of spin-orbit coupling, additional constraints
such as nonsymmorphic [26–28] or off-centered symmetries
[29] are necessary. For systems with broken time-reversal or
inversion symmetry, twofold degenerate Weyl nodal lines can
be stabilized by mirror symmetry [17,30,31], in which case
the hybridization is hindered by distinct mirror eigenvalues of
the relevant bands.

Due to the variety of gapless topological phases of matter,
it is apparent that systematic approaches to classify them
are needed. The tenfold way, which classifies topological
semimetals in terms of nonspatial symmetries (time-reversal
symmetry, particle-hole symmetry, and chiral symmetry)
[32–34], and its extension to reflection-symmetry-protected
semimetals [31] reveal by which topological invariant a band
touching is protected. However, these classifications make no
statement about the existence or the location in momentum
space of the band touchings, which can only be deduced from
additional symmetries.

In addition to catalogs of emergent particles for the 230
space groups [28] and of topological materials [35,36], var-
ious other studies provide symmetry-based classifications of
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different band touchings including Dirac and Weyl points
[37–39], Kramers-Weyl points in chiral materials [40], nodal
lines [37,41–43], and three-, six-, and eightfold degenerate
band-touching points giving rise to unconventional quasipar-
ticles [44]. In all of these investigations, the presence of
time-reversal symmetry plays a crucial role. Only recently,
there have been more systematic studies to classify magnetic
systems. For monochromatic point groups, Weyl-semimetallic
phases of spinless particles have been identified using band-
structure combinatorics [45]. In Ref. [46], Yang et al. study
band touchings in magnetic space groups that contain the
product of time-reversal and inversion. Furthermore, with the
aid of magnetic topological quantum chemistry [47], first-
principles calculations have been performed to investigate
the band touchings of magnetic compounds from the Bilbao
Crystallographic Server [48]. For tetragonal magnetic space
groups that are compatible with antiferromagnetic, ferrimag-
netic, and ferromagnetic ordering, gapless phases and their
boundary effects have been investigated [49,50].

In this paper, we add to the systematization of band
touchings by providing a classification of twofold-degenerate
band-touching points and lines for the 122 magnetic point
groups [51–58]. We here consider each magnetic point group
as a subgroup of SU(2) ⊗ {e, i} ⊗ {e,�}, where � denotes
time reversal and i inversion. Hence, the internal degree of
freedom is described by a two-dimensional Hilbert space with
the basis {|↑〉, |↓〉}, where |↑〉 and |↓〉 transform like a spin of
length 1/2 under the magnetic point group. Then, for each
magnetic point group a pseudospin-1/2 Bloch Hamiltonian
around a reference point (RP) is constructed and used to in-
vestigate the twofold degenerate band touchings in the vicinity
of that point. Our results are valid for all pairs of bands that
are described by a pseudospin with the same transformation
behavior as a true spin-1/2. Our analysis applies to the vicinity
of any point in the Brillouin zone. In case of the � point, the
relevant symmetry group is the full magnetic point group of
the structure. For other points, one has to choose the corre-
sponding little group.

II. METHOD

We begin by explaining the method used to classify
twofold degenerate band touchings. In the vicinity of a RP
k0, every pseudospin-1/2 Hamiltonian can be written as

H (k) = f0(k) σ0 +
∑

i=x,y,z

fi(k) σi, (1)

where k is the momentum relative to the RP, fμ(k) with μ =
0, x, y, z are real-valued functions, σ0 is the 2 × 2 identity ma-
trix, and σi with i = x, y, z are the Pauli matrices. Our strategy
is to use representation theory to find the general form of the
Hamiltonian H (k) allowed by symmetry. H (k) has to be an
irreducible tensor operator belonging to the trivial irreducible
representation (irrep) for monochromatic point groups, or to
the trivial irreducible corepresentation (corep) for gray and
dichromatic point groups. The matrices σμ can be classified
as irreducible tensor operators of irreps or irreducible coreps.
σ0 of course belongs to the trivial irrep or corep. The transfor-
mation properties of σi with i = x, y, z can be found by noting
that σi are the components of the spin operator, up to a factor

of h̄/2. For monochromatic point groups, the transformation
properties and thus the irreps are determined by viewing the
corresponding structural point group as a subgroup of SU(2)
[59]. For gray and dichromatic point groups, the irreducible
coreps of σi are determined by additionally taking into ac-
count that a spin-1/2 is odd under time reversal � [51,55].

Roughly speaking, the coefficient functions fμ(k) have
to transform under the point-group operations like the cor-
responding matrices σμ, i.e., they must be basis functions
of the irreps or irreducible coreps corresponding to the σμ.
For monochromatic point groups, which are identical to the
crystallographic point groups, the basis functions are found
using representation theory [58,60]. However, for gray point
groups, which are characterized by the time-reversal operation
� being a group element on its own, and for dichromatic point
groups, for which � is not a group element but � multiplied
by a unitary operation is, ordinary representation theory is not
applicable due to the antiunitarity of �.

There is a well-developed theory of coreps of magnetic
groups [51–56]. However, this theory is dealing with complex
coreps, according to which operators and basis functions that
are even or odd under time reversal can be equivalent. Since
we need to distinguish these cases we have to use real coreps.
Note that we only have to consider single-valued coreps, not
double-valued (spinor) coreps, because the Hamiltonian is a
matrix of coefficient of fermionic bilinears. In Appendix A,
we demonstrate how the character tables for gray and dichro-
matic groups are calculated using real corepresentation theory.
Partially, the character tables for real coreps are also found in
Ref. [57].

The eigenenergies of the general two-band Hamiltonian in
Eq. (1) are E±(k) = f0(k) ± √∑

i fi(k)2. Hence, the valence
and conduction bands, with energies E− and E+, respectively,
touch if

fi(k) = 0, i = x, y, z. (2)

Note that the coefficient function f0 that corresponds to the
identity matrix is not relevant for the band touchings. In three
spatial dimensions, each equation fi(k) = 0 describes a two-
dimensional surface so that the solutions of the system of
equations (2) are given by the intersections of three surfaces.
In the absence of further constraints, these intersections are
(possibly empty) sets of isolated points. Higher-dimensional
intersections require that the number of independent equa-
tions in the system of equations (2) is reduced by a symmetry
such as a mirror symmetry. Besides isolated points, we only
find one-dimensional lines of touching points.

In this paper, we expand the coefficient functions fμ up to
second order in momentum, or up to the first nonvanishing
order if there are no contributions up to second order. This
limits the maximal number of generic solutions given by
isolated points of the system of equations (2) according to
Bézout’s theorem [61], which states that if each equation is
polynomial, then the maximal number of generic solutions
given by isolated points equals the product of the degrees of
the three polynomials.

In the final step, we investigate the robustness of one-
dimensional solutions (nodal lines) by taking into account
higher-order terms. This is necessary because the robustness
of one-dimensional solutions of the system of equations (2)
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TABLE I. Character table of the gray point group C3h ⊗ {e, �} with basis functions up to second or first nonvanishing order in momentum,
and spin basis functions.

C3h ⊗ {e, �} e 2C3 σh 2S3 � 2�C3 �σh 2�S3 basis functions

A′+ 1 1 1 1 1 1 1 1 σ0, 1, k2
x + k2

y , k2
z

A′− 1 1 1 1 −1 −1 −1 −1 σz, kx

(
3k2

y − k2
x

)
, ky

(
3k2

x − k2
y

)
A′′+ 1 1 −1 −1 1 1 −1 −1 kzkx

(
3k2

y − k2
x

)
, kzky

(
3k2

x − k2
y

)
A′′− 1 1 −1 −1 −1 −1 1 1 kz

E ′+ 2 −1 2 −1 2 −1 2 −1
{
kxky,

(
k2

x − k2
y

)
/2

}
E ′− 2 −1 2 −1 −2 1 −2 1 {kx, ky}
E ′′+ 2 −1 −2 1 2 −1 −2 1 {kxkz, kykz}
E ′′− 2 −1 −2 1 −2 1 2 −1 {σx, σy},

{
kzkxky, kz

(
k2

x − k2
y

)
/2

}

is not guaranteed, in contrast to the robustness of zero-
dimensional solutions, i.e., Weyl points, which are robust
against symmetry-preserving perturbations as mentioned
earlier.

A. Example

Next, we illustrate the method by the example of the gray
point group M = C3h ⊗ {e,�} close to the � point. Addi-
tional examples are given in Appendix B. First, let us give
an intuitive explanation for the character table of M where we
stick to the notation of Ref. [60]. A more rigorous explanation
is given in Appendix A 2. The group C3h can be understood
as C3h = C3 ⊗ C1h with C1h = {e, σh}, where σh denotes the
mirror reflection in the horizontal plane. The real irreps of C3

are A and E . Since σh commutes with all group elements of
C3, C3h has twice as many classes and real irreps as C3. The
real irreps of C3h are obtained from the real irreps of C3 by
labeling the latter with a prime if they are even under σh, and
by a double prime if they are odd. The character table of M
is constructed analogously, where the real irreducible coreps
that are even and odd under � are labeled by the superscripts
+ and −, respectively. Thus, M has the real irreducible coreps
A′+, A′′+, E ′+, E ′′+, A′−, A′′−, E ′−, and E ′′−, as shown in
Table I. The pseudospin components σi are odd under time
reversal � and examination of their transformations under
C3h shows that σx and σy transform according to E ′′−, while
σz transforms according to A′−. The functions fi(k) must
transform like the σi. The leading-order basis functions can
be found in tables [57] or constructed by standard methods.
A′− has the two leading-order basis functions kx(3k2

y − k2
x ) and

ky(3k2
x − k2

y ) and Eq. (2) becomes

fz(k) = a kx
(
3k2

y − k2
x

) + b ky
(
3k2

x − k2
y

) = 0, (3)

where a, b ∈ R are independent coefficients.
The two-dimensional corep E ′′− has the pair of basis func-

tions kzkxky and kz(k2
x − k2

y )/2. There is an important point to
note: For M = C3h ⊗ {e,�}, only the threefold rotation axis
is uniquely determined, whereas all directions perpendicular
to this axis are only determined up to an arbitrary rotation.
Hence, it does not make sense to say which basis functions

correspond to σx and σy. This is reflected by the equation(
fx(k)
fy(k)

)
= c kz Rα

(
kxky

k2
x −k2

y

2

)
= 0, (4)

where c is a coefficient independent of a and b, and Rα is
a two-dimensional rotation matrix with the arbitrary rotation
angle α.

One solution of Eqs. (3) and (4) is given by kx = ky = 0,
i.e., by the kz axis. Another solution is found in the kxky

plane. Setting kz = 0 solves Eq. (4). By introducing polar
coordinates kx = ρ cos φ and ky = ρ sin φ, Eq. (3) becomes

fz(ρ, φ, kz = 0) = ρ3 (−a cos 3φ + b sin 3φ) = 0. (5)

The solutions that are not already contained in the solution
with kx = ky = 0 are

φ = 1

3
arctan

a

b
+ π

3
n, (6)

with n ∈ Z. Hence, there are six solutions for φ in the inter-
val [0, 2π ) that differ by multiples of π/3. As depicted in
Fig. 1(a), there are in total four nodal lines: one nodal line
on the kz axis, which is the threefold rotation axis, and three
straight nodal lines with sixfold symmetry in the kxky plane,

FIG. 1. Band touchings of the gray point group C3h ⊗ {e, �}.
(a) For terms up to third order in momentum, the band touchings are
given by one nodal line on the threefold rotation axis (red) and three
nodal lines (blue) in the mirror plane (gray) intersecting each other at
the � point. (b) When higher-order terms are taken into account, the
nodal line on the kz axis remains unchanged, whereas the nodal lines
in the mirror plane are deformed but retain their sixfold symmetry.
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which is the mirror plane. Note that the sixfold symmetry is
a consequence of the presence of � since time reversal acts
on the momentum k by inverting its sign, P̂�k = −k, similar
to inversion symmetry. Together with the threefold rotation
symmetry in C3h, this yields a sixfold symmetry.

