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Surfaces of nodal noncentrosymmetric superconductors can host flat bands of Majorana modes, which provide
a promising platform for quantum computation if one can find methods for manipulating localized Majorana
wave packets. We study the fate of such flat bands when part of the surface is subjected to an exchange field
induced by a ferromagnetic insulator. We use exact diagonalization to find the eigenstates and eigenenergies
of the Bogoliubov–de Gennes Hamiltonian of a model system, for which an exchange field is applied along a
strip on the surface of a slab. We consider different orientations of the strip and the applied field. If the spin
polarization of the field-free system along the field direction is sufficiently large, perturbation theory predicts
that energies of states which are mostly localized on the exchange-field strip are shifted away from zero energy
by an amount proportional to the field strength. On the other hand, energies corresponding to states localized
on the field-free strip are only weakly affected by the field. Exact diagonalization confirms this. Moreover, we
discuss a setup with a small exchange field applied to the previously field-free strip with the goal of introducing
a linear dispersion. By switching this dispersion on and off, a wave packet could be moved in a certain direction.
We find that in our model system, a linear dispersion can indeed be achieved. The qualitative features of this
dispersion can be predicted from the momentum-dependent spin polarization of the field-free surface.
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I. INTRODUCTION

For noncentrosymmetric superconductors (NCSs) that
obey time-reversal symmetry and exhibit line nodes of the
superconducting gap function, one can define a momentum-
dependent invariant that ensures the existence of flat bands of
zero-energy surface states in regions of the surface Brillouin
zone where this invariant is nonzero [1–6]. Due to being
their own antiparticles, these surface modes are also known
as Majorana modes.

As the flat surface bands occupy a nonzero fraction S f /SBZ

of the area SBZ of the surface Brillouin zone, it is possible
to construct linear combinations of them which are localized
at arbitrary points in real space [7]. However, the number of
independent localized zero-energy modes in real space is not
equal to the number of sites at the surface, i.e., the number
of points in the surface Brillouin zone, but is reduced by a
factor of S f /SBZ. For the same reason, the wave packets have
a minimal width in real space that is inversely proportional
to the maximal diameter of the support of the flat bands in
the surface Brillouin zone. Moreover, these wave packets have
zero eigenenergy only in the limit of an infinitely thick slab.

Majorana modes have attracted a lot of interest in the
context of quantum computation [8–15]. Such applications
require ways to move Majorana modes around and, in par-
ticular, to move them past each other so as to braid their world
lines. The behavior upon braiding is of physical relevance
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because quasiparticles in a two-dimensional system can dis-
play anyon statistics. These anyons are called Abelian if, upon
exchanging, they can gather any phase factor eiφ . On the other
hand, for non-Abelian anyons, the braiding operations do not
commute anymore. Localized Majorana modes at the surfaces
of NCSs provide a promising platform for this. Here, we make
progress in two ways: First, it is necessary to confine the
Majorana modes to a certain real-space region of the surface,
i.e., to construct Majorana circuits. Second, one also has to
be able to move Majorana wave packets, which requires a
time-dependent modification of the bands such that they are
weakly dispersing.

In this paper, we suggest one introduce time-reversal-
symmetry-breaking terms to the Hamiltonian to achieve both
objectives. These terms are realized by exchange fields ap-
plied to parts of the surface by bringing the superconductor
into contact with a ferromagnetic insulator.

If an exchange field is applied to the entire surface, this
leads to a tilting of the previously flat surface bands away
from zero energy [16,17] due to the momentum-dependent
spin polarization of the surface states [18]. We first use this
effect to restrict the zero-energy surface states to certain strips
on the surface by applying a strong exchange field everywhere
else. For a nonzero spin polarization of the surface states in
the field-free system, this generically leads to the localization
of low-energy surface modes in the field-free strip. We then
introduce a small exchange field to this previously field-free
strip to induce a weak dispersion in order to move a Majorana
wave packet along the strip.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the model used for our analysis. In
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Sec. III, we derive and discuss the surface states in the pres-
ence of an exchange field applied to strips of various forms.
This is followed by an analysis of the prospects of creating a
linear dispersion along a strip and thereby moving Majorana
wave packets. We summarize our results and draw conclu-
sions in Sec. V.

II. MODEL SYSTEM

For our calculations, we use a model system with
point group C4v , which is relevant for, e.g., CePt3Si [19],
CeRhSi3 [20], CeIrSi3 [21], and LaAlO3/SrTiO3 heterostruc-
tures [22]. We determine the low-energy eigenstates and
eigenvalues of the Bogoliubov–de Gennes (BdG) Hamiltonian
of a (101) slab by a Fourier transformation to real space along
the two axes which are not translationally invariant followed
by exact diagonalization of the resulting matrix.

A. Hamiltonian

We start by considering a three-dimensional single band
NCS described by the Hamiltonian

H = 1

2

∑
k

�
†
kHBdG(k)�k, (1)

with the Nambu spinor �k = (ck,↑, ck,↓, c†
−k,↑, c†

−k,↓)� of the
electronic creation and annihilation operators for momentum
k and spin σ ∈ {↑,↓} and the BdG Hamiltonian

HBdG(k) =
(

ε(k)σ̂ 0 + λlk · σ̂ �̂(k)

�̂†(k) −ε(k)σ̂ 0 + λlk · σ̂∗

)
. (2)

Here, the vector of Pauli matrices and the 2 × 2 identity ma-
trix are denoted by σ̂ and σ̂ 0, respectively, and

h(k) = ε(k)σ̂ 0 + λlk · σ̂ (3)

is the normal-state Hamiltonian. The first term, ε(k)σ̂ 0, which
is diagonal in the spin basis, will henceforth be represented by
the tight-binding dispersion

ε(k) = −2t (cos kx + cos ky + cos kz ) − μ (4)

for nearest-neighbor hopping strength t and chemical po-
tential μ. The second term, λlk · σ̂, is the antisymmetric
spin-orbit-coupling (ASOC) term, in which λ represents the
spin-orbit-coupling (SOC) strength, while the form of the
SOC vector lk is constrained by the lattice symmetries [3].
For the point group C4v , a first-order expansion leads to a
Rashba-type SOC with [23]

lk = x̂ sin ky − ŷ sin kx. (5)

In the energetically most favorable pairing state, the vector
of triplet pairing amplitudes tends to be parallel to the ASOC
vector lk [24] so that the pairing matrix can be written as

�̂ = (�sσ̂ 0 + �t lk · σ̂)(iσ̂ y), (6)

with the singlet and triplet pairing strengths �s and �t , re-
spectively, which we assume to be both constant and positive.
Here, iσ̂ y represents the unitary part of the antiunitary time-
reversal operation. In this paper, we consider (s + p)-wave
pairing, as described by Eq. (6), because this leads to the

simplest nodal structure. A more complicated momentum
dependence of the pairing matrix, e.g., d-wave or f -wave
pairing, would lead to additional nodes and more complex
shapes of the momentum-space regions hosting zero-energy
surface states [3]. This would increase the computational ef-
fort without leading to qualitatively new physical effects.

Diagonalizing Eq. (3) leads to two helicity bands

ξ±
k = εk ± λ|lk|, (7)

with the gap in the positive (+) and negative (−) helicity band
being

�±
k = �s ± �t |lk|, (8)

respectively. Thus, for sufficiently large �t , the negative-
helicity gap �− can change sign, i.e., line nodes generically
appear on the negative-helicity Fermi surface [25]. This en-
sures the topological stability of flat bands of Majorana
surface states within the projection of the bulk nodal lines onto
the surface Brillouin zone [2–4].

B. Setups

Our goal is to find ways to confine and manipulate the Ma-
jorana modes. However, as these modes do not carry electric
charge, one cannot hope to control them via an electric field.
Instead, we will add an exchange field term to the Hamil-
tonian, which shifts the surface modes to nonzero energy
by coupling to their spin polarization [16,17,26–28]. In the
simplest setup, the exchange field is applied to a strip on the
surface. In this scenario, we expect the zero-energy surface
modes to be destroyed on the exchange-field strip, while they
should persist at low energy in the field-free region.

To parametrize the slab with (101) surfaces, we keep the y
coordinate, which is parallel to the surface, while rotating the
x and z directions to

m ≡
⌊x − z

2

⌋
, (9)

l ≡ x + z, (10)

which are parallel and orthogonal to the slabs surface, respec-
tively (see Fig. 1). We Fourier transform the BdG Hamiltonian
in Eq. (2) to real space and then consider a slab of thickness
L in the l direction as well as length M in the m direction
and Y in the y direction. The boundary conditions are open
in the l direction perpendicular to the surfaces and periodic
in the m and y directions parallel to the surfaces. The ex-
change field can then be applied as a term h · σ̂ that acts on
all surface-layer sites belonging to the exchange-field strip.
This breaks translational invariance in the in-plane direction
orthogonal to the strip but respects it in the parallel direction.
It is useful to leave the Hamiltonian in momentum space in
the latter direction. A detailed derivation of the Hamiltonian
is presented in Appendix A.

For the concrete configuration of the strip and the exchange
field, we consider the four main setups shown in Fig. 1: both
the strip and the field can point either in the y direction or
in the m direction, which we will call setups 1, 2, 3, and
4, respectively. We do not consider out-of-plane fields, as
they are more difficult to produce experimentally and do not
yield any additional insight. Moreover, we ignore strips in
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FIG. 1. Four different setups for the strip directions: The strip is
oriented along the y direction in setup 1 and setup 2 and along the m
direction in setup 3 and setup 4. The exchange field points in the y
direction in setups 1 and 3 and in the m direction in setups 2 and 4.

any direction other than the two coordinate axes m and y. We
can, however, change whether the exchange field is applied
to the l = 1 surface or the l = L surface, which will lead
to different eigenstates and eigenvalues of the Hamiltonian
because the C4v symmetry does not require the two surfaces
to be equivalent.

III. SPECTRUM AND EIGENSTATES FOR A STRIP

In this section, we examine the low-energy spectrum and
the corresponding eigenstates of a system with an exchange
field applied to a strip at the surface according to the four
setups described in Sec. II B. First, we construct a perturbative
argument about the qualitative effect of the exchange field
on the eigenvalues of the Hamiltonian. We then use exact
diagonalization to confirm this hypothesis and reveal further
details.

A. First-order perturbation theory and spin polarization
of the field-free system

For low field strengths h = |h|, the exchange-field term
h · σ̂ can be considered as a perturbation to the field-free
system. We label the states |km, ky, ν〉 of the field-free system
according to their surface momentum (km, ky) and the index
ν, which enumerates the 4L states with the same surface
momentum (km, ky), ordered by increasing modulus |E | of the
eigenenergy. Under the influence of an exchange field applied
to the layer l , these states get shifted by an amount

�E|km,ky,ν〉 ∝ h · 〈ŝl〉|km,ky,ν〉, (11)

up to first order of perturbation theory. In this equation, the ex-
pectation value 〈σ̂ l〉|km,ky,ν〉 of the spin polarization is defined
as

〈ŝl〉|km,ky,ν〉 = 〈km, ky, ν|Pl,l ⊗
(

σ̂ 0
0 −σ̂�

)
|km, ky, ν〉, (12)

where Pl,l is an L×L matrix with entry 1 in the (l, l ) com-
ponent and zero entries otherwise. Thus, to the first order
of perturbation theory, the energy corrections due to the ap-
plied exchange field are proportional to the zero-field spin
polarization.