Next, we investigate the robustness of the nodal lines by
taking into account higher-order terms for the coefficient func-
tions. First, we note that the relevant coreps A′− and E ′′− do
not have any basis functions that are pure powers of kz (these
belong to A′+ or A′′−). Hence, one solution of Eq. (2) up to
arbitrary order is always given by kx = ky = 0. Consequently,
the nodal line on the threefold rotation axis is unaffected by
higher orders as depicted by the red line in Fig. 1(b). We call a
nodal line that is left unchanged by higher-order terms a nodal
line “on axis.”

For the nodal lines in the kxky plane, we use that the mo-
mentum basis functions of the two-dimensional E ′′− corep are
odd in kz. Hence, one solution of fx = fy = 0 is always given
by kz = 0. Thus, the three nodal lines stay in the mirror plane.
Inclusion of higher-order terms renders Eq. (3) complicated
but does not prevent solutions for a discrete sets of angles φ,
which now depends on the coordinate ρ. Hence, these nodal
lines are not destroyed but deformed. This is illustrated by the
blue lines in Fig. 1(b). The nodal lines that are deformed but
not destroyed by higher-order terms are called “deformable”
nodal lines. It is natural that the deformable nodal lines do not
remain straight beyond leading order since M does not contain
any symmetry that requires them to be straight. Note that the
sixfold symmetry survives.

Both nodal lines on axis and deformable nodal lines are
robust in the sense that they are not destroyed by higher-order
terms. A nodal line on axis can only exist on a rotation axis,
whereas a deformable nodal line can only exist in a mirror
plane. As we shall see, the reverse statements do not hold:
The existence of a rotation axis or a mirror plane does not
guarantee the existence of a nodal line on axis or a deformable
nodal line, respectively.

In addition to being deformable or on axis, a robust nodal
line can also be open or closed. A closed nodal line is a one-
dimensional compact manifold while an open nodal line is not
compact. All nodal lines in our example are open. For the rest
of this section, we use “trivial irrep” for both the trivial irrep
and the trivial irreducible corep to simplify the discussion.
Since our method focuses on analyzing band touchings in the
vicinity of RPs without taking into account the periodicity of
the Brillouin zone, a nodal line on axis is always open, while
deformable nodal lines can be either open or closed depending
on the group. Closed deformable nodal lines can exist if one
of the three equations in Eq. (2) corresponds to a Pauli matrix
that is in the trivial irrep, while the other two equations are
solved on a two-dimensional manifold, i.e., a plane. Then, if
we include only terms up to second order in momentum the
equation corresponding to the Pauli matrix in the trivial irrep
is given by a quadric

p + q · k + kT Q k = 0, (7)

where p ∈ R, q ∈ R3, and Q ∈ R3×3 include coefficients that
are characteristic for the point group under consideration.
Since for the trivial irrep p is generically nonzero Eq. (7)
can describe an ellipsoid, an elliptic or hyperbolic cylinder,

parallel planes, a hyperboloid of one sheet or two sheets, or an
empty set. Hence, depending on the type of the quadric, on the
location of its center, and on the orientations of its principal
axes with respect to the plane, there can be no intersection
of the quadric and the plane, or there is an open or closed
line. If the plane corresponds to a mirror plane, the nodal
line is deformable. In particular, we expect that higher-order
terms deform a deformable nodal line in the mirror plane
but do not open (close) a closed (open) nodal line. At this
point, we emphasize that only a closed deformable nodal line
necessarily requires that one of the Pauli matrices belongs to
the trivial irrep but not an open one.

III. RESULTS

In a manner similar to the previous example, we have
investigated the band touchings for the 122 magnetic point
groups. We discuss gray, monochromatic, and dichromatic
point groups in turn.

A. Gray and monochromatic point groups

We start by discussing the band touchings for the gray point
groups, which are summarized in Table II. For gray point
groups, Weyl points can appear on rotation axes, whereas
nodal lines can occur on rotation axes and in mirror planes.
We find that all gray chiral point groups (#1–11), i.e., point
groups that explicitly contain � but lack inversion, mirror
symmetries, and improper rotations, give rise to a Weyl point
at the RP. Gray point groups can only occur as little groups
for RPs that correspond to time-reversal-invariant momenta so
that our results are in accordance with the findings of Chang
et al. [40], who state that so-called Kramers-Weyl fermions
appear at time-reversal-invariant momenta in nonmagnetic
chiral crystals with spin-orbit coupling. Note that Weyl points
at time-reversal-invariant momenta should lead to long Fermi
arcs in surface Brillouin zones, which are expected to be
different for the two chiral enantiomers. Quasiparticle inter-
ference has provided experimental evidence for such Fermi
arcs in PdGa (gray point group T ⊗ {e,�}) [62].

Next, we turn our attention to the achiral gray point groups
(#12–32). Gray point groups with inversion symmetry (#12,
14, 16, 18, 19, 25, 26, 28, 29, 30, 32) contain the product �i.
The Kramers theorem [63] then ensures that the two bands
are degenerate at all k. Hence, there are no Weyl points or
nodal lines. The remaining achiral gray point groups that
lack inversion symmetry are guaranteed to exhibit open nodal
lines. All gray point groups that have at least one rotation
axis that is located within at least one mirror plane (#20, 21,
22, 23, 24, 27, 31) give rise to open nodal lines along all
rotation axes that are located in at least one mirror plane. The
remaining three achiral gray point groups left to discuss are
S4 ⊗ {e,�}, C1h ⊗ {e,�}, and C3h ⊗ {e,�}. S4 ⊗ {e,�} is the
only gray point group that possesses an improper rotation axis,
which is also a twofold rotation axis, but lacks inversion and
mirror symmetry. In this case, we still find an open nodal line
on the rotation axis, which is in accordance with Ref. [49].
C1h ⊗ {e,�} lacks a rotation axis but still exhibits an open
nodal line in its mirror plane. C3h ⊗ {e,�} has an open nodal
line in its mirror plane similar to C1h ⊗ {e,�}, and possesses
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TABLE II. Band touchings for the 32 gray and the 32 monochromatic point groups. Weyl points can occur on and off rotation axes, where
integers specify the possible numbers of Weyl points. Weyl points at the reference point (for example, the � point) are denoted by RP. Nodal
lines are found on rotation axes or in mirror planes (MPs). Open nodal lines on axis are denoted by nCm, where n specifies the number of nodal
lines on the rotation axes, which have m-fold rotation symmetry and might be further distinguished by primes. In MPs, there are closed (C) and
open nodal lines. The latter are denoted by kσh, kσv , and kσd for nodal lines in horizontal, vertical, and diagonal mirror planes, respectively,
where k is the number of lines. Nodal lines that are not mandatory are indicated by 0. “+” indicates band touchings that occur simultaneously,
whereas commas separate band touchings of which only one occurs in a particular model. If a band touching is not possible at all the entry is
left blank.

Gray point group Monochromatic point group

Weyl points Nodal lines Weyl points Nodal lines

# Point group On axis On axis In MP On axis Off axis On axis In MP

1 C1 RP 0, 2, 4, 6, 8
2 C2 RP 0, 2 0, 2, 4
3 C3 RP 0, 2 0, 6
4 C4 RP 0, 2
5 C6 RP 0, 2
6 D2 RP RP 0, 4
7 D3 RP RP + 3
8 D4 RP RP
9 D6 RP RP
10 T RP RP + 4
11 O RP RP
12 Ci 0, 4, 8
13 S4 1C2 0, 2 0, 4
14 S6 0, 2 0, 6
15 C1h 1 σh 0, 2 0, 2 σh, C
16 C2h 0, 2 0, 2 σh, C
17 C3h 1C3 3 σh 0, 2 0, C
18 C4h 0, 2 0, C
19 C6h 0, 2 0, C
20 C2v 1C2 1C2 2 σv

21 C3v 1C3 1C3 3 σv

22 C4v 1C4 1C4 4 σv

23 C6v 1C6 1C6 6 σv

24 D2d 1C2 1C2 2 σd

25 D3d 1C3 3 σd

26 D2h 3C2

27 D3h 1C3 + 3C′
2 1C3 + 3C′

2

28 D4h 1C4 + 2C′
2 + 2C′′

2

29 D6h 1C6 + 3C′
2 + 3C′′

2

30 Th 3C2

31 Td 3C2 + 4C3 3C2 + 4C3

32 Oh 3C4 + 4C3 + 6C2

an open nodal line on its rotation axis, which is also an
improper rotation axis, similar to S4 ⊗ {e,�}. Our findings for
the achiral gray point groups agree with the results of Xie et al.
[43]. The authors report so-called Kramers nodal lines, which
are protected by a combination of time-reversal symmetry and
achiral symmetries, in achiral noncentrosymmetric materials
with spin-orbit coupling [43]. Kramers nodal lines are doubly
degenerate band-touching lines that connect time-reversal in-
variant momenta. In our analysis, all achiral gray point groups
that lack inversion symmetry host at least one guaranteed
open nodal line, which is consistent with Kramers nodal lines
connecting time-reversal invariant momenta.

We now turn to the band touchings for the monochro-
matic point groups that are also summarized in Table II.

Monochromatic point groups can host Weyl points on and off
rotation axes and nodal lines on rotation axes and in mirror
planes. To begin with, we discuss the Weyl points on axis
for chiral monochromatic point groups (#1–11). In contrast
to the chiral gray point groups, not all chiral monochromatic
point groups possess Weyl points at the RP. Specifically,
cyclic chiral monochromatic point groups with at most one
proper rotation axis, i.e., Cn (n = 1, 2, 3, 4, 6), do not possess
a Weyl point at the RP. The reason for this is that for these
point groups σz belongs to the trivial irrep. Consequently, the
coefficient function fz contains a constant term so that the
system of equations (2) generically cannot be solved at the
RP, as also predicted in Ref. [39]. For the noncyclic chiral
monochromatic point groups D2, D3, D4, D6, T , and O, which
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have more than one rotation axis, a Weyl point at the RP is
guaranteed. The reason is that for these groups no pseudospin
component belongs to the trivial irrep. Hence, the RP (k = 0)
always solves Eq. (2). Furthermore, our analysis shows that
D3 and T have in addition to the Weyl point at the RP three
and four Weyl points on rotation axes in the vicinity of the
RP, respectively. In Appendix B 1, we show how the band
touchings for the point group T are calculated. Note that
noncyclic monochromatic point groups can only appear as
little groups of high-symmetry points but not for momenta
on high-symmetry axes. Otherwise, there would be a “Weyl
point” at every point of a high-symmetry axis, and these points
would form a nodal line, in contradiction to the absence of
a nodal line on axis in the analysis of the high-symmetry
points. While we have already mentioned in the discussion
of gray point groups that nonmagnetic chiral materials have
Kramers-Weyl points at all time-reversal-invariant momenta,
such a statement does not hold for materials that belong to
monochromatic point groups. For example, the time-reversal
invariant momentum at ( 1

2
1
2

1
2 ) for the orthorombic space

group F222 has the little group C1 [58] and hence no Weyl
point.

Next, we turn our attention to the achiral monochromatic
point groups (#12–32). With respect to their band touchings,
these groups can be divided into four types. The first type
comprises the monochromatic point groups that lack mirror
symmetries, i.e., Ci, S4, and S6. Groups of the first type can
host Weyl points on and off axis but no nodal lines due to the
lack of mirror symmetry. To the second type belong groups
with a single mirror plane, i.e., Cnh (n = 1, 2, 3, 4, 6). For
groups of the second type, band-touching points and lines
are not guaranteed to exists since one of the Pauli matrices
is found in the trivial irrep. They can host a pair of two Weyl
points and a closed nodal line in the mirror plane. For C1h

and C2h, the nodal line can be open instead of closed. Achiral
monochromatic point groups of the first and second type have
in common that band touchings are not guaranteed.

Guaranteed band touchings are characteristic for achiral
monochromatic point groups of the third and fourth type. The
monochromatic point groups belonging to the third type are
characterized by one rotation axis common to all mirror planes
(#20–25). These groups host open nodal lines in all of their
mirror planes and along their common axis. To the fourth type
belong groups that have multiple rotation axes located in at
least one mirror plane (#26–32). For these groups, all axes
that are located in mirror planes host open nodal lines.

B. Dichromatic point groups

For dichromatic point groups that contain the product of
inversion and time-reversal symmetry, the two bands are de-
generate for all k [63], as discussed above. It is thus sufficient
to focus on the band touchings for the 37 dichromatic point
groups that do not contain this product. These groups are listed
in Table III. We denote every dichromatic point group in the
form G(H ) where H is a halving subgroup of G that contains
all unitary elements of G(H ), whereas all antiunitary elements
of G(H ) are given by the set �(G − H ) [64]. For dichromatic
point groups, there can be Weyl points on and off rotation
axes and robust nodal lines on axis and in mirror planes,

as well as fragile line nodes, which are described below in
more detail.

First, we discuss chiral dichromatic point groups G(H ),
for which both G and H are chiral groups (#1–10). A chiral
dichromatic point group G(H ) hosts a Weyl point at the RP if
both G and H have only one rotation axis [C4(C2), C6(C3)] or
if both have multiple rotation axes [D4(D2), D6(D3), O(T )].
Furthermore, C6(C3) is the only magnetic point group that is
guaranteed to host a triple of Weyl points off axis. C6 and
C3 are subgroups of D6 and D3, respectively. For D6(D3),
there are one Weyl point at the RP and three guaranteed
Weyl points on the three twofold rotation axes. Thus, we can
understand C6(C3) in terms of D6(D3), where C3 lacks the
twofold rotation axes that are present in D3 and for that group
pin the off-axis Weyl points to the rotation axes. Due to the
lack of any achiral symmetries that could protect nodal lines,
chiral dichromatic point groups do not host any robust nodal
lines. However, applying the method of Sec. II to D4(C4) and
D6(C6), we find that closed nodal lines are possible. Since
neither D4(C4) nor D6(C6) have any achiral symmetries that
could protect a nodal line these lines are fragile, i.e., they
are not robust against higher-order terms. When terms of
sufficiently high order are taken into account, fragile nodal
lines are split into Weyl points as shown in more detail for
D4(C4) in Appendix B 2.

Next, we focus on semichiral dichromatic point groups
G(H ), for which G is an achiral group and H is a chiral group
(#11–20). We find that semichiral point groups can host Weyl
points (#11–15) or nodal lines on axis (#16–20). Nodal lines
on axis require the product of time reversal � and an improper
rotation axis. We have already seen for the gray point group
S4 ⊗ {e,�} that �S4 can protect nodal lines on axis.

Finally, we discuss achiral dichromatic point groups G(H ),
for which both G and H are achiral point groups (#21–37).
There are four achiral dichromatic point groups that lack any
mirror symmetry (#21–24). Three of these groups, C2h(Ci ),
D2d (S4), and D3d (S6), can host only Weyl points but no nodal
lines. The fourth of them, the group C6h(S6), has a nodal line
on its threefold rotation axis, which has also �S3 symmetry.
The next five groups (#25–29) have in common that they
can host Weyl points and nodal lines in mirror planes. This
is due to the fact that for C2v (C1h) and for Dnh(Cnh) with
n = 2, 3, 4, 6 one Pauli matrix is in the trivial irreducible
corep. Hence, their band touchings are similar (but not neces-
sarily identical) to the band touchings for the monochromatic
point groups Cnh. For the remaining achiral dichromatic point
groups, we find that they either host nodal lines on axis and
in their mirror planes (#30–33) or that they host only nodal
lines on axis (#34–37). Note that all dichromatic point groups
with the halving subgroup C2v or C3v have guaranteed open
nodal lines. Furthermore, we remark that the groups C4h(C2h),
D3h(C3v ), D4h(D2h), D6h(D3d ), and Oh(Th), which have at
least one rotation axis with �Sn symmetry, give rise to open
nodal lines on axis.

To the best of our knowledge, there is no study that classi-
fies the band touchings for all dichromatic point groups that
lack the product of time-reversal and inversion, for which
reason we compare our results in Table III to two case-by-case
studies. The first work by Wang et al. [65] is based on first-
principles calculations and reports a nodal ring in the mirror
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TABLE III. Band touchings for the 37 dichromatic point groups G(H ) that do not contain the product of inversion and time-reversal
symmetry. Weyl points can occur on and off rotation axes, where integers specify the possible numbers of Weyl points. Weyl points at the
reference point (for example, the � point) are denoted by RP. Robust nodal lines are found on rotation axes or in mirror planes (MPs), whereas
fragile nodal lines, which are not robust against higher-order terms, are found in a plane perpendicular to a rotation axis. Open nodal lines on
axis are denoted by nCm, where n specifies the number of nodal lines on the rotation axes with m-fold rotation symmetry. In MPs, there are
closed (C) and open nodal lines. The latter are denoted by kσh, kσv , and kσd for nodal lines in horizontal, vertical, and diagonal mirror planes,
respectively, where k is the number of lines. Nodal lines that are not mandatory are indicated by 0. “+” indicates band touchings that occur
simultaneously, whereas commas separate band touchings of which only one occurs in a particular model. If a band touching is not possible at
all the entry is left blank.

Weyl points Nodal lines

# Point group On axis Off axis On axis In MP Fragile

1 C2(C1) 0, 2, 4, 6, 8
2 C4(C2) RP
3 C6(C3) RP 3
4 D2(C2) 0, 2 0, 2, 4
5 D3(C3) 0, 2 0, 6
6 D4(C4) 0, 2 0, C
7 D6(C6) 0, 2 0, C
8 D4(D2) RP 0, 4
9 D6(D3) RP + 3
10 O(T ) RP + 4
11 C2v (C2) 0, 2 0, 4
12 C3v (C3) 0, 2 0, 6
13 C4v (C4) 0, 2
14 C6v (C6) 0, 2
15 C1h(C1) 0, 2, 4, 6, 8
16 C3h(C3) 1C3

17 S4(C2) 1C2

18 D2d (D2) 1C2 (with �S4 sym.)
19 D3h(D3) 1C3

20 Td (T ) 3C2

21 C2h(Ci ) 0, 4, 8
22 D2d (S4) 0, 2 0, 4
23 D3d (S6) 0, 2 0, 6
24 C6h(S6) 1C3

25 C2v (C1h ) 0, 2, 4 0, 2 σh, C
26 D2h(C2h ) 0, 2 0, 2, 4 0, 2 σh, C
27 D3h(C3h ) 0, 2 0, C
28 D4h(C4h ) 0, 2 0, C
29 D6h(C6h ) 0, 2 0, C
30 C4h(C2h ) 1C2 2 σh

31 C4v (C2v ) 1C2 2 σv

32 C6v (C3v ) 1C3 3 σv

33 D2d (C2v ) 1C2 2 σv

34 D3h(C3v ) 1C3

35 D4h(D2h ) 3C2

36 D6h(D3d ) 1C3

37 Oh(Th ) 3C2

plane in the vicinity of the � point for magnetic oxides with
the dichromatic point group D4h(C4h). This agrees with our
results but the authors have overlooked the possibility of a
pair of Weyl points on the kz axis. Second, Jin et al. [66]
investigate band touchings close to the � point in the kxky

plane in tetragonal structures with ferromagnetic ordering as
found in β-V2OPO4, Co2S2Tl, and Fe2S2X (X = Al, Ga, In),
where different magnetization directions are considered. If the
magnetization direction is along the [001] direction, the little
group of � is again given by D4h(C4h), and a nodal ring is
observed just as in Ref. [65]. For spins directed along the
[110] direction, the symmetry is lowered to D2h(C2h) and the

ring node splits into a pair of Weyl points that are separated
along the [110] axis, which is again consistent with our results
in Table III.

C. Off-axis Weyl points and lattice models

So far, we have omitted discussing off-axis Weyl points.
Such Weyl points can appear for monochromatic and dichro-
matic point groups, as reflected by Tables II and III,
respectively. Since we investigate the band touchings in
the vicinity of a RP by expanding a pseudospin-1/2 Bloch
Hamiltonian up to second or the first nonvanishing order
in momentum the total number of Weyl points is limited
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by Bézout’s theorem [61], as mentioned earlier. Hence, our
tables report the possible numbers of off-axis Weyl points
that are compatible with the point group and with Bézout’s
theorem. However, there may be more Weyl points resulting
from higher-order terms in the basis functions fi(k).

It remains to discuss how our analysis for the vicinity of
RPs transfers to lattice models. As noted above, for lattice
models, the total chirality of all Weyl points in the Brillouin
zone vanishes [2,6]. However, this result does not apply
to continuum models. Hence, odd numbers of Weyl points
can and do appear in our analysis. Furthermore, for lattice
models, the open nodal lines must be compatible with the
periodicity of momentum space. For RPs in a Brillouin zone,
our analysis shows if and where a nodal line can be found.
The global structure of nodal lines on axes is then fixed. How
open deformable nodal lines connect in periodic momentum
space is not studied in the present work. However, we expect
that the symmetry of the nodal system under the magnetic
point group and the analysis of the vicinity of high-symmetry
points in the mirror plane usually constrain the connectivity
of these line nodes. In order to illustrate the application of
our method to lattice models, we consider two models A
and B with the dichromatic point groups O(T ) and Oh(Th),
respectively. Both models assume a simple cubic lattice.
Figure 2(a) shows one octant of the Brillouin zone and its
high-symmetry points and lines.

For model A, Fig. 2(b) shows the little groups of the
high-symmetry points and lines. We can now use Tables II
and III to analyze the nodal structure in the vicinity of each
of these elements. First, all high-symmetry points have to be
Weyl points, shown as red dots in Fig. 2(b). Second, none of
the high-symmetry elements supports nodal lines. Third, for
the points � and R, the little group is the full group O(T ).
According to Table III, we expect four additional Weyl points
in their vicinity, which lie on the four 〈111〉 axes and are
related by symmetry operations from O(T ), i.e., form the
corners of a regular tetrahedron. These points are shown as
cyan dots in Fig. 2(b). The results for high-symmetry lines are
consistent with these conclusions. For example, the line 
 has
the little group D3(C3), for which we expect zero or two Weyl
points on axis. For a general point on this line, there are no
Weyl points in the vicinity. For a point close to � or R, we
find a pair: the Weyl point at � or R and the one out of four
points on this particular axis. Moreover, for D3(C3) we expect
zero or six Weyl points off axis. More detailed analysis shows
that these points form two triples with C3 symmetry. The two
triples are not related by any symmetry. Hence, for a particular
point k along 
, there are either zero or three Weyl points in a
plane normal to 
 and intersecting it in k. The potential three
points are the cyan ones that do not lie on the same axis.

All of these conclusions agree with a tight-binding
Hamiltonian with point group O(T ) (magnetic space group
#207.3.1544). The coefficients of the Pauli matrices in Eq. (1)
are given by

f A
x (k) = aA sin kx + bA sin ky sin kz, (8)

f A
y (k) = aA sin ky + bA sin kz sin kx, (9)

f A
z (k) = aA sin kz + bA sin kx sin ky, (10)

FIG. 2. Weyl points and nodal lines for the two lattice models A
and B. (a) One octant of the simple cubic Brillouin zone with high-
symmetry points and lines. (b) Band touchings for lattice model A.
The high-symmetry points and lines are labeled by the corresponding
little groups [47,48]. Weyl points that are fixed to high-symmetry
points are displayed in red, while other Weyl points are displayed
in cyan. (c) Band touchings for lattice model B. The labels are
analogous to panel (b). Nodal lines are displayed in red.

where aA, bA ∈ R \ {0}. As one can check, Eq. (2) is satisfied
at all high-symmetry points. Moreover, half of the space diag-
onal is parameterized by kA = (t, t, t ) with t ∈ (0, π ) so that
Eq. (2) is satisfied if

sin t = −aA

bA
. (11)

Equation (11) has either no solution or two solutions, which
are symmetrical with respect to t = π/2 as depicted in
Fig. 2(b). In the latter situation, one of these points is one
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of the four space-diagonal Weyl points of � and the other
belongs to R. Note that these Weyl points could annihilate;
this cannot happen for the continuum model.