The momentum-dependent spin polarization of the field-
free system can be calculated by transforming the BdG
Hamiltonian in Eq. (2) to real space in the l direction per-
pendicular to the slab and using open boundary conditions
(see Appendix A). Figure 2 shows the result for the m and
y components of the spin at the l = 1 surface and for the
m component at the l = L surface of a slab with thickness
L = 200, hopping amplitude t = 1, spin-orbit coupling λ =
−1.5, chemical potential μ = −3, and gaps �s = 0.3426 and
�t = 0.5. These parameters are also used for all further cal-
culations. Our qualitative results do not depend on the specific
values of these parameters. The y components sy

l of the spins
are the same for l = 1 and l = L. Hence, for setups 1 and
3, we do not expect different shifts in energy for the two
surfaces. In general, we expect the energy shift to be linear in
the field strength h for all those momenta in the strip direction
(i.e., ky in setups 1 and 2 and km in setups 3 and 4), for
which the corresponding spin polarization is nonzero. Thus,
the momentum ky = 0 in setup 2 is an exception, for which
this argument does not hold, and which will therefore not
show a linear field dependence of the energy shift, because
s(m)

l=1 and s(m)
l=L vanish by symmetry.

Moreover, the m component of the spin at the l = L surface
is much smaller than for the l = 1 surface and there are
additional sign changes for km close to ±1. The origin of
this is an accidental near cancellation of spin polarizations
in the x and z directions. The weak spin polarization and
corresponding small energy shifts have a profound effect on
the surface states, as we will see below.

B. Classification of surface states

All calculations in this section are performed for the
exchange-field strip covering half the surface of width M =
100 in setups 1 and 2 and Y = 100 in setups 3 and 4, i.e., the
exchange-field strip has a width of �m = M/2 = 50 in setups
1 and 2 and of �y = Y/2 = 50 in setups 3 and 4. The strip is
centered in the middle of the slab, i.e., at m = 50 or y = 50.

Figure 3 shows the energies and probability densities of
surface states for an example of the first situation explained
in Sec. III A, i.e., one with a nonzero spin polarization in the
exchange-field direction. The calculations for this example are
performed for the surface momentum ky = 0 and a field h =
0.025êy applied according to setup 1 at the l = 1 surface, i.e.,
with both the field and the strip oriented along the y direction.
As the Hamiltonian is a 4LM×4LM matrix [see Eq. (A10) in
Appendix A], each vector representing an eigenstate � can be
divided into LM tuples of length four. Thus, every site (m, l )
corresponds to a quadruple

�n(m, l ) = (� (p,↑)
n (m, l ), � (p,↓)

n (m, l ),

� (h,↑)
n (m, l ), � (h,↓)

n (m, l )), (13)

which represents the particle-spin-up, particle-spin-down,
hole-spin-up, and hole-spin-down amplitudes of the state at
the site (m, l ).
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FIG. 2. Spin polarization of the field-free system. (a) m component of the spin at the l = 1 surface and (b) at the l = L surface, as a
function of the surface momenta km and ky. (c) y component of the spin, which is equal at the l = 1 and the l = L surface. The green lines are
the projections of the bulk nodal lines onto the surface Brillouin zone. As the maximal spin polarization differs significantly between the three
cases, different color scales are used.

The states in Figs. 3(a) and 3(b) are ordered according to
increasing absolute value of the corresponding energy |E | and
enumerated by an index n. Figure 3(b) shows the l = 1 part of
the squared modulus

|�n(m, l = 1)|2 ≡
∑

i=(p,↑),(p,↓),(h,↑),(h,↓)

∣∣� i
n(m, l = 1)

∣∣2
(14)

of the wave function as a function of m (vertical axis) from
n = 1 to 150 (horizontal axis). In Fig. 3(a), the corresponding
eigenvalues are plotted and colored according to the fraction∑75

m=26 |�n(m, l = 1)|2/∑100
m=1 |�n(m, l = 1)|2 of the surface

part of the state that is localized on the exchange-field strip.
The spectra plotted using empty diamonds and empty squares
in Fig. 3(a) refer to the cases with zero applied field and with
the field applied to the whole surface, respectively. So, com-
pared to the full-field case, only approximately half as many
states at the l = 1 surface get shifted away from zero energy.
All surface states decay rapidly into the bulk, as can be seen
exemplarily in Figs. 3(c) and 3(d). The lowest eigenvalues
|En| in Fig. 3(a) correspond to states localized at the oppo-
site, field-free l = L surface and will be ignored in further
discussion. Starting at n = 21, the states are localized almost
entirely on the field-free strip. They resemble the states of a
quantum-mechanical particle in a box potential in that they
have an increasing number of nodes with increasing energy
and decay rapidly into the exchange-field strip, i.e., the walls
of the box. We will call these states box states from now
on. As an example, a state with zero nodes that is localized
almost entirely on the field-free strip is depicted in Fig. 3(c).
At higher energies, a non-negligible part of the states starts
to be localized at the boundaries between the two kinds of
strips and on the exchange-field strip, until finally, there is a
sharp transition at n ≈ 100. Beyond this point, the states are
localized mostly on the exchange-field strip and, similar to
the low-energy states introduced above, the number of nodes
depends on n. However, in this case, the number of nodes
decreases with increasing energy. Therefore, we are going to

call these states antibox states from now on. The last of these
antibox states, which has zero nodes, is shown in Fig. 3(d).

According to the perturbative arguments in Sec. III A, the
eigenenergies should be linear in the field strength. Figure 4
shows that for ky = 0, the field dependence of the eigenener-
gies is indeed linear for the antibox states, while it stays very
close to zero for the box states. The shift of the eigenenergy
for the lowest box state is several orders of magnitude smaller
than for the antibox states. In contrast to the antibox states,
the field dependence of the box states is not linear. Instead, the
initial increase is characterized by an exponent that is smaller
than unity and the curve flattens for stronger fields. This can
be attributed to the fact that even though the box state is mostly
localized on the field-free strip, it has a small nonzero weight
on the exchange-field strip. This part of the state is strongly
affected by the exchange field and leads to a small energy
shift. However, the weight of the box state on the exchange-
field strip decreases with increasing field strength, which leads
to the nonlinear behavior. As examples for both the box and
the antibox states, the field dependence of the eigenenergies
of the states with zero nodes on the exchange-field strip and
on the field-free strip are indicated in red in Fig. 4. For all
other setups, results of the analogous calculations are quali-
tatively similar to setup 1 in that they exhibit low-energy box
states on the field-free strip and antibox states with linearly
field-dependent energy on the exchange-field strip, with two
notable exceptions. One of these is a field applied according
to setup 2 for states at ky = 0. Results for this situation are
depicted in Fig. 5. As shown in Fig. 5(a), there are no antibox
states with linearly field-dependent eigenvalues. All flat-band
states remain close to zero energy, the lowest order of field
dependence is quadratic, and there is only a weak shift in en-
ergy even at high field strength, which can be seen in Fig. 5(b)
for h = 0.25. Moreover, the states are not clearly localized on
either one of the two strips [see Fig. 5(c)]. This deviation from
the previously described behavior results from the fact that the
relevant spin polarization for this setup is zero for all states at
ky = 0. Thus the correction to the eigenenergies of first order
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FIG. 3. Surface states and their energies arising for setup 1,
which exhibits nonzero spin polarization in the field-free system.
(a) Energies at ky = 0 of a slab with an exchange field h = 0.025êy

applied to a strip along the y direction at the l = 1 surface, ar-
ranged in increasing order and colored according to the fraction of
the squared modulus of the wave function that is localized in the
exchange-field part of the surface. For reference, the field-free case
(diamonds) and the fully covered surface (squares) are plotted as
well. (b) Squared modulus of the corresponding wave function at
l = 1. (c) Probability density of the first box state and (d) of the last
antibox state over the whole thickness l ∈ {1, . . . , L} of the slab.

in the field vanishes and the remaining field dependence is
quadratic.

The other exception from the box/antibox phenomenology
occurs if both strip and field are oriented along the m direction
at the l = L surface, which is shown in Fig. 6 for km = 1. In
this case, most states remain at low energy and |�n(m, l =
1)|2 oscillates strongly at the entire surface of the slab. Thus,
they are not localized on either one of the strips [see Figs. 6(a)
and (b)]. An example of such a state is shown in Fig. 6(c). The
only two surface states that do not obey this pattern are two
states localized on either of the boundaries between the two
kinds of strips, shown in Figs. 6(d) and 6(e). The eigenenergy
of one of these states has a linear field dependence with a pos-
itive slope, while the other has a negative slope with the same
modulus (see Fig. 7). These observations can be explained as
follows: For every state originating from a Majorana surface
mode at (km, ky), the first-order perturbation theory has to

FIG. 4. Energies corresponding to the surface states at ky = 0 for
an exchange field according to setup 1 applied to the l = 1 surface,
for varying exchange-field strength h. The field dependence of the
eigenvalues corresponding to the highest antibox state and the lowest
box state are indicated in red. Inset: Zoom-in on the energy of the
lowest box state.

start from a linear combination of the two degenerate states
at (±km, ky). As shown by Fig. 2(b), for km = 1 these states
have a small zero-field m-spin polarization, which, however,
strongly oscillates between positive and negative values along
the real-space m axis. A derivation of this fact can be found
in Appendix B. If a field is applied, none of these oscillations
lead to an actual shift of the eigenenergy of a state because
the positive and negative spins cancel out. Therefore, almost
all states remain at zero energy. Only in the case where a
peak of the m-spin polarization is on one side of the boundary
between the field-free and the exchange-field strip and the
corresponding dip is on the other, does the energy get shifted
upward or downward linearly. Thus, the two states that are
shifted linearly are strongly localized at the boundary between
the two kinds of strips.

To conclude this section, we emphasize that generically
the strips exhibit a dichotomy of box states with weak field
dependence and antibox states with linear field dependence.
Exceptions occur if the relevant spin polarization for the field-
free surface either vanishes exactly because of symmetry or is
accidentally small.

IV. DISPERSION IN THE STRIP DIRECTION

In this section, we propose a method to move localized
wave packets of Majorana zero modes. As described in Sec. I,
one can form wave packets from the zero-energy Majorana
modes within the projection of the bulk nodal lines. As shown
in Sec. III B, one can localize modes at a strip on the surface
by applying an exchange field everywhere else, which will
shift states with a significant weight outside of the field-free
strip (i.e., antibox states) to high energies. The box states with
most of their weight on the field-free strip remain at much
lower energy. They are still approximately degenerate in the
conserved momentum component parallel to the strip and so
one can choose an appropriate linear combination of the box
states at different momenta to build a localized wave packet.
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FIG. 5. Energies and surface states at ky = 0 for an exchange field according to setup 2 applied to the l = 1 surface. (a) Spectrum of
the Hamiltonian for varying exchange-field strength h ∈ [0, 1]. (b) Eigenenergies for an exchange field h = 0.25êm, colored according to the
fraction of the squared modulus of the wave function which is localized on the field strip and arranged in increasing order. For reference,
the field-free case (diamonds) and the fully covered surface (squares) are plotted as well. (c) Squared modulus of the wave function of the
corresponding eigenstates in the l = 1 layer.

The simplest idea for moving the wave packets is to apply a
small field to the previously field-free strip in order to create a
weak linear dispersion along the strip [16,17]. A wave packet
would move without broadening if it were a superposition of
components with the same velocity ∂E/∂kstrip along the strip,
where kstrip is the momentum parallel to the strip.