As a second example we consider model B, which belongs
to point group Oh(Th) (magnetic space group #221.4.1597).
In Fig. 2(c), the little groups of the high-symmetry points and
lines are depicted. Since both � and R have the full point-
group symmetry Oh(Th) nodal lines are found on the high-
symmetry axes � and T , see Table III. Moreover, the little
group for both X and M is D4h(D2h) so that there is also a
nodal line on the high-symmetry axis Z . The presence of these
nodal lines as well as the absence of nodal lines on 
 and �

are consistent with the little groups of the high-symmetry line.
The coefficients of the Pauli matrices for model B are given by

f B
x (k) = aB sin ky sin kz, (12)

f B
y (k) = aB sin kz sin kx, (13)

f B
z (k) = aB sin kx sin ky, (14)

where aB ∈ R \ {0}. It is obvious that Eq. (2) leads to exactly
the same nodal lines as obtained from the symmetry analysis.

IV. CONCLUSIONS

By investigating pseudospin-1/2 Hamiltonians with spin-
orbit coupling in the vicinity of a reference point in
momentum space, typically a high-symmetry point, we have
classified twofold degenerate band touchings for the 122
magnetic point groups. Here, the pseudospin-1/2 degree of
freedom is assumed to transform like a true spin-1/2 but need
not actually derive from a true spin. In particular, this applies
to all point groups that have only a single double-valued real
irrep such as D2 and C2v [60]. How a spin-1/2 transforms
under any given magnetic point group is determined by view-
ing the corresponding structural point group as a subgroup of
SU(2). Bands characterized by local degrees of freedom that
do not transform like a spin-1/2 can be analyzed analogously.
To that end, one has to determine the real irreducible coreps
of the basis matrices acting on the Hilbert space of the local
degrees of freedom, in analogy to the matrices σμ in Sec. II.

The results of our investigation are shown in Table II for
the gray and monochromatic groups and in Table III for the
dichromatic groups. We see that every magnetic point group
not containing the product of time-reversal and inversion sym-
metries can in principle give rise to topologically nontrivial
band touchings, i.e., Weyl points or nodal lines. This situation
is thus common and, in particular, is realized already for the
simplest possible type of multiband models, namely those
characterized by a pseudospin-1/2. Noting that the � point
of any material has the full symmetry of the magnetic point
group our results can be summarized as follows. For gray
point groups, our work emphasizes the conclusion drawn by
Xie et al. [43]: All noncentrosymmetric nonmagnetic (semi-)
metals are topological in this sense. Furthermore, as revealed
by our analysis, any material that belongs to a monochromatic
point group is topological if the point group is either chiral
and has more than one rotation axis or if it is achiral and has
at least one rotation axis that is located in a mirror plane. For
dichromatic point groups G(H ), we find that materials that

lack the product of time-reversal and inversion symmetry are
topological if (i) G and H are chiral groups and have both
only one rotation axis or if both have multiple rotation axes,
(ii) if the product of time-reversal symmetry and an improper
rotation is present, or (iii) if the halving subgroup H is either
C2v or C3v .

We have seen that the existence and location of band-
touching points is not influenced by terms in the Hamiltonian
that are proportional to the identity matrix. However, these
terms determine the energy at which the band touching occurs
and are, of course, material dependent. Experiments at low
energies, for example dc and low-frequency transport mea-
surements, will only be affected by band touchings close to
the Fermi energy. Finally, we wish to comment on off-axis
Weyl points. Such Weyl points are missed when traversing
the Brillouin zone along standard high-symmetry paths, either
in experiments such as angle-resolved photoemission spec-
troscopy or in band-structure calculations. Our method can
help to determine whether it is worthwhile to search for such
points.

To conclude, we have provided a catalog that should
be useful for the design and identification of topological
semimetals. In particular, our work advances the active field
of magnetically ordered semimetals. The method can be
extended to systems of bands that are not described by a
pseudospin-1/2.

Note added.—A recent article by Liu et al. [67] catalogs
emergent particles for the type-III magnetic space groups. The
analysis is based on double-valued corepresentations for the
Bloch states and does not predict band touchings away from
high-symmetry elements.
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APPENDIX A: COREPRESENTATIONS

In this Appendix, we first briefly review the basics of
corepresentation theory, which was originally developed by
Wigner [51] and subsequently extended [52–56]. This theory
deals with complex coreps. It will turn out that we need to
work with real corepresentations [68,69]. We then apply the
results to determine the character tables of gray and dichro-
matic point groups. To clarify our notation, we will call a
group element antiunitary if it contains the time reversal �

since the time-reversal operator is antiunitary and the product
of a unitary and an antiunitary operator is again antiunitary.
All group elements that solely correspond to crystalline sym-
metry operations are referred to as unitary.

Monochromatic point groups do not contain any an-
tiunitary elements and are identical to the correspond-
ing crystallographic point groups. Consequently, standard
representation theory applies, the results of which can be
found in tables and books [58,60].
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1. Basics of corepresentation theory

Any gray or dichromatic magnetic point group can be
written as

M = H + AH, (A1)

where H is the subgroup of M that only contains the unitary
elements. In Eq. (A1), A denotes an arbitrary but fixed an-
tiunitary element of M. Gray groups contain � and so the
choice A = � is possible and common but not mandatory. In
the following, we denote unitary elements of H by R and
S, and antiunitary elements of the left coset AH by B and
C, respectively. Since H is a group the action of a unitary
element R on a basis function ψν = (ψν

1 , ψν
2 , . . . , ψν

n ) of the
n-dimensional representation ν is given by

P̂Rψν = ψν�ν (R), (A2)

with the matrix representative �ν (R) of R. By acting with A on
the basis function ψν , we obtain a new set of basis functions

φν = P̂Aψν, (A3)

with φν = (φν
1 , φν

2 , . . . , φν
n ). The functions ψν and φν are not

necessarily linearly dependent since A is antiunitary. Hence,
a more suitable basis function for the representation of M is
given by

γ ν = (ψν, φν ) = (
ψν

1 , ψν
2 , . . . , ψν

n , φν
1 , φν

2 , . . . , φν
n

)
. (A4)

For unitary elements R ∈ H , the matrix representation corre-
sponding to γ ν is written as

Dν (R) =
(

�ν (R) 0
0 �ν (A−1RA)∗

)
, (A5)

whereas for antiunitary elements B ∈ AH , we have

Dν (B) =
(

0 �ν (BA)
�ν (A−1B)∗ 0

)
. (A6)

The set of unitary matrices defined by Eqs. (A5) and (A6) are
called the complex coreps of M derived from �ν . In contrast
to ordinary representations that are homomorphisms, coreps
are not structure-preserving maps, as reflected by the product
rules

D(RS) = D(R)D(S), (A7)

D(RB) = D(R)D(B), (A8)

D(BS) = D(B)D(S)∗, (A9)

D(BC) = D(B)D(C)∗. (A10)

Note the complex conjugation of the matrix representatives
D(S) and D(C) in Eqs. (A9) and (A10), respectively, which
follow the matrix representative D(B) of the antiunitary
element B.

Next, we investigate how coreps behave with respect to
unitary transformations. By performing a unitary transforma-
tion U , the basis function is transformed according to

γ ′ν = γ νU, (A11)

whereas for the coreps, we have

D′ν (R) = U †Dν (R)U, (A12)

D′ν (B) = U †Dν (B)U ∗. (A13)

In the standard theory, the notion of reducibility of coreps
is defined like for ordinary representations: If we can find
a unitary transformation that brings all coreps Dν (R) and
Dν (B) of M into block-diagonal form, then the corep is called
reducible. In other words, a corep Dν is reducible if it is
unitarily equivalent to a block-diagonal form. Conversely, if
no such unitary transformation exists the corep is said to be
irreducible.

For our purposes, the concept of unitary equivalence and
the corresponding definition of reducibility is not appropri-
ate. Rather, we need to restrict ourselves to real unitary, i.e.,
orthogonal, transformations for the following reason. The an-
tiunitary elements of the gray and dichromatic point groups
are antilinear, i.e., they act on complex numbers as complex
conjugation. As an illustration of such an antiunitary element,
we consider the time-reversal operator T , which can be writ-
ten as

T = UT K, (A14)

where UT is unitary and K is the operator of complex con-
jugation defined with respect to a certain basis of the Hilbert
space. K leaves elements of this basis invariant but replaces
all numbers by their complex conjugates. Now, if we perform
a general unitary transformation on the corep we mix the real
and imaginary parts of the components of the matrix represen-
tatives of the corep. This would require us to also change the
operator K of complex conjugation. Another consequence is
that we would not be able to distinguish coreps that are even or
odd under time reversal. This is seen by transforming Dν (�)
with U = iI, where I is the identity matrix,

D′ν (�) = U †Dν (�)U ∗ = −iDν (�)(−i) = −Dν (�).
(A15)

Here, coreps Dν and D′ν have opposite parity under time rever-
sal but are unitarily equivalent. Since we need to distinguish
between time-reversal-even and time-reversal-odd coreps uni-
tary equivalence is not the appropriate notion of equivalence.
This problem is avoided by instead employing only real
orthogonal transformations. Accordingly, we call two (real)
coreps real equivalent if there is an orthogonal transformation
connecting them and we call a corep real irreducible if there is
no orthogonal transformation that block-diagonalizes all ma-
trix representatives. In Appendices A 2 and A 3, we will show
how to derive the character tables for single-valued real coreps
of gray and dichromatic point groups, and we will further
demonstrate the necessity to use orthogonal transformations
instead of unitary ones.

2. Corepresentation theory for single-valued coreps
of gray point groups

In this Appendix, we show how to calculate the charac-
ter table for single-valued real coreps of gray point groups.
To simplify the notation, we will suppress the superscript ν

that specifies the representation. For gray point groups, it is
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convenient to chose A = �. Then, the coreps of the unitary
elements are given by

D(R) =
(

�(R) 0
0 �(A−1RA)∗

)
=

(
�(R) 0

0 �(�−1R�)∗

)

=
(

�(R) 0
0 �(�−1�R)∗

)
=

(
�(R) 0

0 �(R)∗

)
.

(A16)

The antiunitary elements B of a gray point group are elements
of the left coset �H and can be written as B = �R′, where
R′ ∈ H . Hence, the coreps of antiunitary elements are given
by

D(B) = D(�R′) =
(

0 �(�R′�)
�(�−1�R′)∗ 0

)

=
(

0 �(�2R′)
�(R′)∗ 0

)
=

(
0 �(ẽR′)

�(R′)∗ 0

)

=
(

0 �(R′)
�(R′)∗ 0

)
. (A17)

In the derivation, we have used that �2 = ẽ [51], where ẽ
is the group element that corresponds to rotations of 2π .
It satisfies ẽ2 = e and is mostly relevant for double-valued
(spinor) coreps. Here, we are only interested in single-valued
coreps so that �(ẽ) = �(e) holds. Thus, we identify e and
ẽ with each other since only the matrix representatives are
relevant for our purposes. Using Eq. (A17), the corep of �

for an n-dimensional single-valued representation is obtained
as

D(�) = D(�e) =
(

0 �(e)
�(e)∗ 0

)
=

(
0 In

In 0

)

=
(

0 1
1 0

)
⊗ In, (A18)

where In is the n-dimensional identity matrix. The matrix
D(�) is real and symmetric, and thus orthogonally diag-
onalizable. For n = 1, we have I1 = 1 and the orthogonal
transformation that diagonalizes D(�) is given by

U 1 = 1√
2

(−1 1
1 1

)
. (A19)

Thus, for arbitrary dimension n, the orthogonal transformation
matrix U n

g that diagonalizes D(�) is

U n
g = U 1 ⊗ In. (A20)

By applying U n
g to D(�), we find

D′(�) = (
U n

g

)†
D(�)U n

g =
(−In 0

0 In

)
, (A21)

where the corep in which the matrix representative of � is
diagonal is denoted by a prime. Next, we apply U n

g to the
coreps of the unitary elements D(R). In this work, the sub-
group H of unitary elements is identical to one of the 32
crystallographic point groups. Then, for single-valued repre-
sentations, all matrix representations of the unitary elements
�(R) can be assumed to be real if we treat one-dimensional
complex-irreducible representations, which occur in pairs of

complex conjugates, such as 1E and 2E for the point group
C3, as two-dimensional real-irreducible representations. For
real representations, we have �(R)∗ = �(R) and Eq. (A16)
can be written as

D(R) = I2 ⊗ �(R). (A22)

Next, we apply U n
g to D(R) and find

D′(R) = (
U n

g

)†
D(R)U n

g =
(

�(R) 0
0 �(R)

)
. (A23)

Obviously, D′(R) is block diagonal for all R ∈ H . In order to
calculate the coreps of the antiunitary elements B ∈ AH , we
employ Eq. (A9) and use that we can express every antiunitary
element as B = �R′. The result is

D′(B) = D′(�R′) = D′(�)D′(R′) =
(−�(R′) 0

0 �(R′)

)
,

(A24)

where we have further used that D′(R′) is real. From
Eqs. (A23) and (A24), we find that the coreps of gray point
groups are always reducible to the two real-irreducible coreps,
where one corep is odd and the other is even under time
reversal, as reflected by Eq. (A21).