One can make predictions about the resulting dispersion
based on the spin polarization of the field-free system. For
every momentum kstrip, the first-order perturbation theory de-
scribed in Sec. III A can be applied, i.e., the exchange field
couples to the spin polarization of the surface states of the
field-free system. For every value of kstrip, there are fewer
than M (setup 1 or 2) or fewer than Y (setup 3 or 4) surface
states corresponding to different values of the momentum k⊥
orthogonal to the strip direction in the field-free system. If
the field is switched on, approximately half of these states are
shifted away from zero energy by an amount �E which, to
first order, is proportional to the spin polarization. The other
half correspond to the other surface of the slab. Thus, the
shape of the resulting dispersion E (kstrip) can be predicted
from the projection of the zero-field spin polarization along
the direction orthogonal to the strip.

In Fig. 8, the dispersion E (kstrip) is shown for all four se-
tups. The large field was chosen as hlarge = 0.005 for setups 1
and 2 and hlarge = 0.05 for setups 3 and 4, while the small field
was hsmall = 0.000 25 for setups 1 and 2 and hsmall = 0.0025
for setups 3 and 4. The dispersion in Fig. 8(a), which belongs
to setup 1, is inappropriate for our goals, as the bands are
merely shifted away from zero energy instead of being tilted
to form a linear dispersion. On the other hand, setup 2 in
Fig. 8(b) displays a linear dispersion over a wide range of
momenta ky, which should allow one to move a wave packet
in the y direction. Since the dispersion is not perfectly linear,
the wave packet will broaden with time.

To move a wave packet in the m direction, it would be nec-
essary to construct a linear dispersion on the small-field strip

of either setup 3 or setup 4. Similar to setup 1, setup 4 does
not lead to a linear dispersion, but rather shifts the bands away
from zero energy, as can be seen in Fig. 8(d). For setup 3, parts
of the dispersion are linear, as shown in Fig. 8(c). However, we
see that there are no linearly dispersing low-energy states at
small momentum km. The reason for this is clear from Fig. 2:
There are no flat-band states at small km for the field-free
surface [29] It is nevertheless possible to construct a wave
packet out of states with approximately the same velocity.
However, the high degree of anisotropy between strips in the
two orthogonal directions on the surface is likely detrimental
to constructing more complicated structures.

A crucial insight is that the general shape of the disper-
sions of the introduced two-field setup can be predicted from
the spin polarization of the field-free system. In first-order
perturbation theory, the dispersion in the strip direction is
determined by the projections of the spin polarizations along
the axis orthogonal to the strip. The spin polarization of
the field-free system is thus a straightforward tool to predict
which point groups other than C4v are promising candidates
to achieve weak linear dispersions on strips in two linearly
independent directions. Figure 4 of Ref. [18] shows that for
the (111) surface of a NCS with point group O, the spin
polarization is parallel to the surface and rotates by 2π when
the momentum parallel to the surface is rotated by 2π . This
system is thus promising for strips in arbitrary directions,
which we leave for future research.

V. SUMMARY AND CONCLUSIONS

Motivated by the goal of manipulating localized Majorana
modes at the surface of a NCS, we have analyzed the con-
sequences of the application of an exchange field to part of
a surface with Majorana flat bands. As a model system, we
have used a slab with (101) surfaces of a superconductor with
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FIG. 6. Surface states and energies arising from a field according
to setup 4 at the l = L surface of the slab. (a) Energies at ky = 1,
colored according to the fraction of the squared modulus of the
wave function which is localized on the field strip of the surface
and arranged in increasing order. For reference, the field-free case
(diamonds) and the fully covered surface (squares) are plotted as
well. (b) Squared modulus of the corresponding wave function at
l = L. (c) Example of a surface state that is localized on both of the
strips. (d), (e) The two states that are localized on either of the strip’s
boundaries.

point group C4v with an exchange field applied to a strip on
the surface.

We have seen both from first-order perturbation theory and
exact diagonalization that in cases where the spin polarization
of the zero-energy surface states in the field-free system is
not zero or very small for a certain momentum in the strip
direction, the eigenstates at low energies are localized on the
field-free strip. They have an increasing number of nodes with
weakly increasing energy, and thus resemble the states of a
particle in a box, which is why we have called them box states.
On the other hand, there are states which are shifted away
from zero energy by an amount �E that is proportional to
the exchange-field strength h. These states are localized on
the exchange-field strip. At fixed field strength, they have a
decreasing number of nodes with increasing energy and we
have called them antibox states. It is thus possible to achieve
the first prerequisite for manipulating the surface modes: To

FIG. 7. Energies corresponding to the surface states of a system
at km = 1 for which an exchange field according to setup 4 is applied
to the l = L surface for varying exchange-field strength h. The field
dependence of the eigenvalues corresponding to the states localized
on the boundaries between the two strips are indicated in red. Inset:
Zoom-in on the low-energy part of the spectrum.

constrain them to predefined regions. This picture breaks
down if the spin polarization of the field-free surface states
vanishes by symmetry or is accidentally small. In this case,
first-order perturbation theory is no longer valid and we do
not find well-defined box and antibox states.

We have also considered a small exchange field on the
previously field-free strip with the goal to introduce a linear
dispersion to the almost flat bands of Majorana modes. We
have found that it is possible to obtain an approximately linear
dispersion for a range of momenta for strips in both the y
and the m directions. Hence, by switching the weak field on
and off, one can, in principle, also achieve the second pre-
requisite for Majorana manipulation: To move wave packets
in a controlled manner. The deviation from perfect linearity
will lead to broadening of wave packets with time. By mak-
ing the support of the wave packets narrower in momentum
space, they become broader in real space but the velocities
become more uniform so that the additional time-dependent
broadening is reduced. The necessary optimizing of wave
packets and the dynamics resulting from switching the weak
field on and off are interesting topics for future research. In
general, the shape of the dispersion on the weak-field strip
can be predicted from the spin polarization of the field-free
system. Thus, good candidates for model systems and setups
that allow for a linear dispersion in two independent surface
directions can be identified based on the spin polarization.
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FIG. 8. Dispersion for the specified setups, where a strong field is applied to one strip at the l = 1 surface of the slab to restrict the flat-band
states to the other strip. A weak field is applied to the latter strip, in order to make the previously flat bands weakly dispersive. Both fields point
in the same direction, i.e., the y direction for panels (a) and (c) and the m direction for panels (b) and (d), while the strip is oriented along the
y direction for panels (a) and (b) and the m direction for panels (c) and (d). The dispersion is plotted in blue. For reference, the dispersion of a
completely field-free system is given in light gray in the background. The insets show zoom-ins on the low-energy parts of the dispersions.