It remains to calculate basis functions of D′ based on the
basis functions of �. For single-valued representations, prod-
ucts of powers of components of the momentum vector can be
chosen as basis functions. We here also treat the identity ma-
trix σ0 and the Pauli matrices σi as “spin basis functions,” as it
is often done [34,64,70]. They are more correctly irreducible
tensor operators. First, we consider those basis functions of
the n-dimensional representation � that are odd under time
reversal, such as products of odd order of momentum compo-
nents and the Pauli matrices, and denote them by ψ−. Then,
the basis function of the corep D is given by

γ − = (ψ−, P̂Aψ−) = (ψ−, P̂�ψ−) = (ψ−,−ψ−). (A25)

In order to find the basis function of D′, we perform the
orthogonal transformation U n

g ,

γ ′− = γ −U n
g = 1√

2
(−ψ−−ψ−, ψ−−ψ−) = (−

√
2 ψ−, 0).

(A26)
Thus, ψ− is a basis function of the real-irreducible corep that
is odd under time reversal. Analogously, we find that those
basis functions of � that are even under time-reversal, i.e.,
products of even order of momentum components, belong to
the real-irreducible corep that is even under time reversal.
Hence, all basis functions behave under time reversal as ex-
pected.

Next, we illustrate our results by the gray point group
D2 ⊗ {e,�}. The character table of the point groups D2 and
D2 ⊗ {e,�} are given in Tables IV and V, respectively. Since
the order of D2 ⊗ {e,�} is twice the order of D2 and both
only have one-dimensional real-irreducible (co-) representa-
tions there are twice as many real coreps for D2 ⊗ {e,�} as
there are for D2. In fact, we find that each irrep of D2 is split
into one time-reversal-even and one time-reversal-odd real
corep for D2 ⊗ {e,�}, denoted by the superscripts + and −,
respectively.
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TABLE IV. Character table of the monochromatic point group
D2 with basis functions up to second order in momentum and spin
basis functions.

D2 e C2z C2x C2y basis functions

A 1 1 1 1 1, k2
x , k2

y , k2
z

B1 1 1 −1 −1 σz, kz, kxky

B2 1 −1 −1 1 σy, ky, kzkx

B3 1 −1 1 −1 σx , kx , kykz

Let us consider what happens if we allow not only orthogo-
nal but general unitary transformations. Then, any two coreps
of D2 ⊗ {e,�} that differ only in their parity with respect to �

are equivalent. For example, let us apply the unitary transfor-
mation U = i to the representation B−

1 . Equations (A12) and
(A13) show that the coreps of all unitary elements stay the
same whereas the ones of all antiunitary elements change sign.
Hence, B−

1 is unitarily equivalent to B+
1 . Analogous results are

found for the other coreps. Thus D2 ⊗ {e,�} only has the four
complex irreducible coreps A, B1, B2, and B3 in accordance
with Refs. [47,48]. These complex coreps do not allow to
distinguish between time-reversal-even and time-reversal-odd
basis functions.

3. Corepresentation theory for single-valued coreps
of dichromatic point groups

For single-valued real coreps of dichromatic point groups,
the discussion is more complicated than for gray point groups.
The reason for this is that dichromatic point groups do not
share a common antiunitary element that could be used in
order to construct the real coreps, in contrast to gray point
groups. For the majority of dichromatic point groups, one
can choose the unitary part R′ of the antiunitary element
A = �R′ in such a way that it corresponds to a twofold
symmetry, i.e., R′2 = e. However, for the dichromatic point
groups C4(C2), S4(C2), and C4h(C2h) it is not possible to
choose R′ in this way. In the following, we show how the real
coreps from one-dimensional, two-dimensional, and three-
dimensional representations are derived if one can choose
A = �R′ with R′2 = e. Furthermore, the real coreps of S4(C2)
are derived as an example for a dichromatic point group for
which no antiunitary element A with R′2 = e exists.

For the first case, we choose the antiunitary element A as
A = �R′ with R′2 = e. The coreps of the unitary elements are
then calculated as

D(R) =
(

�(R) 0
0 �(A−1RA)∗

)

=
(

�(R) 0
0 �((�R′)−1R(�R′))∗

)

=
(

�(R) 0
0 �(R′−1RR′)∗

)
, (A27)

where we have used that � commutes with all group elements
[51,55]. Since R′−1RR′ is an element of the conjugacy class
of R the matrix representatives �(R) and �(R′−1RR′) have
the same trace, which means that they are identical for one-
dimensional representations. For the corep of the antiunitary
element A = �R′, we obtain

D(A) =
(

0 �(AA)
�(A−1A)∗ 0

)
=

(
0 �(�R′�R′)

�(e)∗ 0

)

=
(

0 �(�2R′2)
�(e)∗ 0

)
=

(
0 �(ẽe)

�(e)∗ 0

)

=
(

0 �(e)
�(e)∗ 0

)
=

(
0 In

In 0

)
. (A28)

Next, let us consider the conjugacy classes of the monochro-
matic point group G and the dichromatic point group G(H ),
where we regard G and G(H ) as subgroups of the gray group
G ⊗ {e,�}. Moreover, H is a halving subgroup of G. Let
R1 ∈ H and R̃1 ∈ G − H be fixed elements. Then, the con-
jugacy class of R1 is given by

K (R1) = {
R−1

2 R1R2 | R2 ∈ H
}

∪ {
R̃−1

2 R1R̃2 | R̃2 ∈ G − H
}

(A29)

and the conjugacy class of R̃1 reads as

K (R̃1) = {
R−1

2 R̃1R2 | R2 ∈ H
}

∪ {
R̃−1

2 R̃1R̃2 | R̃2 ∈ G − H
}
. (A30)

For the conjugacy class of the unitary element R1 ∈ H ⊂
G(H ), we use that (�R̃2)−1R1�R̃2 = R̃−1

2 R1R̃2 due to the
commutativity of � with all other group elements. Thus,
K (R1) is a conjugacy class of G and G(H ). The conjugacy

TABLE V. Character table of the gray point group D2 ⊗ {e, �} with basis functions up to second order in momentum and spin basis
functions. The lowest-order basis function of A− is kxkykz.

D2 ⊗ {e, �} e C2z C2x C2y � �C2z �C2x �C2y basis functions

A+ 1 1 1 1 1 1 1 1 σ0, 1, k2
x , k2

y , k2
z

A− 1 1 1 1 −1 −1 −1 −1
B+

1 1 1 −1 −1 1 1 −1 −1 kxky

B−
1 1 1 −1 −1 −1 −1 1 1 σz, kz

B+
2 1 −1 −1 1 1 −1 −1 1 kzkx

B−
2 1 −1 −1 1 −1 1 1 −1 σy, ky

B+
3 1 −1 1 −1 1 −1 1 −1 kykz

B−
3 1 −1 1 −1 −1 1 −1 1 σx , kx
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class of �R̃1 ∈ �(G − H ) is calculated as

K (�R̃1) = {
R−1

2 �R̃1R2 | R2 ∈ H
}

∪ {(�R̃2)−1�R̃1�R̃2 | �R̃2 ∈ �(G − H )}
= {

R−1
2 �R̃1R2 | R2 ∈ H

}
∪ {

R̃−1
2 �R̃1R̃2 | R̃2 ∈ G − H

}
= �

({
R−1

2 R̃1R2 | R2 ∈ H
}

∪ {
R̃−1

2 R̃1R̃2 | R̃2 ∈ G − H
})

= �K (R̃1). (A31)

Hence, if K (R̃1) is a conjugacy class of G, then �K (R̃1) is
a conjugacy class of G(H ) as shown in Eq. (A31). Conse-
quently, G and G(H ) have the same number of conjugacy
classes. In the following sections, we apply the just obtained
results to one-, two-, and three-dimensional representations to
derive the real coreps.

a. Coreps of dichromatic point groups derived from real
one-dimensional representations

In this section, we consider a corep D1 that is derived from
a real one-dimensional representation �1, i.e., we consider
only A or B representations but not complex representations
such as 1E and 2E of the monochromatic point group C4. We
will include one-dimensional complex representations later in
the discussion of two-dimensional real representations. Since
we are only taking into account real one-dimensional repre-
sentations, we have �1(R) = �1(R′−1RR′) = ±1, where the
sign depends on the specific R ∈ H . Thus, with Eq. (A27) the
corep for a unitary element R is given by

D1(R) = ±
(

1 0
0 1

)
. (A32)

For A, the corep follows from Eq. (A28),

D1(A) =
(

0 1
1 0

)
. (A33)

Thus, D1 is block diagonalized by U 1 in Eq. (A19). Using
Eqs. (A12) and (A13), the corep D′1 for which all matrices
are block-diagonal is found as

D′1(R) = ±
(

1 0
0 1

)
(A34)

and

D′1(A) =
(−1 0

0 1

)
. (A35)

The remaining coreps of the antiunitary elements B ∈ AH are
obtained using Eq. (A9). By inspection of Eqs. (A34) and
(A35), we find that D′1 is reducible into two real coreps d1

−
and d1

+,

D′1 = d1
− ⊕ d1

+, (A36)

where d1
− and d1

+ are odd and even with respect to A, respec-
tively. Both coreps have in common that they share the same
characters for the unitary elements R ∈ H but differ in the sign
of the characters of the antiunitary elements.

In order to construct the basis functions of D1, we differen-
tiate between basis functions of �1 that are odd and even with
respect to �. They are denoted by ψo

1 and ψe
1 , respectively. To

simplify the following discussion, we assume that �1(R′) =
1. The case �1(R′) = −1 can be treated analogously. For
�1(R′) = 1, the basis functions of D1 are given by

γ o
1 = (

ψo
1 , P̂Aψo

1

) = (
ψo

1 , P̂�R′ψo
1

) = (
ψo

1 , P̂�P̂R′ψo
1

)
= (

ψo
1 , P̂�(+1)ψo

1

) = (
ψo

1 ,−ψo
1

)
(A37)

and

γ e
1 = (

ψe
1 , P̂Aψe

1

) = (
ψe

1 , P̂�R′ψe
1

) = (
ψe

1 , P̂�P̂R′ψe
1

)
= (

ψe
1 , P̂�(+1)ψe

1

) = (
ψe

1 , ψ
e
1

)
. (A38)

Hence, the basis functions of D′1 are

γ ′o
1 = γ o

1 U 1 = 1√
2

(−ψo
1 − ψo

1 , ψ
o
1 − ψo

1

) = −
√

2
(
ψo

1 , 0
)

(A39)
and

γ ′e
1 = γ e

1 U 1 = 1√
2

(−ψe
1 + ψe

1 , ψ
e
1 + ψe

1

) =
√

2
(
0, ψe

1

)
.

(A40)
By comparison of Eqs. (A34), (A35), (A39), and (A40), we
find that ψe

1 and ψo
1 are basis functions of d1

+ and d1
−, respec-

tively. In particular, ψe
1 , which is an even basis function with

respect to � and belongs to the irrep with �1(R′) = 1, is also
a basis function of the real corep with d1

+(�R′) = 1.
Motivated by this and the discussion of the conjugacy

classes in the previous section, we introduce the labeling for
the real one-dimensional coreps as follows. Since the halving
subgroup H of G is a monochromatic point group itself, the
one-dimensional representations of G come in pairs of two.
Two one-dimensional representations of G form a pair if the
characters of the conjugacy classes containing the elements of
H are identical, and the characters of the conjugacy classes of
the group elements in the set G − H differ in their sign. This
is similar to what we have found for d1

− and d1
+ with respect

to the unitary elements R ∈ H and the antiunitary elements
B ∈ �(G − H ). By identifying the conjugacy classes K (R)
with R ∈ H of G and G(H ) and the conjugacy classes K (R̃)
with R̃ ∈ G − H with the conjugacy classes of the antiunitary
elements K (�R̃) with �R̃ ∈ �(G − H ), we identify the irrep
�1 of G with that real corep d1

x (x = ±) of G(H ), which
satisfies

�1(R′) = d1
x (�R′). (A41)

Note that since the characters of the elements in H are iden-
tical for G and G(H ), Eq. (A41) implies that the remaining
characters for the elements in G − H and �(G − H ) are iden-
tical as well. Thus, we can rewrite Eq. (A36) as

D′1 = �′1 ⊕ �1, (A42)

where �′1 and �1 are now understood as real coreps with
�1(�R′) = 1 and �′1(�R′) = −1. As an example, the char-
acter tables of D2 and D2(C2) are given in Table IV and
Table VI, respectively.
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TABLE VI. Character table of the dichromatic point group
D2(C2) with basis functions up to second order in momentum and
spin basis functions.

D2(C2) e C2z �C2x �C2y basis functions

A 1 1 1 1 1, σz, kz, k2
x , k2

y , k2
z

B1 1 1 −1 −1 kxky

B2 1 −1 −1 1 σx , kx , kzkx

B3 1 −1 1 −1 σy, ky, kykz

b. Coreps of dichromatic point groups derived
from two-dimensional representations

For coreps derived from two-dimensional representations,
the discussion is somewhat different compared to the one-
dimensional case. The reason for this is that the matrix
representatives of �(R) and �(R′−1RR′), which appear in the
calculation of D(R), are only identical for one-dimensional
representations but not necessarily for two-dimensional ones.
Note that we consider one-dimensional complex irreducible
representation, which come in complex-conjugate pairs, as
real two-dimensional representations.

For a two-dimensional representation �2 of a monochro-
matic point group G, the real matrix representatives can take
the following two forms [55], up to an overall sign,

m2
1 =

(
a b

−b a

)
, m2

2 =
(

a b
b −a

)
, (A43)

with a = ±1/2 and b = ±√
3/2, a = ±1 and b = 0, or a = 0

and b = ±1. If a matrix representative in Eq. (A43) squares to
the identity matrix it corresponds to a twofold symmetry R′.
Furthermore, the trace of a matrix representative of a twofold
symmetry can either be χ (�2(R′)) = 0 or χ (�2(R′)) = ±2.

First, we consider the case for which χ (�2(R′)) = 0, i.e.,
�2(R′) is of the form m2

2. In this case, we choose the two-
dimensional representation from which we derive the corep in
such a way that the matrix representative of the unitary part of
A = �R′ is given by

�2(R′) =
(

1 0
0 −1

)
, (A44)

which is m2
2 for a = 1 and b = 0. Note that we can al-

ways choose Eq. (A44) as the matrix representative of R′ if
χ (�2(R′)) = 0 since two matrices are similar if they share
the same eigenvalues and the eigenvectors of each matrix are
linearly independent. In order to calculate the lower block ma-
trix of the coreps of the unitary elements R ∈ H in Eq. (A27),
we use that all matrix representatives are real and that

�2(R′−1RR′) = �2(R′)−1�2(R)�2(R′). (A45)

Since e is always an element of a halving subgroup H there
is always at least one matrix representative, namely �2(e), of
type m2

1. Furthermore, H can contain elements the matrix rep-
resentatives of which are of type m2

2. Hence, using Eq. (A45)
the coreps of the unitary elements are of the form

D2
m2

i
(R) =

(
m2

i 0
0 �2(R′)−1m2

i �
2(R′)

)
, (A46)

with i = 1, 2, and the specific form of m2
i depends on R. Note

that both block matrices in Eq. (A46) have the same trace
χ (m2

i ). To be more precise, the corep for m2
1 and m2

2 are given
by

D2
m2

1
(R) =

⎛
⎜⎝

a b 0 0
−b a 0 0
0 0 a −b
0 0 b a

⎞
⎟⎠, (A47)

D2
m2

2
(R) =

⎛
⎜⎝

a b 0 0
b −a 0 0
0 0 a −b
0 0 −b −a

⎞
⎟⎠. (A48)

From Eq. (A28), we obtain the corep of A as

D2(A) =
(

0 I2

I2 0

)
. (A49)

Next, we diagonalize D2(A) such that each main-diagonal
block matrix is given by Eq. (A44),

D′2(A) = (U 2)−1D2(A)U 2 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠,

(A50)
with the orthogonal transformation

U 2 = 1√
2

⎛
⎜⎝

−1 0 0 1
0 −1 −1 0

−1 0 0 −1
0 1 −1 0

⎞
⎟⎠. (A51)

Using Eq. (A12), we find that the unitary elements for the
corep D′2 are of the form

D′2
m2

1
(R) =

⎛
⎜⎝

a b 0 0
−b a 0 0
0 0 a b
0 0 −b a

⎞
⎟⎠, (A52)

D′2
m2

2
(R) =

⎛
⎜⎝

a b 0 0
b −a 0 0
0 0 −a −b
0 0 −b a

⎞
⎟⎠. (A53)

Thus, the orthogonal transformation U 2 diagonalizes D2(A)
and leaves coreps of the unitary elements block diagonal, as
seen from Eqs. (A50), (A52), and (A53). Furthermore, as
shown by Eqs. (A47), (A48), (A52), and (A53), for each i the
top-left block matrices of D2

m2
i
(R) and D′2

m2
i
(R) are identical,

whereas the bottom-right block matrices have the same trace
but are not identical. The remaining coreps of the antiunitary
elements B ∈ AH \ A of D′2 are calculated using Eqs. (A9),
(A50), (A52), and (A53),

D′2
m2

1
(B) =

⎛
⎜⎝

a b 0 0
b −a 0 0
0 0 a b
0 0 b −a

⎞
⎟⎠, (A54)

D′2
m2

2
(B) =

⎛
⎜⎝

a b 0 0
−b a 0 0
0 0 −a −b
0 0 b −a

⎞
⎟⎠. (A55)
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Hence, by inspection of the coreps in Eqs. (A52)–(A55), we
find that the corep D′2 is reducible into two two-dimensional
real coreps,

D′2 = d2 ⊕ d ′2. (A56)

In general, d2 and d ′2 are different real coreps. However, as
seen from Eqs. (A54) and (A55), the real coreps d2 and d ′2
are identical if there are no coreps of the form D′2

m2
2
, i.e., if the

representation �2 lacks matrix representatives of the form m2
2

for the elements of the halving subgroup H .
It remains to investigate the basis functions. As for the

one-dimensional coreps of dichromatic point groups, we dif-
ferentiate between basis functions of �2 that are even with
respect to �, ψe

2 = (ψe
21, ψ

e
22), and basis functions that are

odd, ψo
2 = (ψo

21, ψ
o
22). The basis functions of D2 are calcu-

lated as

γ e
2 = (

ψe
2 , P̂�R′ψe

2

) = (
ψe

21, ψ
e
22, ψ

e
21,−ψe

22

)
, (A57)

γ o
2 = (

ψo
2 , P̂�R′ψo

2

) = (
ψo

21, ψ
o
22,−ψo

21, ψ
o
22

)
. (A58)

Consequently, the basis functions of D′
2 are

γ ′e
2 = γ e

2 U 2 = −
√

2
(
ψe

21, ψ
e
22, 0, 0

)
, (A59)

γ ′o
2 = γ o

2 U 2 =
√

2
(
0, 0,−ψo

22, ψ
o
21

)
. (A60)

The first two components of γ ′e
2 are already proportional to

ψe
2 . By performing another orthogonal transformation we can

bring the last two components of γ ′o
2 into the form ψo

2 =
(ψo

21, ψ
o
22), where the transformation keeps D′2 still block

diagonal. For the rest of this Appendix, we omit mentioning
this step. We conclude that ψe

2 is a basis function of d2, and
ψo

2 is a basis function of d ′
2.

We now turn to the case with χ (�2(R′)) = ±2. Then the
matrix representative �2(R′) is of the form m2

1 in Eq. (A43)
with a = ±1 and b = 0. Thus, �2(R′) is the identity matrix,
up to a sign. In the following, we consider only the case with

�2(R′) =
(

1 0
0 1

)
. (A61)

The case of the opposite sign is analogous. Since �2(R′) is the
identity matrix the coreps of the unitary elements are given by

D2
m2

i
(R) =

(
m2

i 0
0 �2(R′)−1m2

i �
2(R′)

)
=

(
m2

i 0
0 m2

i

)
(A62)

and the corep of A is still given by Eq. (A49). In order to
diagonalize D2(A), we rearrange the columns of U 2 in the
form

Ũ 2 = 1√
2

⎛
⎜⎝

−1 0 1 0
0 −1 0 −1

−1 0 −1 0
0 −1 0 1

⎞
⎟⎠. (A63)

Ũ 2 diagonalizes the corep of A in such a way that each
main-diagonal block matrix is proportional to the identity

matrix,

D̃′2(A) = (Ũ 2)−1D2(A)Ũ 2 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠,

(A64)
and the coreps of the unitary elements again remain block
diagonal,

D̃′2
m2

1
(R) =

⎛
⎜⎝

a b 0 0
−b a 0 0
0 0 a −b
0 0 b a

⎞
⎟⎠, (A65)

D̃′2
m2

2
(R) =

⎛
⎜⎝

a b 0 0
b −a 0 0
0 0 a −b
0 0 −b −a

⎞
⎟⎠. (A66)

Thus, the corep D̃′2 decomposes into two different real coreps,

D̃′2 = d2
+ ⊕ d2

−, (A67)

where d2
+ and d2

− are even and odd with respect to A, respec-
tively. The basis functions of D2 are calculated as

γ e
2 = (

ψe
2 , P̂�R′ψe

2

) = (
ψe

21, ψ
e
22, ψ

e
21, ψ

e
22

)
, (A68)

γ o
2 = (

ψo
2 , P̂�R′ψo

2

) = (
ψo

21, ψ
o
22,−ψo

21,−ψo
22

)
. (A69)

Thus, for the basis functions of D̃′2 we obtain

γ̃ ′e
2 = γ e

2 Ũ 2 = −
√

2
(
ψe

21, ψ
e
22, 0, 0

)
, (A70)

γ̃ ′o
2 = γ o

2 Ũ 2 =
√

2
(
0, 0, ψo

21,−ψo
22

)
, (A71)

which shows that ψe
2 and ψo

2 belong to the real coreps that are
even and odd with respect to A, respectively.