APPENDIX A: DERIVATION OF THE MEAN-FIELD
HAMILTONIAN MATRIX

In this Appendix, we summarize the derivation of the
Hamiltonian matrix that we use to obtain the eigenstates
and eigenenergies in Secs. III B and IV. We first transform
the Hamiltonian in Eq. (2) from the momenta (kx, ky, kz ) to

(km, ky, kl ) via the relation⎛
⎜⎝

kx

ky

kz

⎞
⎟⎠ =

⎛
⎜⎝

1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2

⎞
⎟⎠

⎛
⎜⎝

km

ky

kl

⎞
⎟⎠. (A1)

Then, we perform a Fourier transformation

c(km,ky,kl ),σ = 1√
L

∑
l∈{1,...,L}

e−ikl l/
√

2c(km,ky,l ),σ (A2)

in the l direction with open boundary conditions, which leads to

H = 1

2L

∑
km,ky,l,l ′

�
†
(km,ky,l )e

ikl (l−l ′ )/
√

2

⎛
⎜⎜⎜⎝

−μ − 2t cos(ky) λ sin(ky) −�t sin(ky) �s

λ sin(ky) −μ − 2t cos(ky) −�s �t sin(ky)

−�t sin(ky) �s μ + 2t cos(ky) −λ sin(ky)

−�s �t sin(ky) −λ sin(ky) μ + 2t cos(ky)

⎞
⎟⎟⎟⎠�(km,ky,l ′ )
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+ �
†
(km,ky,l )e

ikl (l−l ′ )/
√

2 cos

(
kl√

2

)
⎛
⎜⎜⎜⎜⎝

−4t cos
( km√

2

)
iλ sin

( km√
2

) −i�t sin
( km√

2

)
0

−iλ sin
( km√

2

) −4t cos
( km√

2

)
0 i�t sin

( km√
2

)
i�t sin

( km√
2

)
0 4t cos

( km√
2

)
iλ sin

( km√
2

)
0 −i�t sin

( km√
2

) −iλ sin
( km√

2

)
4t cos

( km√
2

)

⎞
⎟⎟⎟⎟⎠�(km,ky,l ′ )

+ �
†
(km,ky,l )e

ikl (l−l ′ )/
√

2 sin

(
kl√

2

)
⎛
⎜⎜⎜⎜⎜⎝

0 iλ cos
( km√

2

) −i�t cos
( km√

2

)
0

−iλ cos
( km√

2

)
0 0 i�t cos

( km√
2

)
i�t cos

( km√
2

)
0 0 iλ cos

( km√
2

)
0 −i�t cos

( km√
2

) −iλ cos
( km√

2

)
0

⎞
⎟⎟⎟⎟⎟⎠�(km,ky,l ′ )

= 1

2

∑
km,ky,l

�
†
(km,ky,l )

⎛
⎜⎜⎜⎜⎝

−μ − 2t cos(ky) λ sin(ky) −�t sin(ky) �s

λ sin(ky) −μ − 2t cos(ky) −�s �t sin(ky)

−�t sin(ky) �s μ + 2t cos(ky) −λ sin(ky)

−�s �t sin(ky) −λ sin(ky) μ + 2t cos(ky)

⎞
⎟⎟⎟⎟⎠�(km,ky,l )

+ �
†
(km,ky,l+1)

⎛
⎜⎜⎜⎜⎜⎝

−2t cos
( km√

2

)
λ
2 eikm/

√
2 −�t

2 eikm/
√

2 0

− λ
2 eikm/

√
2 −2t cos

( km√
2

)
0 �t

2 eikm/
√

2

�t

2 eikm/
√

2 0 2t cos
( km√

2

)
λ
2 eikm/

√
2

0 −�t

2 eikm/
√

2 − λ
2 eikm/

√
2 2t cos

( km√
2

)

⎞
⎟⎟⎟⎟⎟⎠�(km,ky,l )

+ �
†
(km,ky,l−1)

⎛
⎜⎜⎜⎜⎜⎝

−2t cos
( km√

2

)
λ
2 eikm/

√
2 −�t

2 eikm/
√

2 0

− λ
2 eikm/

√
2 −2t cos

( km√
2

)
0 �t

2 eikm/
√

2

�t

2 eikm/
√

2 0 2t cos
( km√

2

)
λ
2 eikm/

√
2

0 −�t

2 eikm/
√

2 − λ
2 eikm/

√
2 2t cos

( km√
2

)

⎞
⎟⎟⎟⎟⎟⎠

†

�(km,ky,l ), (A3)

with the Nambu spinor

�(km,ky,l ) = (
c(km,ky,l ),↑, c(km,ky,l ),↓,

c†
(km,ky,l ),↑, c†

(km,ky,l ),↓
)
. (A4)

In this equation, the sum over l satisfies open boundary condi-
tions, i.e., it has to run over l = 1, . . . , L in the first term, over
l = 1, . . . , L − 1 in the second term, and over l = 2, . . . , L
in the third term. Equation (A3) is the Hamiltonian of the
field-free system, which is diagonal in (km, ky). It can thus
be written as a 4L × 4L matrix, which can be diagonalized to
find the properties of the field-free system, such as the spin
polarization. To introduce a field to a strip on the l = 1 and
l = L surfaces, the Hamiltonian has to be Fourier transformed
once more. For setups 1 and 2, we substitute

c(km,ky,l ),σ = 1√
M

∑
m∈{1,...,M}

e−ikm[2m+(l mod 2)]/
√

2c(m,ky,l ),σ ,

(A5)
and for setups 3 and 4,

c(km,ky,l ),σ = 1√
Y

∑
y∈{1,...,Y }

e−ikyyc(km,y,l ),σ . (A6)