In analogy to the one-dimensional real coreps, the labeling
of a two-dimensional real corep of a dichromatic point group
G(H ) can be chosen to be one of the two-dimensional rep-
resentations of the monochromatic point group G. In order
to identify a two-dimensional real corep d̃2 with the two-
dimensional real representation �2, we have to distinguish the
two cases χ (�2(R′)) = 0 and χ (�2(R′)) = ±2. For the latter
case, a real corep d̃2 and a representation �2 are identified if
all characters of the unitary elements in H coincide and

χ (�2(R′)) = χ (d̃2(�R′)) (A72)

holds. However, for the case with χ (�2(R′)) = 0, we cannot
rely on Eq. (A72) to identify a representation with a real corep
for the following reason. The corep D′2 is reducible into two
two-dimensional real coreps d2 and d ′2, which can be differ-
ent; see the discussion of Eq. (A56). For the case χ (�2(R′)) =
0, both have zero character for A = �R′, as reflected by
Eq. (A50). Note that we can write every monochromatic point
group as

G = H + R′H. (A73)

If all matrix representatives �2 of the halving subgroup H are
of the form m2

1 in Eq. (A43), then all the matrix representatives
of R′H are of the form

�2(R′)m2
1 = m2

2, (A74)
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TABLE VII. Character table of the dichromatic point group D4(C4) with basis functions up to second order in momentum and spin basis
functions. The lowest-order basis function of A2 is kxky(k2

x − k2
y ).

D4(C4) e 2C4 C2 2�C′
2 2�C′′

2 basis functions

A1 1 1 1 1 1 σ0, σz, 1, kz, k2
x + k2

y , k2
z

A2 1 1 1 −1 −1

B1 1 −1 1 1 −1 k2
x − k2

y

B2 1 −1 1 −1 1 kxky

E 2 0 −2 0 0 {σx, σy}, {kx, ky}, {kzkx, kzky},
{
kxk2

z , kyk2
z

}
,
{
kx

(
k2

x − 3k2
y

)
, ky

(
k2

y − 3k2
x

)}

where we have used Eq. (A44). Thus, the characters of �2

of the conjugacy classes of the elements R̃ ∈ R′H vanish and
�2 is thus determined by the characters of R ∈ H alone.
Consequently, the representation �2 is identified with that real
corep d̃2 that shares the same characters for the conjugacy
classes of H .

On the other hand, if there are matrix representatives of the
form m2

2 for some elements of the halving subgroup H , then
there are matrix representatives of the form

�2(R′)m2
2 = m2

1 (A75)

for some elements of the left coset R′H so that some char-
acters can be nonzero. In fact, one can verify two statements
for a two-dimensional representation that has matrix repre-
sentatives of the form m2

2 for some elements of the halving
subgroup H . First, there are nonzero characters for some
conjugacy classes of R′H [60]. Second, there exists a sec-
ond two-dimensional representation whose characters for the
conjugacy classes of the elements of H are identical to the
characters in the first representation, whereas the nonzero
characters of the conjugacy classes of R′H are inverted in sign
[60]. In this case, we identify �2 with that real corep d̃2 for
which the characters of the elements in H of �2 and d̃2 are
identical and for which

χ (�2(R̃)) = χ (d̃2(�R̃)) �= 0 (A76)

holds for one R̃ ∈ G − H with �R̃ ∈ �(G − H ). Since all R̃
are elements of R′H the previous argument shows that such a
R̃ has to exist.

In the following, we choose this labeling and discuss two
examples of two-dimensional real coreps. First, we consider
the monochromatic point group D4, which has the halving
subgroup H = C4. D4 has one two-dimensional E represen-
tation. Ref. [55] shows that all matrix representatives of the
elements of H are of the form m2

1 in Eq. (A43). The elements
of the set G − H correspond to twofold rotations with trace
zero. Thus, the corep derived from E for the dichromatic point
group D4(C4) reduces to twice the two-dimensional real corep
that we also label E . The character table of D4(C4) is given in
Table VII.

As a second example, we discuss the real coreps of the
dichromatic point group C6v (C3v ). Here, we consider the corep
derived from the two-dimensional E1 representation of C6v .
The set C6v − C3v contains four group elements that corre-
spond to twofold symmetries, namely one rotation C2 and
three mirror planes σdi with i = 1, 2, 3. First, let us choose
A = �C2 where �E1 (C2) = −2. Then, as shown by the analy-

sis above, we find that there are two distinct two-dimensional
real coreps, with the labels E1 and E2. Instead of choosing
A = �C2, we could also choose A = �σd1. This choice leads
to the same conclusions since we also find the two two-
dimensional real coreps E1 and E2 because �E1 (σd1) = 0 and
the matrix representatives of two of the three vertical mirror
planes σv in C3v are of the form m2

2 [55]. The character table
of the two two-dimensional real coreps of C6v (C3v ) is given in
Table VIII.

c. Coreps of dichromatic point groups derived
from three-dimensional representations

The highest-dimensional representations that occur for the
58 dichromatic point groups are three-dimensional, i.e., T ,
representations. In this section, we derive the real corep from
a three-dimensional representation �3 for the case that the
antiunitary element A = �R′ can be chosen such that R′2 = e.
For a three-dimensional representation, the character of R′ can
take four different values that are given by χ (�3(R′)) = ±3
and χ (�3(R′)) = ±1.

First, we consider the case χ (�3(R′)) = ±3. Then, R′ cor-
responds to the inversion i so that the antiunitary element is
given by A = �R′ = �i. Up to a sign, real matrix representa-
tives of a three-dimensional representation can be written as
[55]

m3
1 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, m3

2 =
⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠, (A77)

m3
3 =

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠, m3

4 =
⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠, (A78)

m3
5 =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, m3

6 =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, (A79)

m3
7 =

⎛
⎝0 1 0

1 0 0
0 0 −1

⎞
⎠, (A80)

TABLE VIII. Character table of the two-dimensional real coreps
of the dichromatic point group C6v (C3v ).

C6v (C3v ) e 2C3 3σv 2�C6 �C2 3�σd

E1 2 −1 0 1 −2 0
E2 2 −1 0 −1 2 0
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or as products of these matrices. In the following, we assume
that the matrix representative of R′ = i is

�3(R′) = m3
1, (A81)

i.e., we consider the case χ (�3(R′)) = 3. Using Eq. (A28),
we obtain the corep of the antiunitary element A as

D3(A) =
(

0 I3

I3 0

)
. (A82)

For the unitary elements, we use Eq. (A46), where we just
have to replace the two-dimensional representation with the
three-dimensional one. Then, coreps of the unitary elements
are found as

D3
m3

i
(R) =

(
m3

i 0
0 m3

i

)
. (A83)

The orthogonal transformation

U 3 = 1√
2

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 1
0 −1 0 0 1 0

−1 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠ (A84)

diagonalizes D3(A) such that one of the two main-diagonal
blocks is given by Eq. (A81),

D′3(A) = (U 3)−1D3(A)U 3 =
(−I3 0

0 I3

)
. (A85)

For the coreps of the unitary elements in Eq. (A83), one can
check that each matrix representative is left block diagonal.
Thus, the corep D3 derived from the three-dimensional repre-
sentation with �3(R′) = m3

1 decomposes into two real coreps

D′3 = d3
− ⊕ d3

+, (A86)

where d3
− and d3

+ are odd and even with respect to A,
respectively. For the basis functions, we again distinguish
between basis functions that are even with respect to �,
ψe

3 = (ψe
31, ψ

e
32, ψ

e
33), and basis functions that are odd, ψo

3 =
(ψo

31, ψ
o
32, ψ

o
33). Thus, the basis functions of D3 are given by

γ e
3 = (

ψe
3 , P̂�R′ψe

3

) = (
ψe

31, ψ
e
32, ψ

e
33, ψ

e
31, ψ

e
32, ψ

e
33

)
,

(A87)

γ o
3 = (

ψo
3 , P̂�R′ψo

3

) = (
ψo

31, ψ
o
32, ψ

o
33,−ψo

31,−ψo
32,−ψo

33

)
.

(A88)

Hence, we find for the basis functions of D′3 that

γ ′e
3 = γ e

3 U 3 =
√

2
(
0, 0, 0, ψe

33, ψ
e
32, ψ

e
31

)
, (A89)

γ ′o
3 = γ o

3 U 3 = −
√

2
(
ψo

33, ψ
o
32, ψ

o
31, 0, 0, 0

)
. (A90)

Consequently, ψe
3 and ψo

3 are basis functions of d3
+ and d3

−,
respectively. In the following, we discuss this result in more
detail. Since we have derived the corep D3 from a three-
dimensional representation with χ (�3(R′)) = χ (�3(i)) = 3,
it is clear that �3 is a Tg representation, e.g., the T1g repre-
sentation of Oh. For a g representation, the basis functions
ψe

3 that are even under A are of even order in momentum

components, whereas the odd basis functions ψo
3 are the Pauli

matrices. Thus, Eq. (A89) shows that the even-in-momentum
basis functions and the Pauli matrices are in different real
coreps. In analogy to the just shown procedure, one can derive
the real coreps from a u representation with χ (�3(R′)) =
χ (�3(i)) = −3. Since the basis functions of a u representa-
tion are odd in momentum, they are even with respect to the
product �i. Thus, an odd-in-momentum basis function of a
three-dimensional representation belongs to a real corep that
is even with respect to A. This is Kramers’ theorem at the level
of real coreps: Since for magnetic point groups that contain �i
the Pauli matrices and momentum basis functions are never in
the same real corep the bands are doubly degenerate.

Now, we consider the case χ (�3(R′)) = −1, where we
choose m3

7 in Eq. (A80) as the matrix representative of R′, i.e.,

�3(R′) = m3
7. (A91)

The coreps of the unitary elements are derived using
Eq. (A46), where we replace m2

i by m3
i and use Eq. (A91)

for the matrix representative �3(R′). Next, we apply the or-
thogonal transformation

Ũ 3 = 1√
2

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 −1 0 0 1
0 −1 0 0 −1 0

−1 0 0 −1 0 0
0 0 −1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

(A92)
to the corep D3. As one can verify, Ũ 3 leaves the coreps
of the unitary elements block-diagonal. For the corep of the
antiunitary element A, we find

D̃′3(A) = (Ũ 3)−1D3(A)Ũ 3

=

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
−1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠, (A93)

where the bottom-right block matrix is identical to �(R′) =
m3

7. Thus, the corep D′3 decomposes into two different real
coreps d ′3 and d3,

D̃′3 = d ′3 ⊕ d3, (A94)

where χ (d ′3(A)) = 1 and χ (d3(A)) = −1. For the basis func-
tions, we find that

γ e
3 = (

ψe
3 , P̂�R′ψe

3

) = (
ψe

31, ψ
e
32, ψ

e
33, ψ

e
32, ψ

e
31,−ψe

33

)
(A95)

and

γ o
3 = (

ψo
3 , P̂�R′ψo

3

) = (
ψo

31, ψ
o
32, ψ

o
33,−ψo

32,−ψo
31, ψ

o
33

)
(A96)

transform as

γ̃ ′e
3 = γ e

3 Ũ 3 =
√

2
(
0, 0, 0,−ψe

31,−ψe
32, ψ

e
33

)
, (A97)

γ̃ ′o
3 = γ o

3 Ũ 3 =
√

2
(
ψo

31, ψ
o
32,−ψo

33, 0, 0, 0
)
. (A98)
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TABLE IX. Character table of the monochromatic point group S4

with basis functions up to second order in momentum and spin basis
functions.

S4 e C2 2S4 basis functions

A 1 1 1 σz, 1, k2
x + k2

y , k2
z

B 1 1 −1 kz, k2
x − k2

y , kxky

E 2 −2 0 {σx, σy}, {kx, ky}, {kxkz, kykz}

Thus, ψe
3 and ψo

3 are basis functions of the real coreps with
χ (d3(A)) = −1 and χ (d ′3(A)) = 1, respectively.

In analogy to one-dimensional real coreps, the labeling of
three-dimensional real coreps can be chosen to be the labeling
of the three-dimensional representations from which they are
derived. In particular, one identifies the three-dimensional
representation with that three-dimensional real corep d̃3 for
which the characters of the unitary elements in H are identical
and for which

χ (�3(R′)) = χ (d̃3(�R′)) (A99)

holds.

d. Corepresentations of the dichromatic point group S4(C2 )

Finally, we consider the dichromatic point group S4(C2) as
an example for which no antiunitary element A = �R′ with
R′2 = e exists. For S4, the character table is given in Table IX.
First, we investigate the coreps derived from the B representa-
tions. For the antiunitary element, we choose A = �S+

4 . Since
(S+

4 )−1RS+
4 is an element of the conjugacy class of R, there

is nothing further to calculate for the coreps of the unitary
elements R: for the two unitary elements R = e,C2, the corep
is the identity matrix

DB(R) =
(

1 0
0 1

)
. (A100)

Using Eq. (A6) and that

�B((�S+
4 )(�S+

4 )) = �B(�2(S+
4 )2) = �B(ẽC2) = 1,

(A101)
the corep of A is calculated as

DB(A) =
(

0 1
1 0

)
. (A102)

Thus, the matrix representatives of D1 are diagonalized by U 1

in Eq. (A19) and we obtain

D′B(R) =
(

1 0
0 1

)
, D′B(B) =

(−1 0
0 1

)
. (A103)

Hence, D′B is reducible to two one-dimensional real coreps,

D′B = B ⊕ A. (A104)

Next, we have a look at the basis functions, where we sepa-
rately consider basis functions of the representation B that are
even (ψe

B) and odd (ψo
B) with respect to �. For an even basis

function, the basis function γ e
B of the corep D is calculated

as

γ e
B = (

ψe
B, P̂�S+

4
ψe

B

) = (
ψe

B,−ψe
B

)
, (A105)

where we have used that ψe
B is odd with respect to S+

4 since
we are deriving the corep from the B representation. For ψo

B,
we analogously find

γ o
B = (

ψo
B, P̂�S+

4
ψo

B

) = (
ψo

B, ψo
B

)
. (A106)

Thus, the basis functions of D′ are computed as

γ ′e
B = −

√
2

(
ψe

B, 0
)
, (A107)

γ ′o
B =

√
2

(
0, ψo

B

)
. (A108)

Consequently, ψe
B and ψo

B are basis functions of the B corep
and the A corep, respectively. The derivation of the real coreps
from the trivial A representation works analogously.

Next, we derive coreps of S4(C2) starting from the E repre-
sentation of S4. The matrix representatives of S4 are given in
Ref. [55],

�E (e) =
(

1 0
0 1

)
, �E (C2z ) = −

(
1 0
0 1

)
, (A109)

�E (S+
4 ) =

(
0 −1
1 0

)
, �E (S−

4 ) =
(

0 1
−1 0

)
. (A110)

Then, the coreps derived from E are computed as

DE (e) =
(
I2 0
0 I2

)
, DE (C2z ) = −

(
I2 0
0 I2

)
, (A111)

DE (�S+
4 ) =

(
0 −I2

I2 0

)
, DE (�S−

4 ) =
(

0 I2

−I2 0

)
,

(A112)

where the corep for �S−
4 follows from the product rules of

the coreps. Since DE (�S+
4 ) is a real skew-symmetric matrix it

cannot be orthogonally diagonalized. However, we can block-
diagonalize DE (�S+

4 ) in two steps. The first step is to apply
the orthogonal transformation

UE =

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠, (A113)

which yields

DE
0 (�S+

4 ) = U −1
E D2(�S+

4 )UE =

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎠

(A114)
so that each off-diagonal block matrix is identical to �E (S+

4 )
in Eq. (A110). Since the coreps of e and C2z are proportional
to the identity matrix, U0 leaves them diagonal. Note that we
can rewrite Eq. (A114) as

DE
0 (�S+

4 ) = σx ⊗ (−iσy). (A115)

The second step is to apply the orthogonal transformation

ŨE = U 1 ⊗ I2, (A116)
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TABLE X. Character table of the dichromatic point group S4(C2)
with basis functions up to second order in momentum and spin basis
functions.

S4(C2) e C2 2�S4 basis functions

A 1 1 1 1, kz, k2
x + k2

y , k2
z

B 1 1 −1 σz, k2
x − k2

y , kxky

E 2 −2 0 {σx, σy}, {kx, ky}, {kxkz, kykz}

which block-diagonalizes the corep DE
0 ,

D′E (e) =
(
I2 0
0 I2

)
, (A117)

D′E (C2z ) = −
(
I2 0
0 I2

)
, (A118)

D′E (�S+
4 ) =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠, (A119)

D′E (�S−
4 ) =

⎛
⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0

⎞
⎟⎠. (A120)

Hence, we find that D′E is reducible,

D′E = E ⊕ E , (A121)

with the two-dimensional real corep E . Next, we investigate
basis functions where we again distinguish between basis
functions that are odd with respect to �, ψo

E = (ψo
E1, ψ

o
E2),

and basis functions that are even, ψe
E = (ψe

E1, ψ
e
E2). The basis

functions of D2 are calculated as

γ o
E = (

ψo
E , P̂�S+

4
ψo

E

) = (
ψo

E1, ψ
o
E2,−ψo

E2, ψ
o
E1

)
, (A122)

γ e
E = (

ψe
E , P̂�S+

4
ψe

E

) = (
ψe

E1, ψ
e
E2, ψ

e
E2,−ψe

E1

)
. (A123)

For the basis functions of D′2, we find

γ ′o
E =

√
2

(
ψo

E1, ψ
o
E2, 0, 0

)
, (A124)

γ ′e
E = −

√
2

(
0, 0, ψe

E1, ψ
e
E2

)
. (A125)

Hence, both ψo
E and ψe

E are basis functions of the real corep
E . In Table X, the character table of S4(C2) including the basis
functions up to second order is given.

APPENDIX B: EXAMPLES FOR BAND TOUCHINGS

In this Appendix, we illustrate our method by analyzing
the band touchings for three point groups: the monochromatic
group T , the corresponding gray group, and the dichromatic
group D4(C4).

1. Band touchings of the monochromatic point groups T
and the corresponding gray group

In the following, we calculate the band touchings
of the monochromatic point group T close to the �

point. For the point group T , the Pauli matrices are el-
ements of the three-dimensional representation T [60].
Hence, we have to determine the zeros of the system of
equations

f T
x (k) = aT kx + bT kykz = 0, (B1)

f T
y (k) = aT ky + bT kzkx = 0, (B2)

f T
z (k) = aT kz + bT kxky = 0, (B3)

where aT , bT ∈ R. Each of the equations (B1)–(B3) describes
a hyperbolic paraboloid as illustrated in Fig. 3(a) for Eq. (B1).

From Eq. (B1), we obtain

kx = −bT kykz

aT
. (B4)

We use this result to calculate the intersections of fx(k) =
fy(k) = 0 by plugging Eq. (B4) into Eq. (B2):

fy(k) = ky
a2

T − b2
T k2

z

aT
= 0. (B5)

The solutions of Eqs. (B4) and (B5) are calculated as

ky = 0, kx = 0, (B6)

and

kz = ±aT

bT
, kx = ∓ky. (B7)

FIG. 3. Solutions of the system of equations (B1)–(B3) for the monochromatic point group T . (a) The zero surface of f T
x = 0 is a hyperbolic

paraboloid. (b) The common solutions of f T
x = 0 (light-blue surface), and f T

y = 0 (orange surface) are straight lines shown in dark blue. (c) The
solutions of f T

x = f T
y = 0 (dark blue) and f T

z = 0 (green surface) are given by Weyl points (red dots). The threefold rotation axes are shown
in gray.
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The solution in Eq. (B6) describes the entire kz axis, while
the solution in Eq. (B7) corresponds to two straight lines.
These two lines lie in planes parallel to the kxky plane and are
displaced in the normal direction by kz = ±aT /bT . They have
polar angles ∓π/4 within these planes. The three different
solutions of Eq. (B5) are illustrated in Fig. 3(b).

In the third step, we search for solutions of f T
x = f T

y =
f T
z = 0. The solutions are illustrated in Fig. 3(c). By plugging

the solution of f T
x = f T

y = 0 given by Eq. (B6) into Eq. (B3),
we find the single solution

kT
0 = (0, 0, 0), (B8)

which is the � point. By inserting the solution in Eq. (B7) into
Eq. (B3), we obtain the four independent solutions

kT
1,2;z = aT

bT
, kT

1,2;y = ±aT

bT
, kT

1,2;x = −kT
1,2;y = ∓aT

bT
(B9)

and

kT
3,4;z = −aT

bT
, kT

3,4;y = ±aT

bT
, kT

3,4;x = +kT
3,4;y = ±aT

bT
.

(B10)

In total, there are five Weyl points as illustrated in Fig. 3(c).
One Weyl point is the � point, while the other four are located
on the four threefold rotation axes.

Next, we investigate which Weyl points remain if we
take into account time-reversal symmetry. For the gray point
group T ⊗ {e,�}, the Pauli matrices and thus the coefficient
functions f T

i belong to the time-reversal-odd real corep T −.
Hence, only the odd-in-momentum basis functions are rele-
vant for the coefficient functions and we have to solve

f̃ T
x (k) = aT kx = 0, (B11)

f̃ T
y (k) = aT ky = 0, (B12)

f̃ T
z (k) = aT kz = 0, (B13)

where we have included all momentum basis functions up to
second order. The only solution of this system of equations is
k = (0, 0, 0). Consequently, out of the five Weyl points of
the monochromatic point group T , only the Weyl point at the
time-reversal-invariant � point survives.

2. Band touchings of the dichromatic point group D4(C4)

Here, we investigate the band touchings of the dichromatic
point group M = D4(C4), the character table of which is given
in Table VII above. We have to calculate the solutions of the
system of equations

f M
x (k) = gM kx + hM kxkz = 0, (B14)

f M
y (k) = gM ky + hM kykz = 0, (B15)

f M
z (k) = aM + bM kz + cM

(
k2

x + k2
y

) + dM k2
z = 0, (B16)

where aM, bM, cM, dM, gM, hM ∈ R. The intersections of the
surfaces f M

x = f M
y = 0 described by Eqs. (B14) and (B15) are

given by the kz axis and a plane parallel to the kxky plane, as
illustrated in Fig. 4(a). Equation (B16) describes a quadric the
center of which is on the kz axis. Furthermore, the principal

FIG. 4. [(a), (b)] Solutions of the system of equations (B14)–
(B16) for the dichromatic point group D4(C4). (a) Common solution
of f M

x = 0 (green and blue surfaces) and f M
y = 0 (orange and blue

surface) in blue. (b) Common solution of f M
x = f M

y = 0 (blue surface
and line) and f M

z = 0 (light-blue surfaces) in red. [(c), (d)] Solutions
of the system of equations (B17), (B18), and (B16) where higher-
order terms are taken into account. (c) Common solution of f̃ M

x = 0
(green surfaces) and f̃ M

y = 0 (orange surfaces) in blue. Common
solution of f̃ M

x = f̃ M
y = 0 (blue curves) and f M

z = 0 (light-blue sur-
faces) in red.

axes of this quadric are the coordinate axes and the kx and
ky principal axes are degenerate. Thus, the solutions of f M

x =
f M
y = f M

z = 0 are either zero or two Weyl points on the kz

axis, which is the fourfold rotation axis, and there can also be
a circular nodal line the center of which is on the kz axis. The
circular nodal line is located in a plane that is parallel to the
kxky plane. In Fig. 4(b), one possible solution of the system of
equations (B14)–(B16) is depicted for parameters for which
f M
z = 0 describes a hyperboloid of two sheets.

Next, we investigate the stability of the circular nodal line
by taking into account third-order terms for f M

x and f M
y . The

corresponding equations then read as

f̃ M
x (k) = gM kx + hM kxkz + mM kxk2

z

+ nM kx
(
k2

x − 3k2
y

) = 0, (B17)

f̃ M
y (k) = gM ky + hM kykz + mM kyk2

z

+ nM ky
(
k2

y − 3k2
x

) = 0, (B18)

where mM, nM ∈ R. From Eqs. (B17) and (B18), we find that
f̃ M
x = f̃ M

y = 0 is still solved by all points on the kz axis.
However, there is no longer a solution in the form of a plane
parallel to the kxky plane. Instead, there are four curves in ad-
dition to the kz axis, as depicted in Fig. 4(c). Thus, the circular
line node in Fig. 4(b) dissolves into Weyl points when we take
into account higher order terms, as depicted in Fig. 4(d). The
line node found to second order is thus fragile.
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