For the Hamiltonian of setups 1 and 2, the term +(l mod 2)
in the exponent of the Fourier transformation accounts for the
fact that changes in m are not independent of l . In particular,

due to m = � x−z
2 �, moving from a layer with even coordinate

l to the next-neighbor site in the odd-numbered layer l + 1
can only change the coordinate m to m + 1 if the step is in the
+êm direction, while m stays the same if the step is in the −êm

direction. On the other hand, if l is odd, moving from l to l + 1
can only change m → m − 1 for a step in the −êm direction,
while a step in the +êm direction leaves m unchanged.

The boundary conditions in the in-plane direction orthog-
onal to the strip are periodic, i.e., m = 1 is equivalent to
m = M and y = 1 is equivalent to y = Y . Thus, we get the
Hamiltonian H = ∑

ky
�

†
ky
H(ky)�ky for setups 1 and 2 and

H = ∑
km

�
†
km
H(km)�km for setups 3 and 4 with the spinors

�ky = (�m=1,ky,l=1,�m=2,ky,l=1,�m=3,ky,l=1, . . . ,

�m=1,ky,l=2,�m=2,ky,l=2, . . . , . . . ) (A7)

and

�km = (�km,y=1,l=1,�km,y=2,l=1,�km,y=3,l=1, . . .

�km,y=1,l=2,�km,y=2,l=2, . . . , . . . ) (A8)

and the BdG matrices H(ky) and H(km), respectively. We can
then add 4 × 4 blocks

ĥ =
(

h · σ̂ 0

0 −(h · σ̂ )�

)
(A9)
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to all sites m (in setups 1 and 2) or y (in setups 3 and 4) that
belong to the exchange-field strip in the layer lfield, in which

the exchange field is applied. For setups 1 and 2, this leads to
the BdG Hamiltonian

H(ky) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l2 = 1 l2 = 2 l2 = 3 · · · l2 = L

l1 = 1 D1(ky) B†
1(ky) 0 · · · 0

l2 = 2 B1(ky) D2(ky) B†
2(ky) . . .

...

l2 = 3 0 B2(ky) D3(ky) . . . 0
...

...
. . .

. . .
. . . B†

L−1(ky)

l2 = L 0 · · · 0 BL−1(ky) DL(ky)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A10)

with the diagonal M×M blocks all equal to

m = 1 . . . m = mmin . . . m = mmax m = mmax + 1 . . . m = M
Dl (ky) = diag( d̂ (ky), . . . d̂ (ky) + δl,lfield ĥ, . . . d̂ (ky) + δl,lfield ĥ d̂ (ky), . . . d̂ (ky) ),

(A11)

with

d̂ (ky) =

⎛
⎜⎜⎜⎝

−2t cos ky − μ −λ sin ky −�y sin ky �s

−λ sin ky −2t cos ky − μ −�s �y sin ky

−(�y)∗ sin ky −(�s)∗ 2t cos ky + μ −λ sin ky

(�s)∗ (�y)∗ sin ky −λ sin ky 2t cos ky + μ

⎞
⎟⎟⎟⎠, (A12)

and the off-diagonal blocks

Bl (ky) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2 = 1 m2 = 2 . . . m2 = M

m1 = 1 b̂x b̂z 0 0

m1 = 2 0 . . .
. . . 0

... 0 . . .
. . . b̂z

m1 = M b̂z 0 0 b̂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

for l even,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2 = 1 m2 = 2 · · · m2 = M

m1 = 1 b̂z 0 0 b̂x

m1 = 2 b̂x
. . .

. . . 0
... 0 . . .

. . . 0

m1 = M 0 0 b̂x b̂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

for l odd,

(A13)

where

b̂x =

⎛
⎜⎜⎜⎜⎝

−t λ
2

�x

2 0

− λ
2 −t 0 �x

2
−(�x )∗

2 0 t − λ
2

0 −(�x )∗
2

λ
2 t

⎞
⎟⎟⎟⎟⎠ (A14)

and

b̂z =

⎛
⎜⎜⎜⎝

−t 0 0 0

0 −t 0 0

0 0 +t 0

0 0 0 +t

⎞
⎟⎟⎟⎠. (A15)
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For setups 3 and 4, the Hamiltonian matrix is computed analogously, which leads to

H(km) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

l2 = 1 l2 = 2 · · · l2 = L

l1 = 1 D̃1 B̃†(km) 0 0

l2 = 2 B̃(km) . . .
. . . 0

... 0 . . .
. . . B̃†(km)

l2 = L 0 0 B̃(km) D̃L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A16)

with the Y ×Y off-diagonal blocks

B̃(km) =

⎛
⎜⎜⎜⎜⎝

y2 = 1 . . . y2 = Y

y1 = 1 b̂m(km) 0 0
... 0 . . . 0

y1 = Y 0 0 b̂m(km)

⎞
⎟⎟⎟⎟⎠ (A17)

and the diagonal blocks

D̃l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y2 = 1 y2 = 2 y2 = ymin y2 = ymax y2 = Y

y1 = 1 â b̂†
y 0 0 b̂y

y2 = 2 b̂y
. . .

. . .
. . . 0

y1 = ymin 0 . . . â + δl,lfield ĥ . . . 0

y1 = ymax 0 . . .
. . . â + δl,lfield ĥ b̂†

y

y1 = Y b̂†
y 0 0 b̂y â

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A18)

where

b̂m(km) =

⎛
⎜⎜⎜⎜⎜⎝

−2t cos
( km√

2

)
λ
2 e−ikm/

√
2 �x

2 e−ikm/
√

2 0

− λ
2 e−ikm/

√
2 −2t cos

( km√
2

)
0 �x

2 e−ikm/
√

2

− (�x )∗
2 e−ikm/

√
2 0 2t cos

( km√
2

) − λ
2 e−ikm/

√
2

0 − (�x )∗
2 e−ikm/

√
2 λ

2 e−ikm/
√

2 2t cos
( km√

2

)

⎞
⎟⎟⎟⎟⎟⎠ (A19)

and

b̂y =

⎛
⎜⎜⎝

−t −iλ
2

−i�y

2 0
−iλ

2 −t 0 i�y

2−i(�y )∗
2 0 t −iλ

2
0 i(�y )∗

2
−iλ

2 t

⎞
⎟⎟⎠. (A20)

APPENDIX B: OSCILLATING SPIN POLARIZATION
FOR SETUP 4 AT THE l = L SURFACE

As seen in Sec. III A, the m component of the spin polar-
ization at the l = L surface is much smaller than at the l = 1
surface because while the x component of the spin polariza-
tion is symmetric when switching from l to L + 1 − l , the z
component is antisymmetric. Thus, while sx and sz add up to a
large m polarization at the l = 1 surface, they nearly cancel for
l = L. Indeed, the ASOC vector lk = x̂ sin ky − ŷ sin kx of our
model is invariant under a transformation that takes (km, ky, l )
to (−km, ky, L + 1 − l ) and rotates every spin by π around the
x axis. Due to the relation of the rotation in spinor space and
the real-space transformation, this is not a physically allowed
transformation and in particular it is not a symmetry of the
C4v point group because none of the elements of this group
can change the z component. It should instead be interpreted

as an artifact of the simple form of the chosen lk and would
disappear if higher-order symmetry-allowed terms were taken
into account. However, these terms are expected to be small so
that the following arguments are still a good approximation.

To explain the behavior of the m component of the spin
polarization at the l = L surface for setup 4, we give a pertur-
bative argument. As for all ky the field-free states at +ky and
−ky are degenerate, the energy shift for a field h has to start
from a superposition of these states, so that

�E (±ky, km) = h · 〈ŝl〉c1|km,ky,ν〉+c2|km,−ky,ν〉, (B1)

where c1, c2 ∈ C are coefficients. For every pair (ky, km), we
choose a basis |↑〉l ≡ (1 0)� and |↓〉l ≡ (0 1)� of spins point-
ing in the +z and −z direction, respectively, and consider only
unperturbed flat-band surface states, i.e., states with ν = 1.
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Thus, we can parametrize

|km, ky〉l =
(

r↑,l eiφl

r↓,l

)
, (B2)

with r↑,l , r↓,l ∈ [0, 1] and φl ∈ [−π, π ). We can express the
spin polarizations sx

l = 〈ŝx
l 〉|km,ky〉, sy

l = 〈ŝy
l 〉|km,ky〉, and sz

l =
〈ŝz

l 〉|km,ky〉 as well as the weight pl = 〈σ̂ 0
l 〉|km,ky〉 of the state

localized in the layer l in terms of these parameters:

sx
l = 2r↑,l r↓,l cos φl , (B3)

sy
l = 2r↑,l r↓,l sin φl , (B4)

sz
l = r2

↑,l − r2
↓,l , (B5)

pl = r2
↑,l + r2

↓,l , (B6)

which can be solved for r↑,l , r↓,l , and φl , leading to

r↑↓,l =
√

pl ± sz
l

2
, (B7)

φl =
⎧⎨
⎩

arccos
( sx

l√
p2

l −(sz
l )2

)
for sx

l > 0

π − arccos
( −sx

l√
p2

l −(sz
l )2

)
for sx

l < 0.
(B8)

Due to the antisymmetry of sx and sz with respect to ky,
a sign change of ky thus replaces φl by π − φl and inter-
changes r↑ and r↓. This means that the superposition |�〉 ≡
c1|km, ky, ν〉 + c2|km,−ky, ν〉 can be written as

|�〉 = ceiϕ |km, ky〉 +
√

1 − c2 |km,−ky〉

= ceiϕeikyy

(
r↑,l eiφl

r↓,l

)
+

√
1 − c2e−ikyy(r↓,l ei(π−φ)r↑,l ),

(B9)

with c ∈ [0, 1] and ϕ ∈ [−π, π ). Substituting this state into
〈ŝl〉|�〉 and transforming to sm = (sx − sz )/

√
2 gives

sm
1 (y) = 4c

√
1 − c2 cos(2kyy + ϕ + φ)

(
sx

1 + sz
1

)
+ 2(2c2 − 1)

(
sx

1 − sz
1

)
, (B10)

sm
L (y) = −4c

√
1 − c2 cos(2kyy + ϕ + φ)

(
sx

1 − sz
1

)
− 2(2c2 − 1)

(
sx

1 + sz
1

)
(B11)

as the m component of the spin polarization of the super-
position in Eq. (B1), for the two surfaces. The unperturbed

state |�〉0 ≡ c0eiϕ0 |km, ky〉 +
√

1 − c2
0 |km,−ky〉 that is clos-

est to the ground state of the perturbed system generically
corresponds to a linear combination of the states |km, ky〉 and
|km,−ky〉 with a coefficient c = c0 �= 0. Thus, for sx

1 ≈ −sz
1,

which is the case for our model system, perturbation theory
starts from a state with finite and spatially almost constant spin
polarization sm

1 (y) at the l = 1 surface and from a state with
spatially strongly oscillating but on average almost vanishing
spin polarization sm

L (y) at the l = L surface. In the latter case,
this means that the effects of an exchange field h = hêm in
regions with positive and negative spin polarizations cancel
everywhere except if they lie on different sides of the bound-
ary between the exchange-field and the field-free strips. Thus,
the only states which are linearly shifted away from zero
energy in setup 4 at the l = L surface are localized at these
boundaries.
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